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Abstract—Diderot is a parallel domain-specific language for the
analysis and visualization of multidimensional scientific images,
such as those produced by CT and MRI scanners [6], [14],
[5]. Diderot is designed to support algorithms that are based
on differential tensor calculus and produces a higher-order
mathematical model which allows direct manipulation of tensor
fields. One of the main challenges of the Diderot implementation
is bridging this semantic gap by effectively translating high-level
mathematical notation of tensor calculus into efficient low-level
code in the target language.

A key question for a high-level language, such as Diderot, is
how do we know that the implementation is correct. We have
previously presented and defended a core set of rewriting rules,
but the full translation from source to executable requires much
more work. In this paper, we present DATm, Diderot’s automated
testing model to check the correctness of the core operations in
the programming language. DATm can automatically create test
programs, and predict what the outcome should be. We measure
the accuracy of the computations written in the Diderot language,
based on how accurately the output of the program represents
the mathematical equivalent of the computations.

This paper describes a model for testing a high-level language
based on correctness. It introduces the pipeline for DATm, a
tool that can automatically create and test tens of thousands of
Diderot test programs and that has found numerous bugs. We
make a case for the necessity of extensive testing by describing
bugs that are deep in the compiler, and only could be found with
a unique application of operations. Lastly, we demonstrate that
the model can be used to create other types of tests by visual
verification.

I. INTRODUCTION

To discover the structure and dynamics of physical and

biological specimens, scientists employ imaging methods like

computed tomography (CT) scanning and microscopy to gen-

erate detailed 3D datasets. To understand this data requires

advanced image analysis and visualization methods. Because

Diderot implements such a high-level programming model, it

is a significant compilation effort to bridge the gap between

surface-language operations and the hundreds of lines of C ++

code that is required to implement these operations. With

such a large semantic gap, the question of correctness of the

compilation process is a serious concern.

Testing a compiler for a high-level mathematical

programming-language poses a number of challenges

not found in previous work on testing compilers. While it is

easy to write down complicated mathematical expressions to

feed to the compiler, it is difficult to predict what the correct

answer should be. For this reason, manual construction of

tests for the Diderot compiler was time consuming and prone

to biases (i.e., combinations of operations that were easy

for the test author to understand). Furthermore, Diderot is a

rich language with many operators, so the space of possible

combinations is too large for manual exploration. Thus, as in

previous work, it is vital that we build a testing tool that can

automatically generate test cases that provide good coverage

of the features of the language [16], [8].

There is extensive research in compiler testing. Differential

testing relies on comparing various versions and implementa-

tions of the compiler [17], [25]. Equivalence Modulo Inputs

[15] creates a family of programs that can be used for differ-

ential testing. Alone, these approaches did not seem sufficient

in the case of Diderot. Most of the substantial transformations

that occur during compilation are necessary and not reasonable

to disable. Additionally, earlier versions of the compiler are

much less expressive than the current implementation. Our

goal is to validate the correct answer for the new operations in

the Diderot language. We chose to develop a ground truth for

our test cases by careful construction of data sets and careful

choices of points of evaluation.

We present Diderot’s automated testing model. It is designed

to rigorously test the core mathematical parts of the Diderot

implementation. DATm combines generation of test programs

with generation of synthetic data for which the correct values

and properties of Diderot program output is known. For each

test program, synthetic data is used to synthesize tensors and

tensor fields that are being used in the Diderot program. The

solution can then be derived analytically as an operation on

polynomials. The generated Diderot program is compiled and

run on the test data. DATm compares the result of the Diderot

program with the analytically-derived correct answer and if the

answers are within an error tolerance, the test passes.

We also demonstrate how the testing model can be extended

to automatically create and test different Diderot programs. We

apply a metamorphic testing technique to do visual verification

on an important class of algorithms. Metamorphic testing is

used to evaluate unknown solutions based on some property.

DATm can offer a full coverage of a set of operators. This

includes common computations that the user is expected to

use and uncommon ones that a compiler writer is not likely

to test. It has found various bugs in the Diderot compiler and

has enabled quick debugging of new operators. It is designed

to aid development by supporting quick reproducibility of test

cases, providing exhaustive testing , and random testing. It has

provided other unexpected benefits, such as identifying math-

ematically valid programs that were unnecessarily rejected by

the compiler because of artificial limits in the typing rules.

The remainder of the paper is organized as follows. We first

introduce Diderot’s Automated Testing model and describe its

implementation. We describe how the model can be extended

to automatically test a class of visualization algorithms. We

2017 IEEE/ACM 12th International Workshop on Automation of Software Testing

978-1-5386-1548-5/17 $31.00 © 2017 IEEE

DOI 10.1109/AST.2017.5

47

2017 IEEE/ACM 12th International Workshop on Automation of Software Testing

978-1-5386-1548-5/17 $31.00 © 2017 IEEE

DOI 10.1109/AST.2017.5

45



then present results about both the effectiveness of DATm in

finding bugs and about DATm’s efficiency in generating and

running tests. We discuss future improvements and conclude

in Section VI.

II. BACKGROUND

We rely on the expressivity of the Diderot language to

support the implementation of visualization ideas. Visualiza-

tion algorithms involve computing certain properties from a

dataset. The mathematical core of these ideas are ingrained

in tensor calculus. Central to them are operations on and

between tensors fields. For a scientist or mathematician, it

might be natural to think of these concepts first in a math-

ematical notation rather than in lower-level code. The actual

implementation of visualization algorithms can be laborious,

and inefficient. Diderot eases the transformation of ideas into

workable intuitive code by allowing the math-like notation to

be written directly into the language [4].

In Diderot, algorithms can be directly expressed on tensor

and tensor fields. The type tensor[ς] is a tensor with shape

ς . Tensors refer to scalars, vectors, and matrices. The type

image(d)[κ] represents image data that is sampled on a

regular grid. A kernel type kernel#k is represented as a Ck

kernel. The language defines a group of built in kernels. The

type field#k(d)[κ] is a tensor field with continuity k, shape

κ , and dimension d (1≤ d ≤ 3).

Diderot’s notation is similar to that used in tensor calculus

but with Unicode characters. This includes arithmetic opera-

tions such as the inner product • and cross product ×. Fields

are created for convolution between an image data and kernels

�. Diderot also supports differentiation of tensor fields ∇.

III. DATM

This paper describes the technique we used to test the new

operators added to the Diderot language by introducing two

models (Figure III-E2): DATm a model that evaluates based on

equality and DAVm a model that evaluates based on symmetry.

We will give an overview of DATm in the following section

and then provide further details.

A. Overview

This section will introduce DATm as illustrated in Fig-

ure III-E2 and relate it to common terminology. The test
requirements are described in the frame and serve as input to

the test generator. The testing frame defines several key factors

for DATm such as what is being tested and how to search for

test cases. The generator creates a test description for each test

case. The test description describes an application of operators

to arguments with different Diderot types. The test description

can also be considered the test input.
The testing process involves creating synthetic data and

a test program given the test description. Synthetic data is

created for each argument and is represented with a data file

(test.nrrd) and symbolic expression. A Diderot program is

generated by using the corresponding synthetic data and list

of points. The output of the executed Diderot program is a

data file (out.nrrd). The analytically derived solution is found

by evaluating the symbolic expression at the same series of

points as the Diderot test program.

We want to ensure that the Diderot program compiled. The

test output is a nrrd file created by Diderot and a sympy

expression. We expect that both output reduces to a series of

numbers. The expected behavior is numerical equality between

the output.

τ ::= tensor[ς] tensor with shape ς
field#k(d)[κ] tensor field with continuity

k, shape κ , and dim d
image(d)[κ] image data with shape κ ,

and dim (d)

dn ::= 2 | 3 dimension

vn ::= 2 | 3 | 4 extended dimension

κ ::= nil’| v1 | d1d1 Field shape
Figure 1. Subset of Diderot types that can be tested with DATm

B. Generating test cases

Automatically building test cases is one of the goals of

DATm. Test cases are based on a subset of the Diderot

language types τ (Figure 1) and operations (Figure 2). The

core of a test case is an application of an operator to expres-

sions. An exhaustive generation of test cases can be found by

iterating over the various types and operators in the scope, then

internally typechecking it to filter out the applications that do

not make mathematical sense. Test generation is parameterized

by the testing frame which is explained in the next section.

C. Testing Frame

The testing frame is defined by the settings and scope. The

settings indicates how to initialize various variables. The scope
describes the subset of types and operators included.

1) Settings: The settings initialize the following:

• Data Creation factors when creating synthetic data. This

includes order of coefficients linear, quadratic, and cubic,

and the quantity and orientation of samples taken (by

randomizing shear and angle). Using fewer samples and

creating a non-isotropic grid creates a stronger field

reconstruction (a core operation for Diderot) test.

• Test program details and restrictions to the scope of test

cases. Generated test programs probe a tensor field at a

set number of positions and use a specified reconstruction

kernel (Figure 2). The restriction of the test cases include

the number of operators (1-3), and limitations to argument

types (such as only tensor fields).

ops ::= − , ‖ · ‖ , @ , √ , ∇, ∇⊗ , ∇× , ∇•, inverse,

| normalize , trace , transpose , det,

| sin , cos , tan , arccos , arcsin ,

| [:,0] , [1] , [:,1,:] , [1,0,:] , . . .
::= + , - , * , / , ,• , : , × , ⊗ , � , modulate

kernel ::= c4hexic , tent , ctmr , bspln3

Figure 2. Subset of Diderot operators and kernels that can be tested with
DATm
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• Random or exhaustive exploration of test cases. It is

not always practical to run an exhaustive test and create

tens of thousands of programs. The developer specifies

the probability of a single test program being executed

in the testing frame. Random testing does not ensure

coverage, but it makes it feasible to explore a larger set of

complicated programs (with a varying number of nested

operators) in a more manageable amount of time.

2) Scope: The scope is the set of possible programs that can

be tested. It is possible to specify a single test case or target

a subset of test cases with command line arguments. This can

aid the process of debugging and enable more targeted testing.

The scope of the testing falls into three modes:

1) Run all possible test cases described under the testing

frame. In the exhaustive case, this can be every possible

combination of operators and arguments types supported

by DATm. In the random mode, the test generator will

randomly choose the test cases to create.

2) Targeting a group allows us to limit the testing scope to

some argument(s). This can be helpful when testing a new

operator added to the language, by only creating tests that

involve that operator, i.e. the inverse of an argument.

3) Run a single case, i.e. the addition of two 2-d scalar fields.

D. Generate Diderot program

DATm supports a scripted instantiation of test program

templates for each test program. Type description of arguments

τ are converted to Diderot types. Tensor field values are

initialized by loading a nrrd file.
field#k(2)[2] F = load("F.nrrd") � c4hexic;
tensor[2] T = [expT1,expT2];

Each operator is defined by attributes that allow its scripted

printing in Diderot programs. The outer product operator :

opouter = {out :⊗, placement : middle, arity : 2, limit : None}
indicates the placement and arity of unicode symbol ⊗ in

field#k(2)[2,2] G = inv (F⊗T );
The field is probed at multiple points in the field domain with

the application of the inside test.
if(inside(F,pos)){. . . }

The result of computation is the observed value.
tensor[2,2] observed = G(pos);

Once the Diderot program is written, it is compiled and

executed. The resulting nrrd file is read as observed data.

E. Data Creation

DATm offers a scripted generation of synthetic data used

in the testing process. This is done by defining the values

to tensor and tensor field arguments as polynomials. Random

numbers serve as coefficients to polynomial expressions. For

each argument in a test case, we create a representation for

Diderot and Python.

1) Nrrd Format: In a Diderot program, a tensor field is

instantiated with a data file (in a F.nrrd format [22]) and a

reconstruction kernel. The file maintains sampling orientation

and discrete data points. A Diderot template can be synthe-

sized with arguments that represent a polynomial expression.

Okay/Fail

Evaluate
 at points

Sympy

Sympy 
expression

out.nrrd

Test description diderot

test.diderot

Equality
Check

Test 
generator

Testing Frame

test.nrrd

Okay/Fail

out.nrrd

Test description

VIS
Template

diderot

test.diderot

Symmetry
Check

Test 
generator

Testing Frame

test.nrrdVIS Concept

Sample 
output

Figure 3. Pipeline of Diderot’s Automated Testing model (left) and an
extension of it DAVm (right). Highlighted are the different portions to the
pipeline. DATm, and DAVm evaluate the correctness of Diderot test programs
based on equality and symmetry, using Sympy, and a visualization concept,
respectfully.

The template takes samples from the function created from

the polynomial expression and saves it to a Diderot nrrd file

(test.nrrd on left in Figure III-E2). The number of samples and

their orientation are based on parameters in the frame.

2) Sympy Expression: The operators we are testing are

tensor calculus-based operators. This gave us the opportunity

to use Python sympy package [20] to analytically derive

the correct solutions independently of Diderot. A symbolic

expression can be created from a list of coefficients, and

handled easily (exp1 = x2 + 3x+ 4). It can be differentiated,

manipulated with a series of tensor operators, and evaluated

at points.

F. Evaluation

The same coefficients that are used to synthesize a Diderot

tensor field are also used to create a Sympy expression. The

operators that applied in the generated Diderot test program

can also be applied between expressions in Python. The

expected test output is then the result of running the Diderot

test program and the evaluated Sympy expression.

We expect to be able to compare the test output based on

equality. If the output are within some error tolerance then the

test passes. There are three different possible failure modes. A

type error indicates an issue with the Diderot type checker. A

compilation error could be caused by a mistake in a rewriting

step that halted compilation of the program. A numerical error

indicates that the test program did compile and execute, but the

Diderot output is not comparable to the analytically derived

result.

G. Numerical Instability

We choose to evaluate test results based on a ground

truth. Still, the evaluation is comparing the output of floating

point arithmetic. The potential rounding errors that can occur
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Figure 4. Volume rendering of a symmetric 3-d field. Summation projection
(left), Maximal projection (right) with positions that are sampled to evaluate
correctness. We sampled 30 groups of 4 points that were equal distance from
the center. Highlighted in red are one of the groups.

from floating point arithmetic are well-known and experienced

[10]. It is possible that the numerical instability of floating

point arithmetic results in a false positive. DATm does take

some precautions against doing operations with undefined

results. Each operation is tagged with a condition attribute. For

instance, the square root operation
√

e is tagged by a condition

that limits the argument to only positive numbers.

IV. VISUALIZATION VERIFICATION

This section demonstrates a modest way to do automated

visual verification of the Diderot language by using

metamorphic testing. Programs written for scientific

visualization or image analysis can be more mathematically

complicated than what we have tested. It is possible that the

complexity could bring to light more bugs. Evaluating results

of a visualization program based on the numerical accuracy

can be difficult (if not impossible), because sometimes

we can’t easily know what the algebraic solution should

be. Therefore, each visualization program had required an

“eyeball test” in addition to already discussed drawbacks

of writing tests by hand. That is, just visually looking at

the resulting image and seeing if was as expected. In an

effort to include more types of testing, we created Diderot’s

Automated Visualization model DAVm and use a known

property to evaluate an unknown result.

A. Concept

To test Diderot, we need to construct a visualization pro-

gram that can be checked in an automated way. We choose to

compute a simple volume renderings of synthetic 3-D fields

created by the new operators. Projecting a rotationally 3-

D symmetric field, restricted to a spherical domain, should

produce a rotationally symmetric 2-D image, regardless of the

view point and the field operations involved. DAVm generates

Diderot programs to (1) do a volume rendering and (2) a

sampling of the output of the volume rendering. Figure 4

provide examples of the output from these programs. In the

following we describe aspects to DAVm that depend on the

visualization concept.

B. Pipeline

DAVm, an extension of DATm, uses much of the same basic

code. It was created to generate meaningful tests while keeping

the benefits of automated and random testing. Figure III-E2

provides the pipeline for DAVm. DAVm, like DATm, is used

to generate test cases, create synthetic data, write Diderot

programs, and evaluate each test program. In DAVm, the

evaluation of those programs do not use sympy and instead is

grounded in symmetry checks.

1) Generate Test cases: A Diderot program is used as

a template for creating test programs. We use a MIP pro-

gram [9] as the base code for a basic volume rendering

program in Diderot. We expect that the field being probed

G is a symmetrical 3-d scalar field. The core of the MIP

program gets the maximum value along the ray and stores it

out = max(out, G(pos)); Another template can be used

to do a summation projection volume rendering by using:

out += out; Figure 4 presents example images from these

programs.

2) Evaluation: The correct numerical answers for these

visualization programs are unknown (the projections would

involve potentially unwieldy symbolic integrations) but we

can use symmetry arguments to detect major bugs. We test

the symmetry of the output by sampling the field at groups

of points, at the same distance from the center of the image,

and comparing them. Each point in a group is at the same

distance from the center. For each point, the x-coordinate is

chosen randomly, and the corresponding y-coordinate is cho-

sen using the distance formula. This maintains some notion of

randomization while probing the field at meaningful positions.

V. PERFORMANCE AND RESULTS

In this section, we present four sets of results from using

DATm. The first set is from an experiment that measures the

impact from changing the type of search (exhaustive or ran-

dom). DATm can be used to create a vast number of programs

automatically and do faster regression testing. The second

set is from an experiment that applies DATm at different

snapshots of the compiler. This experiment demonstrates that a

lot of bugs were not being caught until we developed DATm.

The third set is a description of the bugs that were found in

the compiler. We provide examples of bugs that would have

been especially difficult to find without DATm. The fourth set

is from a simple experiment that runs DAVm. It demonstrates

that it is possible to do other types of tests with an extension

of the testing model.

A. Experimental Framework

The experiments were run on an Apple iMac with a 2.7

GHz Intel core i5 processor, 8GB memory, and OS X Yosemite

(10.10.5) operating system. The experiments may run different

sets of tests by changing some settings in the testing frame,

but the following factors in the testing frame are constant.

To create synthetic data, quadratic coefficients are used. To

create nrrd files for a tensor fields 70 samples are taken and

the sampling orientation is not randomized. The generated

test program used c4hexic kernels to reconstruct tensor fields

and 7 positions to probe the fields. We omit times for doing

exhaustive testing with a high number of nested operators in

favor of doing random testing in this large search space.
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Figure 5. Results when running DATm over time. Categories“OK”, “Fail”,
“Did not compiler”, and “NA” indicates a program passed, failed, it did not
compile, or was thrown out, because conditions set by the operators where
not met, respectfully. The vertical line marks when DATm was introduced.

No. of No. of Time given probability.

Ops Programs 0 % 1% 10% 100%

1 695 0.25 0.55 4.65 32.53

2 18,819 7.62 18.35 121.23 1099.16

3 495,626 58.83 393.2 - -

Figure 6. The following offers measurements from executing DATm with
different settings. The settings are (1) the number of operators, and (2) the
probability to run a single test case. A 0% probability refers to iterating test
cases only, a 100% is an exhaustive test, and the range in-between refer to
a random search with a set probability to execute each test case. This figure
records the number of test programs that are created with an exhaustive search,
and the timing measurement (in minutes) for running DATm

B. Exhaustive vs. Random Testing

This experiment demonstrates the ability to do exhaustive

and random testing with DATm. It executes the model by ini-

tializing the testing frame with different settings. The changes

vary the number of test programs that are created and how they

are found. We report the impact of changing these variables

by recording how long testing takes and number of test cases

available.

Our experiment does a single exhaustive search and several

random searches for up to 3 nested operators. Table 6 records

the timing measurement from doing these different searches

and varying the number of nested operators. The measure-

ments range from seconds to hours. Table 6 records the number

of test programs that are created with an exhaustive search.

The experiment demonstrates that DATm can create a vast

number of test programs. This capability has made it possible

to find hidden and unique bugs. DATm can create thousands

of programs, but it is not feasible to do exhaustive search

each time there is a change to the compiler. To enable quicker

regression testing it is necessary to also do random testing.

The developer can choose to parametrize DATm to do random

testing or exhaustive testing while targeting a single operator.

C. Progress

To evaluate the effectiveness of DATm we ran the same

set of programs on six different snapshots of the compiler.

The snapshots of the compiler where taken off the Diderot

repository over four months apart, starting from March 2015.

To be clear, we did a post evaluation of the state of the

compiler using DATm. The testing frame was set to the same

constants as the previous experiment, and we did an exhaustive

search with 2 nested operators. The set of programs included

almost 19 thousand tests.

The test results are organized by three different categories,

“failed”, “compilation error”, or “passed”. The “failed” de-

scription means that there was a clear error because the

numerical result was not correct, or there was an error when

executing the program. The “compilation error” are the pro-

grams that did not compile. This can include type errors from

testing operations that were not part of the language syntax

at the time. The experiment measures the number of tests

programs that fall into these different categories. Figure 5

provides the results from the experiment.

Over time, the number of passing tests is inconsistent, rather

than constantly improving. This indicates that new errors may

have been introduced and not caught. The test does not indicate

the number of bugs, and we expect that many of tests fails due

to the same compiler bug. Various compilation errors may be

due to earlier versions of the language not fully supporting

all the functionality. The experiment shows that development

of Diderot rapidly changed once DATm was introduced. At

the latest data point, Diderot did not fail any of the tests.

Previously, the bugs were unknown and unfixed.

D. Bugs

DATm has found various bugs in the Diderot compiler

when it was developed. DATm found seven compile time

errors, three numerical errors, and eight type errors. While

there might not be many bugs, some of the compile and type

errors were caused by complicated mistakes in the compiler.

The numerical bugs would have been difficult to find without

DATm. The type error bugs account for missing features

and unexpected restrictions in the language. The following

provides a description of some of the bugs and provides

motivation for extensive testing.

1) Unique Bugs: DATm discovered bugs that could only

arise with a unique combination of operators. Bugs of this

nature are unlikely to be found by a Diderot user and difficult

to identify in the code alone do to its complexity. Space does

not permit describing a full list of bugs, but a few examples

follow.

a) Ex1. Numerical error caused by complicated transfor-
mation: This bug was an example of a rare numerical error

in the output, which was exposed by computing:
field#k(3)[3,3] G = transpose(∇⊗(V));
The Diderot compiler must generate code to map derivatives

from image-index space to world space. A subtle error arises

in tracking the variable index that represents the shape of the

tensor field. Because of the use of transpose, the index

is swapped with another, which gives rise to the error. It

is the unique combination of two operators (transpose of a

differentiated vector field) that triggers the bug.

b) Ex2. Bug exposed by testing nested operators: Pro-

grams with nested operators reach deeper parts of the Diderot

compiler. This is because some algorithms are designed to

optimize complicated expressions. The trace of the modulate

between a negation of A and B can be computed as
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No. of No. of Time given probability.

Ops Programs 1 % 100 %

1 15 .01 16

2 216 3.13 344

3 3,151 81.63 -
Figure 7. Results from running DAVm. The time is given in minutes from
an exhaustive and random search.

G = trace(modulate(-A, B));

The application of the trace operator on modulate is okay. It

is the use of a third operator that triggers an algorithm to be

applied. The computation raised a compilation error because

the case was not handled correctly by that algorithm.

2) Language expressivity: An unexpected benefit of im-

plementing DATm was the gut-check to Diderot’s advertised

expressivity. Previous work offered a type specification for the

Diderot language. In actuality, the implementation provided

the wrong type. This error did not cause numerically incorrect

results, but instead restricted the use of the operator. Fixing it

makes Diderot a more complete language.

E. Visualization Results

In this section, we present the results of running DAVm. The

experiment created test programs based on the MIP template.

To sample the result, we created 30 groups of 4 points equal

distance from the center. The right-most image in Figure 4

is an example of the output from this type of testing. In

the image, the points sampled are imposed on the volume

rendering of the test program. This experiment in Figure 7

measures the the number of programs and time.

Testing with DAVm is limited. It takes longer to execute and

it is limited to subset of Diderot programs (3-d scalar fields).

It did not find errors, but perhaps because it was created after

DATm. This experiment does demonstrate that it is possible

to extend DATm to evaluate tests with unknown numerical

answers.

VI. DISCUSSION

a) Verification: Verifiable visualization allows us to ap-

ply a verification process to visualization algorithms. Instead

of real-world datasets one uses test cases with manufactured

solutions. The manufactured solutions could be created in a

way to predict result of algorithm with its implementation

when evaluating a known model problem. We use the idea of

verification [1], [23] as a guiding metric for testing. To directly

quote Etiene et al. “Verification is the process of assessing

software correctness and numerical accuracy of the solution to

a given mathematical model.” [23]. The measure of correctness

for computations written in the Diderot language, is based on

how accurately the output of the Diderot program represents

the mathematical equivalent of the computations.

b) Types of Testing: Randomized differential testing

(RDT) is way of testing by examining two comparable systems

[17], [25], [3], [10]. When the results differ (or one crashes),

then there is a test case for a potential bug. This is a widely

used method for testing compilers in practice. Csmith [25]

is a tool that can generate random C programs with the

goal of finding deep optimization bugs. The programs are

expressive and contain complex code. Similar to DATm,

Csmith effectively looks for deep optimization bugs in an

atypical combination of language features. Donaldson [10] et
al. applies metamorphic testing to graphic compilers by using

value injections. When comparing images, they note that small

differences in rendered images can occur even when there is

no compiler bug. Mettoc creates a family of programs and

compares them using an equivalence relation [21]. Palka et al.
generates random and type correct programs for the Glasgow

Haskell compiler [18]. The output of optimized and unopti-

mized versions of the compiler are compared. QuickCheck [8]

is a widely used testing tool that allows Haskell programmers

to test properties of a program. It is an embedded language

for writing properties. The type checker creates test cases that

satisfy a condition.

It has been valuable to evaluate our test programs based on

a ground truth, and an application of different types of testing

could complement our testing process. While it is not helpful

to test against earlier versions of Diderot (due to extensive

language developments), we could possibly create a family of

programs and do some variation of differential testing [17].

This paper introduced a way to do visual verification for

programs with unknown algebraic solution. Our application

of DAVm demonstrated how volume rendering templates can

be used to generate test programs. We believe that it is possible

to build other types of visualization test programs in this way.

In the future, it would be interesting to evaluate the ef-

fectiveness of different testing approaches on the Diderot

compiler. Chen et al. [3] compares various compiler testing

techniques. Besides RDT, they use “different optimization

levels” (DOL) where they compare the output for compara-

ble compilers at different optimization levels for the same

program. They found it was effective at finding optimization-

related type bugs.

c) Domain-Specific Testing: There are a variety of

domain-specific languages that provide similar features to

Diderot, Vivaldi and ViSlang. There is no published work

on testing (automated or otherwise) for these DSLs. Wu et al.
introduces a framework, DUFT, to generate unit tests engines

for DSLs [24] by adding a layer of DSL unit testing on

top of existing general-purpose language tools and debugging

services. Unlike DATm, DUFT tests DSL programs, but not

the DSL implementation. Ratiu et al. tested mbeddr, a set

domain-specific languages on top of C built with HetBrains

MPS language workbench [19]. Language developers define

assertions from the specification of the DSL and how it would

be translated to the target language.

d) Test case generation: There is extensive work on

how to create and choose test cases. Csmith [25] generates

C programs minimizing unknown behavior. Palka randomly

generated lambda terms [18]. Lindig [16] tested C calling

conventions. The tool generates the types of functions and

checked that the parameters were received. McKeeman[17]

describes test case reduction and test quality with differential
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testing. When generating test cases EasyCheck [7] focuses

on traversal strategy. Bernardy, et. al [2] present a scheme

that leads to reduction in the number of needed test cases.

It exhaustively enumerates on possible data types. Test set
diversity metric [13] is applied to ensure a diverse set

of test cases. DATm generates small Diderot programs (for

hefty tensor computations), and there is not much need for

minimization or reducing the program size. There is a need

to evaluate test case distribution when implementing random

search in a deep test space. To make this feasible, DATm could

do smarter test generation by evaluating based on existing

cases or applying some size metric.

e) Coverage: The subset of the Diderot language that is

being tested is clearly described. DATm is testing the funda-

mental computations and types of the language, while DAVm
puts those computations in the core part of a visualization

program. What is not clear yet is how many lines of the

Diderot compiler are being tested.

f) Testing in Parallel: The time it takes to run a large

numbers of tests is a limiting factor in the usefulness of the

tool. DATm takes from 2–5 seconds per test (depending on

the test’s complexity), which limits its use to either long runs

or very sparse random testing. Fortunately, it should be fairly

easy to run multiple tests in parallel using the parallelism of

Unix processes on multicore servers or workstations.

VII. CONCLUSION

We have presented DATm, an automated testing tool for a

high level language. DATm provides a practical way to test

Diderot by creating thousands of tests and evaluates the results

based on a ground truth. We have described the details in

implementing DATm as well as an extension to create other

types of tests. We have provided examples of bugs DATm was

able to find in Diderot.
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