Diderot: A Parallel DSL for Image Analysis and Visualization

Charisee Chiw Gordon Kindlmann

John Reppy

Lamont Samuels Nick Seltzer **

University of Chicago
{cchiw,glk,jhr,Jamonts,nseltzer} @cs.uchicago.edu

Abstract

Research scientists and medical professionals use imaging technol-
ogy, such as computed tomography (CT) and magnetic resonance
imaging (MRI) to measure a wide variety of biological and phys-
ical objects. The increasing sophistication of imaging technology
creates demand for equally sophisticated computational techniques
to analyze and visualize the image data. Analysis and visualization
codes are often crafted for a specific experiment or set of images,
thus imaging scientists need support for quickly developing codes
that are reliable, robust, and efficient.

In this paper, we present the design and implementation of
Diderot, which is a parallel domain-specific language for biomedi-
cal image analysis and visualization. Diderot supports a high-level
model of computation that is based on continuous tensor fields.
These tensor fields are reconstructed from discrete image data using
separable convolution kernels, but may also be defined by applying
higher-order operations, such as differentiation (V). Early experi-
ments demonstrate that Diderot provides both a high-level concise
notation for image analysis and visualization algorithms, as well as
high sequential and parallel performance.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language classifications — Very high-level languages;
D.3.2 [Programming Languages]: Language Classifications—
Concurrent, distributed, and parallel languages; D.3.4 [Program-
ming Languages]: Processors—Compilers

General Terms Languages, Performance

Keywords Domain Specific Languages, Image Analysis, Scien-
tific Visualization, Parallelism

1. Introduction

Biomedical researchers use multi-dimensional imaging to study
structure and function of biological systems with a variety of imag-
ing modalities, including confocal microscopy, computed tomog-
raphy (CT), and magnetic resonance imaging (MRI). Recent ad-
vances in imaging hardware have increased their speed, resolution,
and flexibility. For example, synchrotron radiation microCT pro-
duces scalar-valued volume images with 2048° samples (as com-
pared to 512® for clinical CT), and routine MRI scans include im-
ages of vectors (for blood flow in heart) and tensors (for diffu-
sion anisostropy in brain tissue). Besides increasing the biomedi-
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cal value of imaging, the quantities and types of data from modern
imaging hardware also strain the capabilities of established tools
for image processing. Scientists working with the new imaging
techniques and applications are the best positioned to create and
evaluate methods of image data processing, but they do not have
the programming background to create the efficient parallel imple-
mentations required to handle the quantity of data involved.

In this paper, we present a domain-specific language (DSL),
called Diderot, that simplifies the portable implementation of paral-
lel methods of biomedical image analysis and visualization. Image
analysis extracts quantitative or geometric descriptions of the im-
age structure in order to characterize specific properties of the un-
derlying organ or tissue. An example is extracting ridge lines and
valley lines to find blood vessels and airways, respectively, from a
CT lung scan. Visualization combines measurements of local im-
age data properties with elements of computer graphics in order to
qualitatively depict structures via rendered images. An example is
using direct volume rendering to illustrate the over-all shape and
inter-relationship of tissue boundaries.

Diderot supports a high-level model of computation that is
based on continuous tensor fields. Throughout, we use tensors
to refer collectively to scalars, vectors, and matrices, which en-
compasses the types of values produced by the imaging modalities
mentioned above, as well as values produced by taking spatial
derivatives of images. Diderot permits programmers to express al-
gorithms directly in terms of tensors, tensor fields, and tensor field
operations, using the same mathematical notation that would be
used in vector and tensor calculus (such as V for the gradient). We
intend for Diderot to be useful for prototyping image analysis and
visualization methods in contexts where a meaningful evaluation of
the methods requires its application to real image data, but the real
data volumes are of a size that requires efficient parallel computa-
tion. With its support for high-level mathematical notation, Diderot
will also be useful in educational contexts where the conceptual
transparency of the implementation is of primary importance.

This paper makes several contributions. First, we introduce a
novel DSL that directly supports higher-order operations on con-
tinuous tensor fields. Diderot’s type system tracks properties, such
as continuity, which helps ensure sensible numerical results. We
also describe how principles of tensor calculus may be applied to
address the challenges of compiling a very-high-level language like
Diderot. Lastly, we demonstrate the benefits of Diderot relative to
hand-coded algorithms for parallel computing performance.

The paper is organized as follows. In the next section, we re-
view the mathematical foundations of image processing on which
Diderot is based. We then present Diderot’s design in Section 3 and
illustrate its features with several examples in Section 4. We then
describe important aspects of our implementation, including the
implementation of tensor fields. Section 6 presents performance re-
sults, followed by a discussion of related work. We describe future
plans for the system in Section 8 and then summarize our results in
Section 9.



2. Background

A review of background mathematics will simplify later description
of the mathematical elements supported by Diderot, and will pro-
vide the context for our description of the domain of computation
for which Diderot is specialized.

We adopt tensors as a concrete type in Diderot to provide a gen-
eral way of representing the values stored in images and produced
by operations on images. 0-order tensors, or scalars, capture real-
valued samples from scans typically shown in grayscale (e.g., CT).
1-order tensors, or vectors, describe directional quantities such as
velocity and spatial derivatives of scalar fields. 2-order tensors, rep-
resented as matrices, describe linear transforms on vectors, first
derivatives of vector fields, and second derivatives of scalar fields.

Measured image data is discretely sampled on a regular grid (re-
gardless of the modality or image type), but the underlying objects
being scanned exist in a continuous space, which we call world
space. Signal processing provides the machinery for reconstructing
(or probing) continuous signals from discrete data via convolution
at arbitrary positions [20]. Convolving one-dimensional discrete
data V'[i] with a continuous reconstruction kernel h(z) produces
a continuous signal (V' ® h)(x). Separable convolution uses a sin-
gle one-dimensional kernel h(z) to create a multi-dimensional ker-
nel, for example in three dimensions H(z,y, z) = h(z)h(y)h(z).
Convolution also provides the means of measuring derivatives in
fields. The partial derivatives of F' = V ® H are found by convolu-
tion with separable product of kernels and their derivatives, e.g., %

is found by convolution with 86—5 = h(x)h'(y)h(2). Kernels can
be chosen according to the needed level of differentiability, while
balancing the quality of reconstruction with the computational cost
of having larger support (i.e. needing a larger neighborhood of im-
age values to compute the convolution sum).

Diderot is specialized for highly parallel analysis and visualiza-
tion of continuously differentiable tensor fields arising from multi-
dimensional imaging. The continuity of fields is important because
relevant features in the image data tend to lie in between pixels and
at arbitrary orientations. Simplifying how programmers can express
computations within world space helps prevent the results from
needlessly reflecting the discrete image grid. The differentiability
of fields is required because many structures of interest are defined
in terms of spatial derivatives. Extracting the network of blood ves-
sels from a CT scan is a good example of the need for continuity
and differentiability. Accurate results depend on tracing the cen-
ters of vessel pathways in between pixel locations, where gradients
and Hessians (first and second derivatives) are computed to locate
the ridge line image features that coincide with the vessels [2, 11].
Tensors may also originate in the image data, as with second-order
diffusion tensors measured via MRI, for which a common task is
tracing paths along the tensor principal eigenvector to model brain
connectivity [4]. Diderot simplifies the rapid exploration and im-
plementation of these types of algorithms by naturally supporting
the mathematical ingredients with which they are expressed: vec-
tors, tensors, eigensystems, kernels, fields, and derivatives.

We have chosen to develop a new domain-specific language
because of weaknesses with existing languages, libraries, and
tools. Established high-level array-processing languages com-
monly used for image processing, including Matlab [18], IDL [15]
and Python/Numpy [25], facilitate operations on entire image ar-
rays or their sub-arrays. The computational cost is distributed uni-
formly over the image, and parallelization according to memory
layout is straightforward. An early example of this approach is the
image algebra formulation of gray-scale image-to-image compu-
tation developed by Ritter and Gader [24]. For our intended appli-
cations, however, it is not convenient to express the computation
in terms of discrete sets of image data values. The transparent im-

plementation of the blood vessel extraction and fiber tractography
mentioned above, for example, hinges on a notion of continuous
fields, a fundamental abstraction available in Diderot. Also, the
parallelism we intend to capture is not structured according to the
underlying image data array, but by the output of the visualization
or analysis, i.e., rendered pixels in volume rendering, tractography
pathways curving through space, and points along ridge feature
lines. Third, array-processing languages are often optimized for
uniform access rather than irregular or sparse access patterns, so
techniques that work adequately for two-dimensional images do
not scale well to memory-intensive three-dimensional images, es-
pecially when the algorithmic output (as with blood vessel extrac-
tion) occupies only a small fraction of the volume data.

Another strategy for creating image analysis and visualization
tools is to use a specialized library that already encapsulates many
of the useful operations and constructs. A good example is the In-
sight Toolkit (ITK) [14], a large C+ image processing framework.
The drawbacks here, relative to a domain-specific language, relate
to program conciseness and simplicity. ITK relies heavily on C+
templates to achieve generality with respect to image type and di-
mension, so the code can be challenging to understand and debug.
In ITK, as with array-processing languages, it is easiest to paral-
lelize algorithms that compute over whole image arrays, since this
is the structure of the image registration and segmentation routines
for which ITK was originally designed.

3. Language design

The class of applications that Diderot targets are characterized as
consisting of many largely independent subcomputations. For ex-
ample, the rays in a volume renderer, the paths from fiber tractogra-
phy, and the particles in a particle system. In Diderot, these mostly
independent computations are modeled as strands, which execute
in a bulk synchronous fashion [26, 31]. Diderot uses a C-like syn-
tax for its computational notation, but this notation is extended with
mathematical types and operators.

3.1 Types and values

Diderot is a monomorphic, statically-typed, language with a fairly
small collection of types. The basic concrete values include strings,
booleans, integers, and tensors. We have five types of concrete val-
ues: booleans, integers, strings, tensors, and fixed-size sequences of
values. The type tensor [o] is a tensor with shape o € {i | 1 <
i}*. The number of dimensions in o (i.e., the length of o) is the or-
der of the tensor. For example, tensor [] is a 0-order tensor and
is the type of scalars, while tensor [3] is a 1-order tensor that
is the type of 3D vectors. We define type synonyms for common
tensor types, including real and vec3.

In addition to concrete values, Diderot defines three forms of
abstract type: images, kernels, and fields. Images are multidimen-
sional arrays of tensor data. The type image (d) [o] is the ab-
stract type of image data, where d € {1, 2, 3} specifies the dimen-
sion of the data and o specifies the shape of the tensor values at
each image sample. We do not program directly with image data.
Instead we use convolution kernels to define a continuous recon-
struction of the discrete data. The type kernel#k is the type of a
C* kernel (i.e., it has k continuous derivatives). Diderot provides a
number of useful built-in kernels, including the C° tent for linear
interpolation (so named because of its shape), the C'* interpolating
Catmull-Rom cubic spline ctmr, and the C? (non-interpolating)
uniform cubic B-spline basis function bspln3 [3]. Finally, con-
tinuous tensor fields have type £ield#k (d) [o], where k is the
number of continuous derivatives, d is the dimension of the field’s
domain, and o is the shape of its range. A field is a function from
d-dimensional space to tensors with the shape o.



1 input real stepSz = 0.1; // size of steps

2 input vec3 eye; // eye location

3 input vec3 orig; // pixel (0,0) location
4 input vec3 cVec; // vector between columns
5 input vec3 rVec; // vector between rows

6 input real opacMin; // value with opacity 0.0
7 input real opacMax; // value with opacity 1.0
8 image (3) [] img = load ("hand.nrrd");

9 field#2(3)[] F = img ® bspln3;

10

11 strand RayCast (int r, int c) {

12 vec3 pos = orig + real(r)xrVec + real(c)xcVec;
13 vec3 dir = normalize (pos - eye);

14 real t = 0.0;

15 real transp = 1.0;

16 output real gray = 0.0;

17

18 update {

19 pos = pos + stepSz*dir;

20 t =t + stepSz;

21 if (inside (pos, F)) {

22 real val = F(pos);

23 if (val > opacMin) {

24 real opac = 1.0 if (val > opacMax)

25 else (val - opacMin)/ (opacMax - opacMin);
26 vec3 norm = -normalize (VF (pos));

27 gray += transpxopac*max (0.0, -dir e norm);
28 transp *= 1.0 - opac;

29 }

30 }

31 if (t > 40.0) stabilize;

32 }

33}

34

35 initially [

36 RayCast (ui, vi) | vi in 0 .. imgResV-1,

37 ui in 0 .. imgResU-1

38 1;

Figure 1. Simple direct volume rendering code

3.2 Tensor and field expressions

A key feature of Diderot is that it supports mathematical notation
for computing with tensors and fields. Diderot syntax uses Unicode
characters to represent mathematical constants (7) and a rich set of
operations on tensors. In addition to standard arithmetic operations,
these include dot product (uev), cross product (uxv), tensor prod-
uct (u®v), and vector norm (| u|).

Computing with continuous tensor fields is one of the unique
characteristics of Diderot. Field values are constructed by convolv-
ing image data with kernels (img®bspln3), but they can also
be defined by using higher-order operations, such as addition, sub-
traction, and scaling of fields. Most importantly, Diderot supports
differentiation of fields using the operators V (for scalar fields)
and V® (for higher-order tensor fields). Two operations on fields
are testing whether a point x lies within the domain of a field F
(inside (x, F)) and probing afield F at a point x (F (x)). As
we show in the examples below, probing and differentiating are
fundamental to extracting geometric information from fields.

3.3 Program structure

A Diderot program is organized into three sections: global defi-
nitions, which include program inputs; strand definitions, which
define the computational core of the algorithm; and initialization,
which defines the initial set of strands. To illustrate this structure
and the features of Diderot, we use the simple direct volume ren-
derer shown in Figure 1 as a running example. This computation
requires probing both the scalar field to determine its opacity and
the its gradient to determine the surface normal.

3.3.1 Global definitions

Lines 1-9 of Figure 1 define the global variables of our example.
Global variables in Diderot are immutable. The first six of these
are marked as input variables, which means that they can be set
outside the program (they may also have a default value, as in the
case of stepSz). The Diderot compiler synthesizes glue code that
allows command-line setting of input variables. Line 8 loads image
file "hand.nrrd" and binds variable img to it. The type of img
is a 3D scalar image, which is checked when the image is loaded.
The 1oad function may only be used in global part of the program.
Note that we do not specify the representation of the image values
on disk; i.e., they could be signed ints, floats, efc. The compiler
generates code that maps image values to reals. Line 9 defines
a scalar field F, reconstructed by convolution with the bspln3
kernel, providing the C? continuity reflected in the type of F.

3.3.2 Strands

Much like a kernel function in CUDA [22] or OpenCL [16], a
strand in Diderot encapsulates the computational core of the appli-
cation. Each strand has parameters (e.g., r and c on line 11), a state
(lines 12-13) and an update method (lines 18-33). The strand
state variables are initialized when the strand is created; some vari-
ables may be annotated as output variables, which define the part
of the strand state that is reported in the program’s output. Unlike
globals, strand state variables are mutable, but we avoid features,
such as pointers, that would make analysis difficult. In addition,
strand methods may define local variables (the scoping rules are
essentially the same as C’s).

The update method of the RayCast strand starts by advanc-
ing the strand’s position along a ray (lines 20 and 21). It then tests
to see if the position lies within the field F domain (line 22). If
the strand’s position is inside the domain, we probe the field F and
compare the field’s value to our lower opacity threshold. By chang-
ing the opacity range, we can pick out different features of the im-
age (e.g., skin or bone). In lines 27-29, we find the contribution of
the current position to the image using the gradient field to compute
diffuse lighting. Note that we use Python’s syntax for conditional
expressions (lines 25 and 26). In line 32, we check to see if the ray
has gone beyond a distance limit, in which case we stabilize the
strand, which means that it ceases to be updated. As we will see in
later examples, a strand may also have a stabilize method that
is invoked when the strand stabilizes.

3.3.3 Initialization

The last part of a Diderot program is the initialization section,
which specifies the initial set of strands in the computation.'
Diderot uses a comprehension syntax, similar those of Haskell
or Python, to define the initial set of strands. For example, the vol-
ume renderer specifies a grid of initial ray positions in lines 35-38.
When the strands are initialized as a grid, it implies that the strands
will all stabilize (i.e., they do not die). The grid structure is then
preserved in the output. For example, the grid of initial strands
created above will produce a grid of pixel values, one per ray.

Diderot also allows one to specify an initial collection of strands
by using “{ }” as the brackets around the comprehension (in-
stead of “[ 17). In this case, the program’s output will be a one-
dimension array of values; one for each stable strand.

3.4 Diderot’s type system

Diderot has a monomorphic type system that captures the important
mathematical properties of the program, such as the continuity of

'In the current version of the language, described in this paper, strands
are only created at startup. Eventually, we plan to support dynamic strand
creation (see Section 8).



'V : image(d)[o] T'k h: kernel#k
'+ V®h: field#k(d)[o]

Tk F: field#k(d)[] k>0 E=k—1
' VF : field#k'(d)[d]
'+ F: field#k(d)[o, d'] k>0 F=k—1

' VQF : field#k/(d)[o, d’, d|

'k F: field#k(d)[o] T'F p: tensor[d]
't F(p) : tensor|o]

Figure 2. Key typing judgments for Diderot

fields. Figure 2 presents the most important rules in the type system.
The first rule shows how the properties of the image data and
convolution kernel determine the type of resulting field. The next
two rules capture the fact that differentiation reduces the continuity
of the field, but increases its order. Lastly, the typing rule for probe
is similar to function application (as one would expect).

4. Examples

Diderot’s language design and computational model support a
range of visualization and analysis methods. In this section, we
illustrate the language’s expressiveness with several examples of
computations typical of visualization and analysis algorithms.

4.1 Implicit Surface Curvature

One physical property of interest is the curvature of implicit sur-
faces within the image. Just as the gradient of a field is used to
find the implicit surface normal, the second derivative of the field,
the Hessian, determines curvature (i.e., the change in normal due to
motion along the surface). The principal curvatures ;1 and x2 can
be computed from the tensor G defined by [17]

—PHP
G = 97
where
P = I-n®n”
no= \§1€|
H = V®VF

The eigenvalues of G are 0, k1, and k2, so the principal curvatures
appear in the tensor invariants of G

trace(G) =
G| =

K1+ K2

/.2 2
K] + K3

where |G| is the Frobenius norm of G. With some algebra, we get
trace(G)+d

K1 =
trace(zG)—d
2

K2
where
d = +/2|G]2 — trace(G)2

To visualize surface shape in a volume rendering, we can use
a bivariate function of x1 and k2 to assign color based on local
curvature. Diderot code that implements this is shown in Figure 3.
Notice that the mathematical specification given above translates
directly into Diderot; one can easily see that the code is an imple-
mentation of the method that one might derive on the whiteboard.
This example also illustrates the use of a field to implement a color
assignment function (i.e., the RGB field). We sample this field using
bilinear interpolation, which is provided by the tent kernel. The
resulting image from applying this technique to a synthetic data

1 // RGB colormap of (kappal,kappZ2)

2 field#0(2)[3] RGB = tent ® load(xfer);

3 ...

4 update {

5

6 vec3 grad = -VF (pos);

7 vec3 norm = normalize (grad);

8 tensor([3,3] H = V ® VF (pos);

9 tensor([3,3] P = identity[3] - norm®norm;
10 tensor[3 3] G = —(PeHeP)/|grad|;

11 real disc = sqrt(2.0x|G|"2 - trace(G) "2);
12 real k1 = (trace(G) + disc)/2.0;

13 real k2 = (trace(G) - disc)/2.0;

14 // find material RGBA

15 vec3 matRGB =

16 RGB([max(-1.0, min(1.0, 6.0%k1l)),

17 max (-1.0, min(1.0, 6.0xk2))1);
18

19 }

Figure 3. Computing the surface color based on implicit surface

“asie

Figure 4. Volume rendering with color determined by implicit
surface curvatures (K1, k2)

K

set is shown in Figure 4 (this figure also includes an image of the
bivariate colormap function).

4.2 Line Integral Convolution (LIC)

Line integral convolution (LIC) is a vector field visualization
method that can be concisely expressed in Diderot. LIC visual-
izes a vector field by blurring an underlying noise texture (a scalar
field) along vector field streamlines [7]. Streamlines are paths ev-
erywhere tangent to the vector field, computed by numerical inte-
gration; in our benchmark we use the midpoint method (a second-
order Runge-Kutta method). For each pixel in the output, we define
a strand that computes a streamline. The pixel value is the aver-
age of noise texture samples taken along all computed vertices
of the streamline seeded at that pixel. The Diderot implementa-
tion in Figure 5 simultaneously computes downstream (forw) and
upstream (back) segments of the streamlines of the vectors
synthetic vector field, sampling the rand scalar field at each step,
and stopping each after stepNum steps. The output graylevel con-
trast is modulated by the the vector field velocity at the seedpoint
|V (pos0) |, creating the LIC result shown in Figure 6.

4.3 Particle-based feature sampling

One class of applications that Diderot targets is the use of parti-
cles to detect and sample image features, such as isocontours [21].
As a simple example, we consider detecting isocontours in a 2D
grayscale image. Figure 7 gives the strand definition for this pro-



1 field#1(2)[2] V = load("vectors.nrrd") & ctmr;
2 field#0(2)[] R = load("rand.nrrd") & tent;

3

4 strand LIC (vec2 pos0) {

5 vec2 forw = pos0;

6 vec2 back = pos0;

7 output real sum = R(pos0);

8 int step = 0;

9

10 update {

11 forw += h*V(forw + 0.5+h*V(forw));

12 back += h*V(back - 0.5xh*V (back));

13 sum += R(forw) + R(back);

14 step += 1;

15 if (step == stepNum) {

16 sum *= |V (pos0)| / real(l + 2xstepNum);
17 stabilize;

18 }

19 }

20 )

Figure 5. Line Integral Convolution (LIC)

Figure 6. Line Integral Convolution (LIC) on synthetic data

gram. This program defines an initial collection of strands that are
positioned in a 2D grid pattern. The image value at a strand’s ini-
tial position determines the isovalue fy that it will search for. The
strand’s update method uses Newton-Raphson iteration to find the
root of F(x) = f(x) — fo by motion along the normalized gra-
dient VF/|VF|. The strand’s search can terminate in one of two
ways: if the length of the position update |delta| falls below
epsilon, then the strand stabilizes — its position will be the out-
put. Otherwise, if the strand wanders outside the field domain or
takes too many steps, then the strand dies and produces no output.
Since some strands die during execution, the final collection of sta-
ble strands will be a subset of the initial collection. Figure 8 shows
a visualization of running this algorithm on a grayscale version of a
portrait of Denis Diderot by Louis-Michel van Loo. The final posi-
tions of the stable strands are rendered as green dots. Note that the
image is depicted with nearest-neighbor interpolation to show its
individual pixels as squares, while the continuous interpolation (af-
forded by convolution with the Catmull-Rom cubic spline ctmr)
creates isocontours that smoothly trace between pixels.

5. Implementation

Compiling a very-high-level language like Diderot requires a mix
of traditional compiler techniques with domain-specific transfor-
mations and optimizations. In this section, we give an overview of
our language implementation and describe the techniques that we

field#1(2)[] £ = ctmr ® load("ddro.nrrd");

1
2
3 strand sample (int ui, int vi) {

4 output vec2 pos = ---;

5 // set isovalue to closest of 50, 30, or 10
6 real f0 = 50.0 if f(pos) >= 40.0

7 else 30.0 if f(pos) >= 20.0

8

else 10.0;
9 int steps = 0;
10 update {
11 if (!inside(pos, f) || steps > stepsMax)
12 die;
13 vec2 grad = V£ (pos);
14 vec2 delta = // the Newton-Raphson step
15 normalize (grad) = (f(pos) - £0)/lgradl;
16 if (|deltal| < epsilon)
17 stabilize;
18 pos —= delta;
19 steps += 1;
20 }
21 )

Figure 7. Detecting isocontours

Figure 8. Isocontour detection in a grayscale image

have developed for compiling the higher-order field operations. We
also provide a brief description of our runtime system.

5.1 Compiler overview

The Diderot compiler comprises roughly 19,000 lines of Standard
ML code, which is organized into three main phases: the front-end,
optimization and lowering, and code generation.

The front-end consists of parsing, type checking, and simpli-
fication. Although Diderot is a monomorphic language, most of
its operators have instances at multiple types. For example, addi-
tion works on integers, tensors of all shapes, and fields. Since hav-
ing to type check each operator as a special case would be pro-
hibitively complicated, we use a mix of ad hoc overloading and
polymorphism in the type checker. The internal representation of
types includes kinded type variables, shape variables, and dimen-
sion variables. The type checking process introduces constraints
between the variables, which are solved by unification. Once a pro-
gram is type checked, the operator instances are instantiated at spe-
cific monotypes. The typed AST is then converted into a simplified
representation, where temporaries are introduced for intermediate
values and operator are applied only to variables. At this point we



also duplicate code, as necessary, to ensure that fields are statically
determined. For example, if the source program contained the line

real y = (F1 if b else F2) (x);

the simplified representation is transformed to code that is equiva-
lent to

real y = Fl(x) if b else F2(x);

This transformation is necessary because of the way we compile
probe operations. While it could result in exponential code growth,
we believe that in practice code growth will not be significant.

The optimization and lowering occurs over a series of three in-
termediate representations (IRs) based on Static Single Assignment
(SSA) form [9]. These IRs share a common control-flow graph rep-
resentation, but differ in their types and operations.

HighIR is essentially a desugared version of the source language
with source-level types and operations.

MidIR supports vectors, transforms between coordinate spaces,
loading image data, and kernel evaluations. At this stage, fields
and probes have been compiled away into lower-level code.

LowlIR supports basic operations on vectors, scalars, and memory
objects.

The translations between these representations replaces higher-
level operations with their equivalent lower-level operations. For
example, field probes in the HighIR are expanded into the convo-
lution of image samples and kernel evaluations in the MidIR. We
discuss this particular expansion in more detail below.

The final phase is code generation. We have separate backends
for different targets: sequential C code with vector extensions [12],
parallel C code, OpenCL [16], and CUDA [22] (planned). Because
these targets are all block-structured languages, our first step in
code generation is to convert the LowIR SSA representation into
a block-structured AST. The target-specific backends translate this
representation into the appropriate representation and augment the
code with type definitions and runtime support. The output is then
passed to the host system’s compiler.

5.2 Implementing field operations

Diderot’s fields are abstract values that represent continuous func-
tions. As such, we use a symbolic representation of field values in
the compiler that is used to generate code for the inside test and
for probing a field. In the simplest case, code that probes a tensor
field is translated into code that maps the world-space position to
image space and then convolves the image values from the neigh-
borhood of the position using a kernel. This translation occurs when
the program is converted from HighIR to MidIR; we then expand
kernel evaluations into vectorized arithmetic when we convert from
MidIR to LowlR.

While the case of probing a field that is defined directly by
convolving an image with a kernel is straightforward, in general
the problem is more complicated, since fields can be defined by
higher-order operations such as scaling, addition, and differenti-
ation. Thus, before we can translate HighIR to MidIR, we must
normalize the field computations. Effectively, this process lowers
higher-order operations that work on fields to operations that work
on tensors. We call this process field normalization.

We can formalize field normalization as a translation from a lan-
guage of field expressions to a normalized language of field probes
and tensor operations. Figure 9 gives the grammars of these two
languages; we have simplified the presentation by omitting many
operators available in Diderot. In the source language (Figure 9a),
we have tensor-valued expressions (denoted by e) and field-valued

(fir+fo)x) = filz)+ fa(z)
(ex f)(x) = exf(z)
V(fi+f:) = Vfi+Vfa

Viexf) = exVf
VVeh) = V®Vh
V(VeVh) = VeVth

Figure 10. Rewriting rules for field normalization

Discrete image data Continuous field

Figure 11. Probing a 2D field F' = V ® h at x, where M is the
mapping from world coordinates to image-space coordinates

expressions (denoted by f). Using the rewrite rules given in Fig-
ure 10, we can transform source-language expressions into the nor-
malized language of Figure 9b. The normalized language enforces
three key invariants on the structure of the computation:

1. All differentiation operations have been pushed down to the ker-
nels in convolutions. We add a superscript to the V operator to
specify the level of differentiation. V2 should not be confused
with the standard notation for the Laplacian.

2. The fields involved in probe operations are defined directly as
convolutions.

3. Arithmetic operations on fields have been lowered to operations
on tensors.

These properties are key to being able to synthesize code for the
probe operations, as is described in the next section.

5.3 Synthesizing probe operations

Once we have normalized the field operations as described above,
we must still synthesize code to implement field probes. These
operations get compiled down into code that maps the world-space
coordinates to image space and then convolves the image values in
the neighborhood of the position, as is illustrated by Figure 11. As
discussed in Section 2, we use separable kernels to reconstruct the
value of a field at a specific point. For example, if F' = V ® h
is a 2-dimensional scalar field, then probing F' at the location x is
defined by the equation

S ST Vin (i) A

i=l—sj=1-s

— )h(fy —J)

where s is the support of h, n = [M~'x] and f = M~ 'x — n.
One of the main challenges of synthesizing code for probe oper-
ations is that the shape of the result and the nesting of summations
can be arbitrarily complicated. For example, assume that F' is a
2D scalar field of type £ield#k(2)[] and G is a 2D vector field
of type £ield#k(2)[2]. Then the probe expressions V @ G(x)
and V ® VF(x) both have type tensor|2,2], but the code re-
quired to implement the two probes is very different. Tensor cal-
culus provides the notational tools to manage this process, in that
the differentiation operator (V) can be treated as a vector of partial-
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e == f(z) field probe
| é+é tensor addition
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h u= V'h kernel with i > 0
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Figure 9. The source and target languages of field normalization, where V' denotes images and h denotes kernels

differentiation operators. For example, in 2D we have

9
V=| %
dy

We can use this representation to handle the probing of the gradient
of a scalar field F’

VF(x) = (V®Vh)(x)
s
= <v ® z%j L ) (x)

_ [ 2 Zj Vin+ (@, 5)]h (f. — i)h(fy, — 7)
> Zj Vin+ (@, 5)]h(fs — ) (£, — 5)

Note that the partial-differentiation operators tell us where to use h
and where to use the first derivative A’ in the reconstruction.

This approach generalizes to multiple levels of differentiation
in a natural way. For example, the Hessian of F' is defined as
V ® VF, which is normalized to V ® V2h, which can be written
as V ® V ® Vh. Thus we have

o2 92 2 h 92y
_ ox2 dzy _ ox2 oxy
Vevh=| % W |h=| G,
dzy oy? dzy oy2

The resulting z X 2 matrix defines the structure of the result of
probing the Hessian of F'.

When the image data is not scalar (e.g., the 2D vector field G
mentioned above), we have further outer iteration over the shape of
the image’s range. For example, if G = V ® h is a 2D vector field,
then the probe G(x) will be expressed as

Gix) = (Veh)(x

Vi®eh
B { Va®h ] ()
B { 2220 Viln+ (4, H]h(fe — )h(fy — j)
- 2220 Valn+ (4, )]h(fe — i)h(fy — j)

Note that while the result of this probe has the same type as V F'(x),
the underlying computation is different.

Our implementation must also correctly handle mapping be-
tween coordinate spaces. An image dataset comes with orienta-
tion information that can be represented as a transform MM map-
ping from position in the image’s index space to position in world
space. We use the inverse mapping M~ to convert the position of
a probe, which is in world space, back to image space, but we also
have to consider the mapping of the probe’s result back to world
space. Gradients are measured in image space by convolution with
kernel derivatives (as described above). Being a covariant quantity,
gradients are converted to world space by M~ T, the inverse trans-
pose of the transform M for converting positions (a contravari-
ant quantity) to world space [27]. On the other hand, when prob-

ing a vector field created by convolution of a vector-valued image
dataset, the vectors are assumed to be already represented in world
space, and hence need no post-probe transformation.

The final step in generating executable code for field probes
is to expand the kernel evaluations. This expansion takes place
as part of the translation from MidIR to LowIR. The kernels that
Diderot supports are all piecewise polynomial, so it straightforward
to symbolically differentiate them. The process described in this
section results in code that is easily vectorized (in fact the MidIR
and LowIRs support vectorized operations).

5.4 Domain-specific optimizations

In addition to the transformations required to support the opera-
tions on fields that we have described above, the Diderot compiler
performs a number of other optimizations. Specifically, we imple-
ment an extended form of constant folding and dead-code elim-
ination that shrinks (or contracts) the program [1] and we elim-
inate redundant computations using value numbering [S]. While
these are optimizations that are found in many compilers, when
they are combined with the domain-specific operators in our IR,
they produce domain-specific optimizations that a general-purpose
compiler would be unlikely to achieve. For example, if a program
probes both a field F' and the gradient field VF' at the same po-
sition, there are redundant convolution computations that can be
detected and eliminated. Another example is the symmetry of the
Hessian, which is also detected by our value-numbering pass.

5.5 Runtime support

The Diderot runtime is comprised of common code for loading
image data from Nrrd files [29] and writing the program’s output
to either a text or Nrrd file.> The common part of the runtime also
provides support for initializing input variables.

In addition to the common code, there is target-specific code
for managing strands. Recall that Diderot uses a bulk-synchronous
parallelism model [26, 31]. In this model, execution is divided
into super steps; during a super-step each strand’s update method
is evaluated once. The program executes until all of the strands
are either stabilized or dead. For the sequential target, the runtime
implements this model as a loop nest, with the outer loop iterating
once per super-step and the inner loop iterating once per strand.

The parallel version of the runtime is implemented using POSIX
threads. The system creates a collection of worker threads (the
default is one per hardware core/processor) and manages a work-
list of strands. To keep synchronization overhead low, the strands
in the work-list are organized into blocks of strands (currently 4096
strands per block). During a super-step, each worker grabs and
updates strands until the work-list is empty. Barrier synchronization
is used to coordinate the threads at the end of a super step.

2The Nrrd file format is designed for multi-dimensional image data and
includes metadata for the image’s coordinate system and axes.



6. Performance evaluation

In addition to providing a very-high-level programming model, we
are also interested in providing high-performance; especially on
modern multicore systems. In this section we present results from
four benchmark programs that represent typical workloads for im-
age analysis, including parallel scaling results for the Diderot im-
plementations. We also compare Diderot’s performance with hand-
written C programs that use the Teem library [30]. Teem includes
convolution-based reconstruction of values and derivatives from
discretely sampled fields, which closely matches the mathematical
abstraction of a field supported by Diderot, but with a less conve-
nient API, as described in Section 7.

6.1 Experimental method

Our test machine is an 8-core MacPro with 2.93 GHz Xeon X5570
processors and 12Gb of memory running Mac OS X 10.7.2. We
used the Apple clang C compiler (version 3.0) to compile the
Teem version of the benchmarks and as a backend to the Diderot
compiler. In both cases, code was compiled with optimization level
-03. For each benchmark, we report the average of 40 runs on a
lightly-loaded machine; the standard deviations for these experi-
ments were typically less than 0.1 seconds.

6.2 Benchmarks

We present results from four benchmark programs, which are sum-
marized in Table 1. In the table we give the lines of code of both
the Teem version (written in C) and the Diderot version. We fur-
ther split out the lines of code in the computational core of the
benchmark. For the Teem version, this number is the loop-nest that
performs the computation, while for the Diderot program it is the
update method.® From this table it can be seen that Diderot pro-
vides a significant advantage in conciseness over using the Teem
library, which, itself is a big advantage over writing the code di-
rectly in C. The lines-of-code numbers do not include comments,
blank lines, or timing code. The table also includes the number of
initial strands for each program.

These benchmark programs, which were chosen to be represen-
tative of the kinds of applications for which Diderot has been de-
signed, are described in more detail below.

vr-lite: A simple volume renderer that displays surfaces using
Phong shading, which depends on the gradient in the scalar
field. This simple program is typical of one that might be used
in an educational context.

illust-vr: A more complex volume renderer that produces illustra-
tive (or non-photo-realistic) renderings, using various curvature
computations based on the gradient and Hessian. This example
showcases the tensor calculations that are awkward to express
in other languages.

lic2d: Computes a line integral convolution [7] visualization of a
vector field, in which a noise texture is blurred along vector field
streamlines. This program highlights convolution and differen-
tiation in a vector field.

ridge3d: An initial uniform distribution of points within a portion
of CT scan of a lung is moved iteratively towards the cen-
ters of blood vessels, using Newton optimization to compute
ridge lines [11]. This program computes the eigenvalues and
eigenvectors of the Hessian, and permits the implementation to
closely resemble the mathematical definition of a ridge line.

3 For the Teem versions of the benchmark, the computational core does not
include the setup code used to specify the field properties that are being
probed.
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Figure 12. Parallel speedup

6.3 Measurements

For each benchmark program, we measured the wall-clock time
it took to execute the computation kernel. This measurement ex-
cludes the initial loading of the image data, other initialization, and
the writing of the result. Typically, the excluded time was on the or-
der of 0.2 seconds. Table 2 presents the results of our experiments.
For each benchmark program, we present the execution time for
the Teem version, the sequential Diderot version, and the paral-
lel version on 1, 2, and 8 processors. The Teem programs use a
mix of single and double-precision arithmetic in their implementa-
tion (the Teem Library uses doubles internally). When compiling
a Diderot program, on the other hand, the user must decide if re-
als are represented as single or double-precision floats. To verify
that the difference in precision is not reason that Diderot is faster,
we measured both the single and double-precision versions of the
Diderot programs. From Table 2, it can be seen that while using
double-precision arithmetic does result in a significant slow-down,
it does not wholly explain the difference. We have done some de-
tailed profiling of the Teem versions of several of the benchmarks,
and we believe that a major part of the difference is Teem’s use of
callbacks to implement field probes. Diderot’s use of vector opera-
tions (i.e., SSE) may also account for some of the difference. Thus,
compared to Teem, Diderot provides a more concise programming
notation, better performance, and easier support for parallel com-
putation.

6.4 SMP performance

The Diderot execution model is designed for both simplicity and
efficient execution on parallel hardware. Since strands execute in-
dependently, we expect efficient scaling on parallel hardware. In
Figure 12, we present the parallel speedup curves for the single-
precision version of our benchmarks. We use the sequential version
of these programs without the overhead of scheduling (i.e., the Seq.
column from Table 1). As we expect, all of the benchmarks scale
well. For vr-lite, we see some tailing-off at eight threads, which we
believe is because of lack of work (notice from Table 1 that vr-lite
has the fewest strands). With some experimentation, we found that
the biggest limitation to parallelism was the lock that controls ac-
cess to the work-list. With smaller blocks of strands (recall that we
use 4,096 strands per block), we saw a significant reduction in par-
allel scaling. Other than adjusting the strand-block size, we have



LOC (total:core)
Program | Teem | Diderot | # strands Description
vr-lite 223:44 | 68:26 165,600 | Simple volume-renderer with Phong shading running on CT scan of hand
illust-vr 324:61 | 83:39 307,200 | Fancy volume-renderer with cartoon shading running on CT scan of hand
lic2d 260:66 | 53:32 572,220 | Line Integral Convolution in 2D running on synthetic data
ridge3d 360:55 | 44:24 1,728,000 | Particle-based ridge detection running on lung data
Table 1. The benchmark programs
Diderot single-precision Diderot double-precision
Program Teem Seq. 1P 2p 8P Seq. 1P 2p 8P
vr-lite 26.77 14.92 | 14.95 7.59 | 2.62 || 16.52 | 16.44 8.35 2.92
illust-vr 132.85 || 54.17 | 54.40 | 27.55 | 8.00 || 80.63 | 82.16 | 41.18 | 11.86
lic2d 322 2.02 2.03 1.02 | 0.30 2.47 2.47 1.24 0.37
ridge3d 11.18 8.40 8.36 422 | 1.14 9.34 | 10.27 5.16 1.39

Table 2. Average performance results over 40 runs (times in seconds)

not done any performance tuning of the runtime, so we expect that
we will be able to improve performance and scaling.

7. Related work

There are a variety of domain-specific languages and frameworks
that provide similar features supported in Diderot. Many of these
are examples of using the power of DSLs to provide programers
with high-level parallel programming models.

Teem is a collection of libraries that support image analy-
sis and visualization algorithms [30]. Teem provides support for
convolution-based measurements via kernels, but as a C library, the
programming model is much less direct. A Diderot programmer
can declare a scalar field F and then use F (pos) and VF (pos)
for the field value and gradient at some point pos. A Teem pro-
grammer would have to create a probing context in which image
data and kernels are set, specify the list of all quantities that are
to be computed for every probe, and then update the probe context
to allocate buffers to store probe results. After calling the probe
function at a particular location pos, the programmer then copies
the value and gradient out of the probe buffer.

Shadie is a DSL for direct-volume rendering applications that
is targeted at GPUs [13]. The framework is based on the notion
of shaders, which are functions that define what happens along a
given ray for the entire visualization. Similar to Diderot, shaders
support the ability to perform computations on continuous fields
and their derivatives. But Shadie is limited to direct-volume ren-
dering applications, whereas Diderot supports other visualization
applications such as LIC, fiber tractography, and particle systems.
Furthermore, Shadie’s support for field operations is restricted to a
set of built-in functions (e.g. cubic_query_3d for probing the
gradient field reconstructed using a cubic spline), whereas Diderot
provides a collection of orthogonal operations on fields.

Scout is a high-level DSL for image visualization and analy-
sis [19]. Scout supports a data-parallel programming model based
on the concept of shapes, which are regions of voxels in the im-
age data. Scout is designed for a different class of algorithms than
Diderot. Specifically, algorithms that are defined in terms of com-
putations over discrete voxels, such as stencil algorithms, rather
than over a continuous tensor fields.

Spiral is a DSL for digital signal processing algorithms [23].
Its implementation encapsulates significant mathematical knowl-
edge of the various complex algorithms in digital signal process-
ing, which allows Spiral to generate fine-tuned code for a given
platform. This notion of developing a high-level mathematical pro-
gramming model is also emphasized in Diderot. As with Spiral,

Diderot allows its users to focus more on the mathematics and al-
lowing the system to generate high-performance code for their plat-
form. Although Spiral provides a powerful mathematical model, it
targeted at the somewhat different domain of signal processing.

Delite is an ongoing project to support the development of em-
bedded parallel DSLs [6, 8] and was the inspiration for the Diderot
project. The framework aids in decreasing the burden of paralleliz-
ing DSL programs (e.g., scheduling) and has been used for machine
learning [28] and mesh-based PDEs [10]. While the Delite project
and Diderot project share the idea that parallel DSLs are an ef-
fective way to provide portable parallelism, they differ in the way
that the DSL is presented to the user. Delite embeds the DSL in
Scala, which limits the notational flexibility of the design, whereas
Diderot’s syntax is designed to fit its application domain. Further-
more, Diderot’s runtime has been designed to allow Diderot pro-
grams to be embedded as libraries in any host language that sup-
ports calling C code, whereas Delite applications must be written
in Scala, which is not a common language in the visualization com-
munity.

8. Future work

While the current version of Diderot is sufficient to implement
many interesting visualization algorithms, we have plans to extend
the language design, add additional targets, and otherwise improve
the system. These plans include obvious extensions, such as adding
functions and simple data structures, as well as extensions targeted
at image analysis algorithms. We describe some of the latter plans
here.

8.1 Portable parallelism

One implementation challenge of Diderot is to extract maximum
performance across a wide range of different parallel architectures.
Diderot already includes an efficient multicore parallel implemen-
tation. We also have an OpenCL backend that is targeted at GPUs,
but we plan to extend our implementation to support clusters, in-
cluding GPU clusters.

8.2 Richer concurrency model

The current design of Diderot limits strand creation to initialization
time and does not provide any mechanism for strand communi-
cation. While the number of active strands can dynamically vary,
because of die, it only monotonically decreases. For algorithms,
such as particle systems, where strands are used to explore the im-
age space, it is useful to be able to dynamically create new strands
on the fly. But it only makes sense to create new strands when there



is a region that is relatively empty of strands. Therefore, we plan
to extend the programming model with three mechanisms: a mech-
anism for creating new strands, a mechanism for reading the state
of nearby strands, and a mechanism for global computations (i.e.,
reductions) over the whole set of active and stable strands. Keep-
ing with our bulk-synchronous semantics, these mechanisms will
be tied to the super steps. New strands will come into existence at
the end of the super step, strands will only be able to read the state
of other strands as it was at the beginning of the super step, and the
global computations will occur at the end of the super step.

8.3 More tensor math

We plan to extend our implementation to support larger set of
tensor and field operations, such as divergence (Ve) and curl (V x).
To support this richer set of operators, however, we will have to
make changes in our internal representation. Specifically, we are
exploring the use of Einstein notation as a compact way to represent
tensor computations.

9. Conclusion

We have presented Diderot, a parallel domain-specific language for
image analysis and visualization algorithms. Diderot provides the
programmer with a very-high-level programming model based on
the concepts and notations of tensor calculus, which allows the al-
gorithms to be expressed in their natural mathematical notation. We
have described the techniques that we use to implement this high-
level model and have presented performance data the demonstrates
that we can have both high-level notation and high-performance in
the same system.
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