
Point Movement in a DSL for
Higher-Order FEM Visualization

Teodoro Collin1 Charisee Chiw2

L. Ridgway Scott1 John Reppy1

Gordon Kindlmann1

1Department of Computer Science, University of Chicago*
2Galois, Inc.†

ABSTRACT

Scientific visualization tools tend to be flexible in some ways (e.g.,
for exploring isovalues) while restricted in other ways, such as work-
ing only on regular grids, or only on unstructured meshes (as used
in the finite element method, FEM). Our work seeks to expose the
common structure of visualization methods, apart from the specifics
of how the fields being visualized are formed. Recognizing that
previous approaches to FEM visualization depend on efficiently
updating computed positions within a mesh, we took an existing
visualization domain-specific language, and added a mesh position
type and associated arithmetic operators. These are orthogonal to
the visualization method itself, so existing programs for visualizing
regular grid data work, with minimal changes, on higher-order FEM
data. We reproduce the efficiency gains of an earlier guided search
method of mesh position update for computing streamlines, and we
demonstrate a novel ability to uniformly sample ridge surfaces of
higher-order FEM solutions defined on curved meshes.

Index Terms: Software and its engineering—Software notations
and tools—Context specific languages—DSLs

1 INTRODUCTION

Novel methods of high-performance and scalable scientific visual-
ization typically support interactively exploring various parameters
(e.g., volume rendering transfer functions, or streamline seedpoints),
while constraining the form of data being visualized. That is, tools
for visualizing large biomedical imaging volumes are sensibly spe-
cialized for the regular grids that such data is acquired on, just as
fluid flow visualization tools are specialized for the finite element
method (FEM) meshes on which those phenomena are simulated.
Yet from the high-level mathematical standpoint of either character-
izing existing visualization methods, or exploring the value of new
ones, the specialization of tools to data forms is unfortunate: volume
rendering is a kind of integration, and streamlines are solutions to
ODEs, regardless of how exactly scalar or vector fields are defined
on a grid or mesh. Visualization research may benefit from systems
that can take a high-level specifications of a visualization method,
and a separate description of how data and fields are formed, and
then compile programs that both run efficiently on the given data
and support exploration of the relevant parameter spaces.

Domain-specific languages (DSLs) for scientific visualization
partially address this need by specializing for a class of algorithms
and one form of data: regular grids [8, 10, 17, 22, 23, 35]. In their
own ways, these languages work to separate the legible expression
of visualization algorithms from technical details of data access or
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parallel computing. Our current work, however, explores whether
a scientific visualization DSL can also be general with respect to
data form, so that a program that works efficiently for data on a reg-
ular grid can, with minimal changes, also work on an unstructured
mesh. Particularly challenging are higher-order finite element simu-
lations, which use higher-order polynomials in both the geometry
of mesh elements (so they can be curved) and the form of solutions
within elements (beyond affine functions), since this increases the
implementation complexity of mere field evaluation.

We present preliminary work on extending the open-source com-
piler for a scientific visualization DSL [8, 19, 20], previously lim-
ited to regular grids, to also work on higher-order FEM data. Our
long-term goal is to connect previous FEM visualization meth-
ods [11,18,25,27–32] by simplifying how they can be expressed and
combined in working code. Our current focus is just two kinds of vi-
sualizations, both involving computations on a discrete set of points:
streamlines [11], and particle systems sampling surface features [25].
The inner loops of both methods share an essential element, point
movement, i.e., incrementing a position within a higher-order FEM
domain by some update vector. We seek a programming language
that allows clearly legible implementations of point movement (as a
specification of an aspect of the data form), and of the visualization
method itself, to be combined in a single program.

Our main contribution approaches this by demonstrating how
adding a type for representing FEM mesh positions to a DSL, and
overloading operators on that type, simplifies implementing visu-
alization methods that rely on point movement. A supporting con-
tribution, ridge surface extraction in a curved finite element mesh
by a particle system, uses the main contribution, and also suggests
how other new visualizations could be created by combining general
methods with specializations to data form. We hope our work (which
itself will be made open-source available) can eventually lower the
implementation cost of FEM visualization, as well as help extend
standard visualization algorithms to other more general domains (e.g.
manifolds) in which points and vectors have distinct significance.

2 FINITE ELEMENT METHOD (FEM) BACKGROUND

A brief explanation of a simplified and typical use of FEM will sup-
port a description of our work. For a solution to a partial differential
equation (PDE) u : W ! Rn, FEM uses a finite dimensional vector
space of functions (function space) V to find an approximate solution,
uV 2 V , to u. The space V is created by discretizing the world-space
domain W into a collection of disjoint cells {Ki}, defining a function
space Pi on each Ki, and then combining all the Pi, e.g., v 2 V if
and only if v|Ki

2 Pi for all element indices i [6]. The per-element
function space is typically Pi = {p�T�1

i | p 2 P}, where P is a finite
dimensional function space on a convex polytope K (the reference
cell), each Ti is an injective C• mapping from K to world-space, and
both P and Ti are polynomial. Consequently, finite element solvers
do not need to explicitly represent the Pi (or compute T�1

i ), and can
compute all quantities on the reference cell K [1, 4, 6, 7, 34].

Unfortunately, visualization naturally works in world-space W.
Within some Ki ⇢ W, the PDE solution being visualized uV will be
represented in a chosen basis {p j} for P as

uV (x)|Ki
= Â

j
c j p j(T�1

i (x)). (1)

Using higher-order FEM, with non-linear Ti, increases the compu-
tational cost for a naive visualization algorithm to traverse just a
single cell i, since each of the many evaluations of T�1

i in (1) require
multiple Newton iterations. Moreover, as the visualization traverses
world-space, for each point x 2 W it needs to compute T�1

i for many
different cells i in order to find the i for which x 2 Ti(K) [30]. Vi-
sualization algorithms specialized to finite elements avoid the cost



of T�1
i by replacing, when possible, world-space evaluation of the

approximate solution uV via (1) with

fi(x) := Â
j

c j p j(x), (2)

where fi : K ! Rn is the evaluation of uV on the reference cell with
respect to element i.

3 RELATED WORK

Many tools for visualizing FEM solutions (including ParaView [3],
Gmsh [15], and GLVis [16]) use tessellation, i.e., approximating
one higher-order element with multiple smaller affine elements [36].
This is good for simple visualizations (e.g. colormapping uV ), but
more problematic for more complicated ones, such as volume ren-
dering or those that require higher order derivatives [30]. The tes-
sellation framework of Schroeder et al. is in principle general and
accurate with respect to visualization method [38], but we are un-
aware of its application beyond isosurfaces and streamlines.

Our work follows a different strategy, advanced by Nelson et al.,
which directly visualizes elements, without tessellation. Via algo-
rithms that directly manipulate uV , fi,K and Ti, these authors create
fast and accurate methods for ray-tracing isosurfaces, cut surfaces,
and volume rendering [27–29]. They also combine methods into
ElVis, a GPU-based interactive GUI application, which offers some
generality over data forms via a plugin architecture that supports a
small set of visualization algorithms [30]. Our DSL, however, allows
more room to explore implementation variation within or between
data forms, at the expense of lower computational performance
relative to hand-written low-level code.

A variety of other previous work investigates FEM visualization
under various accuracy, expression, and performance constraints,
as surveyed by Nelson et al. [30]. Some work focused on fast and
accurate visualizations of curved quadratic and cubic elements [41]
while other work achieved interactive volume rendering of higher
order elements [40]. Later sections will describe in more detail the
work of Coppola et al. [11] and Meyer et al. [25], which is most
central for our current work. There is no prior work extracting ridge
surfaces from FEM data, but Pagot et al. find ridge lines on affine
meshes via PVO and new seed finding and streamline routines [31].
Jallepalli et al.’s smoothing of finite element data could usefully
complement the visualization methods we target [18].

We also build on related work with DSLs. Being specific to
some domain of algorithms, DSLs trade reduced flexibility of the
language for (in principle) higher human productivity of writing new
programs within that domain [24]. For our purposes we merely note
FEM-related DSLs for formulating and solving PDEs [1, 2, 12, 34]
as well as DSLs for processing and visualizing image and volume
data [8, 10, 17, 22, 23, 26, 33, 35]. This list does not fairly describe
the sophisticated approaches to high-performance computing [23]
and computational scheduling [26, 33]. We build on Diderot, a visu-
alization DSL limited to regular grids [8, 19, 20], but distinguished
by offering the mathematical abstraction of a Ck tensor field. Our
current work extends how Diderot fields are defined to include FEM,
so that existing Diderot programs can be used with minimal changes,
while introducing a new abstraction, a mesh position, which supports
the convenient expression of previous methods of moving through
the geometry of a curved FEM mesh [11, 25].

4 METHODS

4.1 Point Movement via Guided Search
Many scientific visualization algorithms enjoy spatial coherence:
field evaluation at (world-space) position x will likely be followed
by evaluation at a nearby x+ v. As noted in §2, for simple methods,
the computational expense (from finding the cell containing x, and
finding T�1

i (x)) of naively evaluating uv(x) via (1) might be avoided

T2

T1

DT -1
1 v

�
m1

DT -1
2 v

m3

m2 =�(m1)

T1(m1)=T2(m2)

a

b

v = b � a

T2(m3)

Figure 1: Illustration of guided search to move a towards b, with two

world-space cells (left) and two copies of reference space (center and

right), each with transforms T1 and T2. Colored shapes at cell vertices

clarify how reference spaces connect. At a, the velocity v = b � a
is transformed by DT �1

1 to give a reference space velocity DT �1
1 v

along which traversal begins. At cell boundary m1, the permutation

s between reference vertices determines the start m2 = s(m1) of

the next cell traversal, now along DT �1
2 v at m2. More cells may be

encountered, until the computed path (shown as a dashed line) has

run for time=1, ending at m3. The point T2(m3) approximates b.

by evaluations in reference space via (2), and then forward mapping
by Ti. Previous work with more complex visualization methods,
however, demonstrates the value of rapidly approximating x+ v in a
sequence of reference spaces, a technique we term point movement,
so that uV (x + v) can be found faster than via naive re-evaluation
of (1). For streamlines, Coppola et al. name their method of point
movement guided search [11], while a similar method underlies the
isosurfacing particles of Meyer et al. [25].

Guided search builds on a few technical observations. First, for
world-space position x 2 Ti(K) and update v, a first-order approxima-
tion of the updated position is T�1

i (x+ v) ⇡ T�1
i (x)+(DT�1

i (x))v.
Second, the location where T�1

i (x)+ (DT�1
i (x))v exits K can be

found via geometric computations on the shape of K, common in
computer graphics [14]. Third, in most meshes, the mapping be-
tween reference positions in two adjacent cells is entirely determined
by a simple permutation s on the vertices of K. Thus for x 2 ∂K on
the boundary of the reference cell for cells i and j, the same world
space position is both Tj(s(x)) and Ti(x). Combining these ideas
together yields the guided search algorithm illustrated in Fig. 1.

We make two observations about the context and implementation
of guided search. Guided search has only been described as a part
of a specific visualization ingredient: Coppola et al. presents guided
search as a sub-step of RK4 integration [11]. In fact, it can be
separated from any particular numerical or visualization method and
framed as a method to update positions by a vector, a definition in
affine geometry [39]. Second, guided search is complicated enough
to warrant exploring the speed and accuracy of possible variants. For
example, Coppola et al. also describe error-checked guided search,
wherein the search defaults to the naive scheme to locate x + v
if ||Ti(T�1

i (x)+ t(DT�1
i (x))v)� (x+ tv)|| exceeds some threshold.

The same considerations of orthogonality and legibility that motivate
creating DSLs also suggest clearly expressing the point movement
method within the language.

4.2 FEM Data, Position types, and Overloading
To demonstrate point movement within a mesh as a programmable
and orthogonal aspect of a FEM visualization algorithm, we augment
an existing scientific visualization DSL with a new position type,
overloaded operators on positions, and the ability to input FEM
data. We chose the Diderot language because it already simplifies
implementing streamlines and particle systems on regular grids [19,
20], and because its consistent use of a field abstraction facilitates
introducing FEM solutions as a new underlying data form.

Space here permits a high level summary of the language changes
required to create a path from FEM data to existing language objects:
domains, fields, and tensors. The domain of an FEM solution in-
volves a mesh, reference cell domain K, and the Ti(K); each requires



1 input int timeSteps=32;
2 const int dim = mesh_t.dim; // (this works in 2 or 3 dimensions)
3 input real timeEps = 0.0000001;
4 input mesh_t mesh;
5 refCell{mesh_t} K = mesh.refcell;
6 overload position{mesh_t} +(position{mesh_t} x, tensor[dim] delta){
7 if (!x.isValid){ return(x);}
8 real time = 1;
9 position{mesh_t} cmp = x; // current mesh pos

10 foreach (int i in 0..timeSteps ){ // ("mc"=mesh cell)
11 tensor[dim, dim] iJac = inv(—⌦(cmp.mc.transform)(cmp.refPos));
12 tensor[dim] refDelta = iJac • delta; // reference velocity
13 tensor[dim] nPos = cmp.refPos + time*refDelta;
14 if (K.isInside(nPos)) { // nPos is inside K
15 return(cmp.mc.meshPos(nPos)); // x+v=nPos in cmp.mc

16 } else { // we left the reference cell; compute when we left
17 real eTime = K.exit(cmp, normalize(refDelta));
18 time -= time/|refDelta|; // decrement time remaining
19 if (eTime == -1){ // invalid direction , use naive scheme
20 return(mesh.findPos(x.worldPos() + delta));
21 } // else find the exit location in the next cell
22 position{mesh_t} nmp = K.exitPos(cmp, normalize(refDelta));
23 if ( !nmp.isValid || time < timeEps){ // left mesh or
24 return(nmp); // ran out of time
25 }
26 cmp = nmp;
27 }
28 } // spent too much time; use naive scheme
29 return(mesh.findPos(x.worldPos() + delta));
30 }

Figure 2: An overloaded “+” operator implements a minimal version of guided search along with minimal context. Lines 1-5 declare the necessary

inputs. Lines 7-9 set up the search. Lines 10-29 are the main body. At each iteration, lines 11 abd 12 transform the change in position via the

position’s cell’s transform. Lines 14 and 15 return a new position if the transformed velocity does not take the position outside the cell. Otherwise,

lines 17-28 find the time of intersection (line 17), check that the intersection makes sense (line 19), find the position of this intersection on the next

cell (line 22), check if this is the last step (line 23), and continue on (line 26). If the loop terminates, line 29 defaults to the naive scheme.

a new language type and constructors via inputs or methods. Meshes
are global (immutable) inputs to the program, supplying a sequence
of cells on the mesh. The global solution uV can be accessed as a
field after providing a space type, a solution type, and an input.

For fields attached to cells, such as Ti,T�1
i , and fi, the fields are

cell methods. To enjoy the benefits of sampling within a reference
cell, cells provide a transformed reference field which supports eval-
uating values fi(x) and derivatives Dn( fi � T�1

i ) at Ti(x), so that
tensor-valued (world-space) derivatives of uV can be efficiently sam-
pled from reference space. Meyer et al. also sample gradients and
Hessians from the reference cell, and use a lengthy Einstein notation
derivation to find the world-space derivatives [25]. All these mechan-
ics are thankfully handled automatically by the Diderot compiler’s
internal representation, itself based on Einstein notation [9].

To support the notion of a position on a mesh, we added a new
position type that depends on a mesh type; other domain types could
be supported later. Position values are constructed either with a point
in reference space K and a mesh cell, or via a point in world space;
the latter option corresponds to the naive scheme. Strands of Diderot
computation can be associated with positions, so that strands (e.g.,
for particle systems) can query the state of their neighbors via k-d
trees [37]. We also added queries on the reference cell geometry,
to determine when a point leaves its cell by traveling in a direction,
and to learn the corresponding position in the neighboring cell (if it
exists). With all this in place, positions can become arguments to an
overloaded “+” operator, the concise guided search implementation
of Figure 2. Adding these capabilities to the compiler required
adding or changing around 5000 lines of Standard ML, but this cost
is once per data form as we can now use the compiler to explore the
adoption of many previous Diderot programs to a FEM context that
is consistent with §2. Below, we focus on just two Diderot programs.

The language elements described above allow separating the
expression of visualization algorithms from both the details of field
evaluation and the details of point movement. In particular, we were
able to modify existing Diderot programs for streamlines [19] and
particles [20] in regular grids to work with FEM data via straight-
forward transformations. We declared FEM types and inputs, added
point movement code (Fig. 2), changed field sampling to a function
that samples the reference field using a position, and changed several
types from vectors to positions. While this seems extensive, besides
the copy-pasted parts, disruption to existing code was minimal: 15
lines changed in a 30-line streamline program, 30 lines changed in
an 80-line isosurfacing particle program, and 40 lines changed in a
300-line program for general feature sampling with particle systems.
The full analysis is in the supplementary materials.

Naive (accurate)
Guided search
Guided search with 
error checking

Figure 3: Streamlines in this synthetic vector field in a curved mesh

should be helices of constant radius. Three schemes for updating

position during integration are seeded at the same location (right

inset), but guided search (green) diverges by the end (left inset).

Guided search with error checking (blue) very closely follows the

accurate and more expensive naive method (orange).

5 RESULTS

Our results all use curved meshes with cubic Ti transforms. Addi-
tional software was used to create meshes (gmsh [15]), finite element
data (Firedrake [34]), and renderings (ParaView [3]). The Diderot
code can be found in the supplementary materials.

To test streamlines, we created a curved mesh between two con-
centric cylinders. We then interpolated f (x,y,z) = (y,�x,0.1) onto
a function space specified by the mesh and quadratic P. An RK2
streamline program with guided search produces the green path in
Fig. 3. Also shown is an orange path produced via the more ex-
pensive naive scheme, which shows the accuracy of the blue path
computed with the error-checked guided search noted in §4.1. This
result is consistent with Coppola et al.’s accuracy analysis of these
schemes [11]: standard guided search errs in ways that error-checked
guided search avoids.

Coppola et al. also analyze the performance of guided search.
Our preliminary results in Table 1 reproduce their finding that error-
checked guided search runs 2 � 10 times faster than the naive ap-
proach; this is notable considering that our code is in a new high-
level DSL. We are also encouraged by this speed-up because it justi-
fies the compiler and language effort of §4.2 and facilitates future
work on exploring new point movement techniques independently
of visualization methods.



Table 1: For computing streamlines with error-checked guided search

(as in Fig. 3), over various step sizes (rows) and error parameters

(columns), the table gives run times in seconds and speed-ups (in

parentheses) of guided search relative to the naive scheme. Timing

comparisons use equal numbers of steps within the mesh. We note

that the speedup results exhibit large variations between step sizes;

we hypothesize that the variations occur because decreasing step size

can unpredictably both increase speedup via reducing error checking

and decrease speedup via potentially increasing the number of points

on a path that are close to the initial guess of Newton’s method, the

elemental center, potentially improving the naive scheme’s time [5].

Error Parameter
Step Size 10�4 10�5 10�6

0.2 0.036s (2.524) 0.049s (2.220) 0.052s (2.056)
0.02 0.097s (9.183) 0.149s (6.735) 0.120s (7.846)

0.002 5.353s (2.600) 6.530s (2.369) 5.749s (2.423)

Figure 4: Particle based sampling of an isosurface in the form of a

rounded cube, contained with a cylindrical mesh, the curved boundary

of which is visible in the lower part.

Meyer et al. pioneered isosurfacing via particle systems on curved
geometries [25]. It took us a few hours to adapt an 80-line minimalist
isosurface sampling Diderot program [20] to produce Fig. 4, showing
a sampling of the isocontour x6 + y6 + z6 = 1 in a cylindrical mesh
with hexic P. Our result lacks curvature-adaptive sampling [25], but
it shows the viability of our approach.

We also sample a ridge surface of the function f (x,y,z) =
z2 sin(x2 + y2 + z2), inspired by Eberly’s consideration of ridges
in fluid flow (c.f. Fig. 6.49 in [13]). We created a curved mesh
between two concentric spheres, and approximated f in a function
space given by the mesh and hexic P. Since f is non-polynomial,
the approximation is at most C0 continuous across cell boundaries,
which could create discontinuities in the ridge surface itself. A 300-
line Diderot program for sampling general features with particle
systems was adapted as described in §4.2, and the results in Fig. 5
were found after experimenting with parameters (feature strength
threshold of 24, feature bias of 0.1). We spent more time creating
the example function and mesh than we did writing and using the
program. Therefore, we feel that the most interesting aspect of this

Figure 5: Particle based sampling of a ridge surface on a curved

geometry, colormapped by feature strength. The curved edges of

boundary elements of the mesh are shown in lower part.

result is in the DSL design. The conceptual orthogonality of guided
search and particle system evolution was manifested as a clean sepa-
ration in the code between the implementation of those two methods,
such that the guided search code remained unchanged as the particle
system code was changed from isocontours to ridge surfaces.

6 DISCUSSION, CONCLUSIONS, AND FUTURE WORK

Our methods and results demonstrate that point movement and visu-
alization algorithms can be orthogonal and composable. We have
shown how conceptually orthogonal algorithmic components can
be cleanly expressed as separate pieces of code in a DSL. The ridge
surface example additionally shows that this separation extends in
concept and in code to particle systems for a novel visualization
target for FEM data. We hope these results convince readers of the
potential of high-level DSLs to create new visualization programs by
combining two separate specifications: one of the data form (regular
grid or FEM data), and one of the core visualization algorithm.

Directions of ongoing and future work are organized around
Diderot, guided search, and the expression of visualization algo-
rithms in general. With respect to Diderot, we hope to add other
data forms beyond regular grids and finite element data such as Rie-
mannian manifolds, where position movement is given by solving
a variational problem to find a geodesic. With respect to guided
search, we wish to augment it with information from run-time or
compile-time, and we wish to explore its application to visualization
methods that are less sensitive to errors in position location (i.e.,
volume rendering or predictor-corrector schemes used in PVO line
tracing [21,31]). Finally, we suspect that many existing implementa-
tions of visualization algorithms currently specialized to a particular
data form may contain ideas that are as orthogonal and composable
as guided search is for FEM data. We hope to foster further research
by uncovering those ideas and exploring how they can be combined
into new visualization algorithms, implemented in idiomatic and
re-usable code.
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high-order elements. Comp. Phys. Comm., 172(1):356–386, 2001.

[12] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrien-
tos, E. Elsen, F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and
P. Hanrahan. Liszt: A domain specific language for building portable
mesh-based PDE solvers. In Proc. SC11, pages 1–12, Nov 2011.

[13] D. Eberly. Ridges in Image and Data Analysis. Springer Netherlands,
1996.

[14] C. Ericson. Real-Time Collision Detection (The Morgan Kaufmann
Series in Interactive 3-D Technology). CRC Press, 2004.

[15] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh
generator with built-in pre- and post-processing facilities. Int. J. Numer.
Methods Eng., 79(11):1309–1331, 2009.

[16] GLVis: OpenGL finite element visualization tool. glvis.org.
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1 SUMMARY

In this document, we will include the commentated code that is used
by “Point Movement in a DSL for Higher-Order FEM Visualization.”
Each section will provide Diderot snippets that could be used to
produce the figures in the paper. These snippets are complete in
the sense that they are either full programs in their own right or
could easily be combined with another snippet featured here to make
a full program. In addition, each section will provide some brief
commentary on the code, highlighting both the new ideas in the code
not evident before and the work required to create these snippets
from older Diderot programs. The snippets included below are:

1. A streamline program that uses guided search.

2. An overloaded function for the error checked guided search
scheme.

3. An overloaded function for the naive scheme.

4. A small particle system used to create isosurfaces.

5. A larger particle system used to create ridge surfaces.

Finally, we note that the figure captions provide information about
parameters that we used to create our figures if they are unstated in
the paper.

2 STREAMLINES

We provide line by line commentary on Figure 1, which features
a complete guided search streamline program. Line 1 declares the
version of the compiler that we use, which is 3.0. Lines 2 through
7 declare the mesh, function space (V ), and function types (uV )
that the program uses. The JSON files used in these declarations
will be documented further in future work, but we note that we
automatically generate them for Firedrake’s meshes, spaces, and
functions.

Lines 10 through 12 take inputs for the mesh, space, and function.
Line 13 provides the reference cell from the mesh. Lines 18 through
44 are featured in the paper as the guided search algorithm. Lines
46 through 54 supply an auxiliary function, nV, to unpack positions
and evaluate the field fi on the reference cell; this process consists
in taking out a mesh cell, reference position, and then using the
information about uV , the data, to get a field, which is sampled at
the reference position. The auxiliary function checks the validity
of the position and allows for some sort of border control. Lines
55 through 57 simply control the streamline algorithm, RK2. Lines
58 though 73 are the streamline algorithm with some modifications
to use positions: First, line 64 takes the input vector to the strand,
line, and converts it to a position. Second, lines 66 and 69 provide
border control by checking for the validity of the positions (in older
Diderot versions, this was done via an inside function.) Finally, line
67 records the world position of a point on the streamline. The core
RK2 algorithm is legible in lines 68 and 70, which use the function
nV to sample a field at a position as in the older Diderot streamlines
program.

We now roughly measure the changes required to turn a vanilla
Diderot streamline program to this program. A standard Diderot
streamline program would live in lines 46 through 73 after the ad-
dition of image inputs and field declarations. The changes in the
function, nV, defined from 46 to 53, are changes in the field eval-
uation and represent an additional 5 to 10 lines from the original
program. The strand definition is changed at lines 64 (type change
and conversion), line 66 for checking the validity, line 67 for record-
ing the world position, line 68 for a type change, and line 69 for
another validity check. Thus, the total changes to the streamline
program amount to about 15 lines of code besides the addition of
the FEM inputs and guided search (line 1 through line 44)

In Figure 2, we show the overloaded position operator with an
error checking functionality. An error max parameter is required as
a new input on line 1 and we now provide commentary on its usage
i.e the additions present in the error checked guided search. The
error parameter is used on lines 14 and 33 to check if the computed
reference position corresponds to a world space position that is close
to the correct world space position i.e the world space position of
a naive position update. If on either line 14 or 33, the condition is
meet, the program continues as in the previous figure, but otherwise,
the new program tries to recover somehow. On line 14, the code is
finishing inside the reference cell, and, therefore, can use the current
cell to check if the correct world space position corresponds to a
reference position in the current cell. If the current cell does contain
the correct reference position, the correct reference space position
is computed via T�1

i , but if the current cell does contain the correct
reference position, the naive scheme is used. On line 33, the position
is currently on a boundary so use of T�1

i is inappropriate; thus, the
naive scheme is used immediately on line 34.

Finally, in Figure 3, we provide an overload for the naive scheme.
This is provided for clarity and does not require comment.

3 PARTICLES

In this section, we will provide the complete programs used to make
the particle system figures. The position addition overload in these
programs does not differ from Figure 1 nor do the creation of types
or finite element inputs. Ergo, in this section, we will focus on the
changes to the core particle systems programs; besides the addition
of the overloaded functions and finite element inputs, how many
lines were changed in porting these programs? How much did the
main loop change? We stress that one should examine the prior work
on Diderot to understand the full particle system programs and that
here we mainly seek to point out the limited extent to which FEM
versions differ from the original programs.

We first consider the shorter particle systems program used to
create the isosurface in the paper, displayed in Figure 4. Lines
1 through 45 are basically identical to those for guided search in
Figure 1. Line 46 through 52 implement position subtraction, which
is a standard position operation, via taking world space differences
if both positions are valid, and otherwise returning zero. Lines 54
though 168 implement a small particle system for an isosurface.
Lines 54 through 58 are parameters to the system as in the original
program. Lines 61 through 89 implement feature strength, feature
step, and feature perpendicular functions that sample positions; these
functions are considered inputs to the particle system code. These
are different from the original versions of these functions, but they
are trivially the same only sampling through the reference space via
unpacking the position, accessing the current cells, and acquiring
the transformed reference fields described in the paper. In terms of
lines of code, each differs by 5 to 10 lines from the original, leading
to an additional roughly 10 to 20 lines, but, we note these functions
live outside the core particle system code. The core of the particle
systems program lies in lines 89 through 168. We observe that this
is basically identical to the original program except for 7 lines (lines
96,97,105, 128, 144, 163, 166). Each line has a comment explaining
the change relative to the old program, but we note that 4 lines differ
by type, two lines use the validity method of a position to do border
control, and only lines 163 and 166 implements new functionality. In
short, for a core loop of 72 lines, only 2 to 4 were added or changed
non-trivially. In short, the core logic of the small particle system
program is basically unchanged in the conversion to use guided
search modulo the addition of the overloads on positions and the
specification of finite element data. Examining our analysis, we see
that besides the FEM inputs and position overloads, the program
features at most 30 lines of additions or changes.

This result is repeated with the larger particle system program,
which is featured for ridge surfaces in Figure 5 and Figure 6. Com-
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1 #version 3.0
2 //mesh specification:

3 type mesh mesh_t = file("evalProg.json");
4 //space (V) specification:

5 type functionSpace{mesh_t}[dim] fns_t = file("evalProg.json");
6 //u_{V} specification:

7 type femFunction{fns_t} func_t = file("evalProg.json");
8 const int dim = mesh_t.dim; //dim of mesh

9
10 input mesh_t mesh; //input mesh
11 input fns_t space = fns_t(mesh); //input space

12 input func_t data = func_t(space); //input u_{V}
13 refCell{mesh_t} K = mesh.refcell; //get refCell

14
15 input int timeSteps=32; //guided search step limit

16 input real timeEps = 0.0000001; //1 - time max

17 //Overload + operator (see text for comments):

18 overload position{mesh_t} + (position{mesh_t} x,
19 tensor[dim] worldDelta) {
20 if (!x.isValid){ return(x);}
21 real time = 1;
22 position{mesh_t} cmp = x;
23 foreach (int i in 0..timeSteps ){
24 tensor[dim, dim] iJac = inv(—⌦(cmp.mc.transform)(cmp.refPos));
25 tensor[dim] refDelta = iJac • worldDelta;
26 tensor[dim] nPos = cmp.refPos + time * refDelta;
27 if (K.isInside(nPos)) {
28 return(cmp.mc.meshPos(nPos));
29 } else {
30 tensor[dim] nRefDelta = normalize(refDelta);
31 real eTime = K.exit(cmp, nRefDelta);
32 time-=eTime / |refDelta|;
33 if(eTime == -1){
34 return(mesh.findPos(x.worldPos() + worldDelta));
35 }
36 position{mesh_t} nmp = K.exitPos(cmp, nRefDelta);
37 if ( !nmp.isValid || time < timeEps){

38 return(nmp);
39 }
40 cmp = nmp;
41 }
42 }
43 return(mesh.findPos(x.worldPos() + worldDelta));
44 }
45 //evaluate u_{V} at a pos

46 function tensor[dim] nV(position{mesh_t} x){
47 if(x.isValid()){ //border control

48 cell{mesh_t} c = x.mc; //get cell

49 tensor[dim] ref = x.refPos(); //get refPos
50 //f_{i}(y) where y = x.refPos()

51 tensor[dim] val = data.funcCell(c).refField(ref);
52 return(val/|val|);
53 } else {return(zeros[dim]);} //border control

54 }
55 input tensor[dim][] startPoints;//streamline start points
56 input real stepSize = 0.01; //RK2 stepsize

57 input int stepMax = 32; //RK2 steps max

58
59 strand line(tensor[dim] startPos){
60 output tensor[dim][] stream = {};
61 int step = 0;
62 //find position corresponding to

63 //global position of startPos

64 position{mesh_t} cPos = mesh.findPos(startPos);
65 update { //trace if position is valid
66 if(!cPos.isValid() || step == stepMax){stabilize;}
67 stream = stream@{cPos.worldPos()};
68 position{mesh_t} intermed = cPos + 0.5 * stepSize * nV(cPos);
69 if(!intermed.isValid){stabilize;} //validity of substep
70 cPos = cPos + stepSize * nV(intermed);
71 step+=1;
72 }
73 } create_collection {line(x) | x in startPoints};

Figure 1: A complete RK2 streamline program that uses guided search

bining these figures yields the full program. In the first part of the
code, Figure 5, we find the particle system controls, guided search
controls, and particle system auxiliary functions. Lines 1 through 53
provide FEM inputs and guided search, as in the previous examples.
Lines 54 though 75 provide the particle system controls. Lines 78
through 126 provide the feature step, perpendicular, strength, mask,
and test functions that these particle systems take as inputs. As
before, these are the same as their vanilla versions, but they take po-
sitions, unpack them, and sample from the reference cell. We don’t
provide additional commentary on these functions as the conceptual
extent to which they differ from the original Diderot programs is
the same as in the previous particle system. The step, perpendicular,
and strength functions require a few additional lines (at most 5 each)
where as the mask, test, and posTest functions change by 1 line, 1
line, and 2 lines respectively. Thus lines 78 through 126 feature
at most 20 additions or changes to the code. Lines 127 through
180 are almost identical to the original code, but the v3rand and
genID functions (lines 175 and 166) need to use positions instead of
vectors, creating another 4 changes. Moving on to the second part of
the large particle system, Figure 6, we find the core particle system
code. In Figure 6, all comments have been removed except those
that indicate that a change has been made from the original program.
We find that there are no more than 7 lines of changes and that only
the last two lines, which check that all positions are valid before
allowing convergence, are substantial changes. Combining this with
our analysis of the first part and, as before, discounting the added
overloads and FEM inputs, the total changes between this program
and its regular grid version amount to fewer than 35 lines of code.



1 input real errorMax = 1.0;
2 overload position{mesh_t} + (position{mesh_t} x,
3 tensor[dim] worldDelta) {
4 if (!x.isValid){ return(x);}
5 real time = 1;
6 position{mesh_t} cmp = x;
7 foreach (int i in 0..timeSteps ){
8 tensor[dim, dim] iJac = inv(—⌦(cmp.mc.transform)(cmp.refPos));
9 tensor[dim] refDelta = iJac • worldDelta;

10 tensor[dim] nPos = cmp.refPos + time * refDelta;
11 if (K.isInside(nPos)) {
12 position{mesh_t} nmp = cmp.mc.meshPos(newPos);
13 //check error:

14 if(|nmp.worldPos() - (x.worldPos() + dPos) | > errorMax){
15 vec3 guess = (cmp.worldPos() + time * dPos);
16 if(cmp.mc.isInside(guess)){ //guess current cell
17 return(cmp.mc.meshPos(cmp.mc.inverseTransform(guess)));
18 } else { //default to naive scheme
19 return(meshData.findPos(x.worldPos() + dPos));}
20 }
21 return(nmp);
22 } else {

23 tensor[dim] nRefDelta = normalize(refDelta);
24 real eTime = K.exit(cmp, nRefDelta);
25 time-=eTime / |refDelta|;
26 if(eTime == -1){
27 return(mesh.findPos(x.worldPos() + worldDelta));
28 }
29 position{mesh_t} nmp = K.exitPos(cmp, nRefDelta);
30 if ( !nmp.isValid ){return nmp;} //left the mesh
31 vec3 truth = (x.worldPos() + dPos * (1-time));
32 real error = |nmp.worldPos() - truth|;
33 if(error > errorMax){
34 //if too much error, naive scheme:

35 return(meshData.findPos( (x.worldPos() + dPos)));
36 }
37 if (time < timeEps){ //ran out of time.
38 return(nmp);
39 }
40 cmp = nmp;
41 }
42 }//spent too much time - use naive scheme

43 return(mesh.findPos(x.worldPos() + worldDelta));
44 }

Figure 2: A guided search implementation that check errors. This code can be substituted into Figure 1 in place of the addition overload to create
a error checking guided search RK2 program.

1 overload position{mesh_t} + (position{mesh_t} x,
2 tensor[dim] deltaPos)
3 {
4 if (!x.isValid()){
5 return(x);
6 }
7 return(meshData.findPos(x.worldPos() + dPos));
8 }

Figure 3: An overloaded position operator that implements the naive scheme. This code can be substituted into Figure 1 in place of the addition
overload to create a naive scheme RK2 program.



1 #version 3.0
2 //mesh specification:

3 type mesh mesh_t = file("evalProg.json");
4 //space (V) specification:

5 type functionSpace{mesh_t}[dim] fns_t = file("evalProg.json");
6 //u_{V} specification:

7 type femFunction{fns_t} func_t = file("evalProg.json");
8 const int dim = mesh_t.dim; //dim of mesh
9

10 input mesh_t mesh; //input mesh
11 input fns_t space = fns_t(mesh); //input space
12 input func_t data = func_t(space); //input u_{V}
13 refCell{mesh_t} K = mesh.refcell; //get refCell
14
15 input int timeSteps=32; //guided search step limit
16 input real timeEps = 0.0000001; //1 - time max
17 overload position{mesh_t} + (position{mesh_t} x,
18 tensor[dim] worldDelta) {
19 if (!x.isValid){ return(x);}
20 real time = 1; //time
21 position{mesh_t} cmp = x; //current mesh pos
22 foreach (int i in 0..timeSteps ){
23 tensor[dim, dim] iJac = inv(—⌦(cmp.mc.transform)(cmp.refPos));
24 tensor[dim] refDelta = iJac • worldDelta; //reference velocity
25 tensor[dim] nPos = cmp.refPos + time * refDelta;
26 if (K.isInside(nPos)) {//inside K
27 return(cmp.mc.meshPos(nPos)); //found x+v as (cmp.mc, nPos)
28 } else { //we left the reference cell - compute when:
29 tensor[dim] nRefDelta = normalize(refDelta);
30 real eTime = K.exit(cmp, nRefDelta);
31 time-=eTime / |refDelta|; //update time remaining.
32 if(eTime == -1){//invalid direction , use naive scheme
33 return(mesh.findPos(x.worldPos() + worldDelta));
34 } //find the exit location in the next cell.
35 position{mesh_t} nmp = K.exitPos(cmp, nRefDelta);
36 if ( !nmp.isValid || time < timeEps){//left mesh or
37 return(nmp); //ran out of time.
38 }
39 cmp = nmp;
40 }
41 }//spent too much time - use naive scheme

42 return(mesh.findPos(x.worldPos() + worldDelta));
43 }
44
45 //simple position subtraction operations

46 overload tensor[dim] - (position{mesh_t} x, position{mesh_t} y)
47 {
48 if (x.isValid && y.isValid {
49 return(x.worldPos() - y.worldPos());
50 } else {return(zeros[dim]);}
51 }
52
53
54 //particle system controls

55 input real rad = 0.01;
56 input real eps = 0.01;
57 input real v0 = 0.0;
58 input tensor[dim][] ipos;
59
60
61 function tensor[dim] fStep(position{mesh_t} y){
62 if(y.isValid){ //border control

63 tensor[dim] x = y.refPos; //get ref pos

64 cell{mesh_t} c = y.mc; //get the cell

65 cell{func_t} f = data.funcCell(c); //get element info

66 vec3 grad = —(f.transformedRefField)(x); //sample grad

67 tensor[dim] ret = (v0 - (f.refField)(x)) * grad /(grad • grad);
68 return ret; //return newton step

69 } else {return [•,•,•];} //a big step

70 }
71
72 function tensor[dim, dim] fPerp(position{mesh_t} y){
73 if (y.isValid){ //border control

74 tensor[dim] x = y.refPos; //get ref pos

75 cell{mesh_t} c = y.mc; //get the cell

76 cell{func_t} f = data.funcCell(c); //get element info

77 vec3 norm = normalize(—(f.transformedRefField)(x));
78 return identity[dim] - norm ⌦ norm; //return fPrep

79
80 } else return(zeros[dim, dim]);
81 }
82 function real fStrength(position{mesh_t} y){
83 if(y.isValid{ //border control

84 cell{mesh_t} c = y.mc; //get cell

85 cell{func_t} f = data.funcCell(c); //get element info

86 return |—(f.transformedRefField)((y.refPos))|;
87 } else {return(0.0);}
88 }
89 //particle system core code:

90 function real phi(real r) = (1-r)ˆ4;
91 function real phi’(real r) = -4 * (1-r)ˆ3;
92 function real enr(tensor[dim] x) = phi(|x|/rad);
93 function tensor[dim] frc(tensor[dim] x) = phi’(|x|/rad) * (1/rad) * x/|x|;
94
95
96 strand particle(position{mesh_t} pos0, real hh0){//changed the type
97 output position{mesh_t} pos = pos0; //changed the type
98 real hh = hh0;
99 tensor[dim] step = zeros[dim];

100 bool found = false;
101 int nfs = 0;
102 int test = 1;
103 int testp = 0;
104 update {
105 if(!pos.isValid || fStrength(pos) == 0 || hh == 0){//add border control
106 die;
107 }
108 if(!found) {
109 step = fStep(pos);
110 pos = pos + step;
111 if(|step|/rad > eps){
112 nfs += 1;
113 if(nfs > 10) { die;}
114 } else { found = true; testp=1;}
115 }
116 else {
117 pos = pos + fStep(pos);
118 step = zeros[dim];
119 real oldE = 0;
120 tensor[dim] force = zeros[dim];
121 int nn = 0;
122
123 foreach (particle P in sphere(rad)){
124 oldE += enr(P.pos - pos);
125 force += frc(P.pos - pos);
126 nn += 1;
127 }
128 if (0 == nn && pos.isValid()){ //added border control
129 new particle(pos + [0.5*rad, 0,0 ], hh);
130 continue;
131 }
132 force = fPerp(pos) • force;
133 tensor[dim] es = hh*force;
134 if(|es| > rad){
135 hh *= rad/|es|;
136 es *= rad/|es|;
137 }
138 position{mesh_t} samplePos = pos + es; //changed the type
139 tensor[dim] fs = fStep(samplePos);
140 if (|fs|/|es| > 0.5){
141 hh *= 0.5;
142 continue;
143 }
144 position{mesh_t} oldPos = pos;//changed the type
145 pos += fs + es;
146 real newE = sum {enr(pos - P.pos) | P in sphere(pos, rad)};
147 if (newE - oldE > 0.5 * (pos - oldPos) • ( -force )) {
148 pos = oldPos;
149 hh *= 0.5;
150 continue;
151 }
152
153
154 hh *= 1.1;
155 step = fs + es;
156 if (nn < 5){
157 new particle(pos + 0.5 * rad * normalize(es), hh);
158 }
159 }
160 }
161 }
162 update { //add an extra check (2 lines):
163 bool allValid = all {P.pos.isValid | P in particle.all};
164 bool allFound = all {P.found | P in particle.all};
165 real maxStep = max {|P.step| | P in particle.all};
166 if (allFound && allValid && maxStep/rad < eps) {stabilize;}
167 }
168 create_collection {particle(mesh.findPos(x), 1) | x in ipos};

Figure 4: A complete though minimal particle system that uses guided search and is aimed at isosurfaces. We note that the figure in the paper
used this program with eps=0.005, rad=0.5, and iso=0.0.



1 #version 3.0
2 //mesh specification:

3 type mesh mesh_t = file("evalProg.json");
4 //space (V) specification:

5 type functionSpace{mesh_t}[dim] fns_t = file("evalProg.json");
6 //u_{V} specification:

7 type femFunction{fns_t} func_t = file("evalProg.json");
8 const int dim = mesh_t.dim; //dim of mesh

9
10 input mesh_t mesh; //input mesh
11 input fns_t space = fns_t(mesh); //input space

12 input func_t data = func_t(space); //input u_{V}
13 refCell{mesh_t} K = mesh.refcell; //get refCell

14
15 input int timeSteps=32; //guided search step limit

16 input real timeEps = 0.0000001; //1 - time max

17 //Overload + operator (see text for comments):

18 overload position{mesh_t} + (position{mesh_t} x,
19 tensor[dim] worldDelta) {
20 if (!x.isValid){ return(x);}
21 real time = 1;
22 position{mesh_t} cmp = x;
23 foreach (int i in 0..timeSteps ){
24 tensor[dim, dim] iJac = inv(—⌦(cmp.mc.transform)(cmp.refPos));
25 tensor[dim] refDelta = iJac • worldDelta;
26 tensor[dim] nPos = cmp.refPos + time * refDelta;
27 if (K.isInside(nPos)) {
28 return(cmp.mc.meshPos(nPos));
29 } else {
30 tensor[dim] nRefDelta = normalize(refDelta);
31 real eTime = K.exit(cmp, nRefDelta);
32 time-=eTime / |refDelta|;
33 if(eTime == -1){
34 return(mesh.findPos(x.worldPos() + worldDelta));
35 }
36 position{mesh_t} nmp = K.exitPos(cmp, nRefDelta);
37 if ( !nmp.isValid || time < timeEps){
38 return(nmp);
39 }
40 cmp = nmp;
41 }
42 }
43 return(mesh.findPos(x.worldPos() + worldDelta));
44 }
45
46 //Overload - operator

47 overload tensor[dim] - (position{mesh_t} x, position{mesh_t} y)
48 {
49 if (x.isValid && y.isValid {
50 return(x.worldPos() - y.worldPos());
51 } else {return(zeros[dim]);}
52 }
53 //particle system controls

54 input real fStrTh ("Feature strength threshold");
55 input real fMaskTh ("feature mask threshold") = 0;
56 input real fBias ("Bias in feature strength computing") = 0.0;
57 input real tipd ("Target inter-particle distance") = 1.0;
58 input real mabd ("Min allowed birth distance (> 0.7351)") = 0.75;
59 input real travMax ("Max allowed travel to or on feature") = 10;
60 input int nfsMax ("Max allowed # feature steps ") = 20;
61 input real gdeTest ("Scaling in sufficient decrease test") = 0.5;
62 input real gdeBack ("How to scale stepsize for backtrack") = 0.5;
63 input real gdeOppor ("Opportunistic stepsize increase") = 1.2;
64 input real fsEps ("Conv. thresh. on feature step size");
65 input real geoEps ("Conv. thresh. on system geometry") = 0.1;
66 input real mvmtEps ("Conv. thresh. on point movement") = 0.01;
67 input real rpcEps ("Conv. thresh. on recent pop. changes") = 0.01;
68 input real pcmvEps ("Motion limit before PC") = 0.3;
69 input real isoval ("Which isosurface to sample") = 0;
70 input int verb ("Verbosity level") = 0;
71 input real sfs ("Scaling (<=1 for stability) on fStep") = 0.5;
72 input real hist ("How history matters for convergence") = 0.5;
73 input int pcp ("periodicity of population control (PC)") = 5;
74 input vec3[] ipos ("Initial point positions");
75 input int fDim = 2;
76
77 //Freature Functions:

78 function vec3 fStep(position{mesh_t} pos) {
79 if(pos.isValid){
80 vec3 x = pos.refPos;
81 cell{mesh_t} c = pos.mc;
82 cell{func_t} f = data.funcCell(c);
83 vec3 g = —(f.transformedRefField)(x);
84 tensor[dim, dim] H = —⌦—(f.transformedRefField)(x);
85 vec3[3] E = evecs(H);
86 real[3] L = evals(H);
87 vec3 up = -(1/L[2])*E[2]⌦E[2] ¢ g ;
88 return up;
89 } else {return([•,•,•]);}
90 }

91
92
93 function tensor[3,3] fPerp(position{mesh_t} pos) {
94 if(pos.isValid){
95 vec3 x = pos.refPos;
96 cell{mesh_t} c = pos.mc;
97 cell{func_t} f = data.funcCell(c);
98 tensor[dim, dim] H = —⌦—(f.transformedRefField)(x);
99 vec3 E2 = evecs(H)[2];

100 mat3 m = identity[3] - E2⌦E2;
101 return m;
102 } else {return(zeros[dim, dim]);}
103 }
104
105 function real fStrength(position{mesh_t} pos) {
106 if(pos.isValid){
107 vec3 x = pos.refPos;
108 cell{mesh_t} c = pos.mc;
109 cell{func_t} f = data.funcCell(c);
110 vec3 g = —(f.transformedRefField)(x);
111 tensor[dim, dim] H = —⌦—(f.transformedRefField)(x);
112 real str = -evals(H)[2]/(fBias + |g|);
113 return str;
114 } else {return(0.0);}
115 }
116
117 function real fMask(position{mesh_t} x) = 0.0;
118 function bool fTest(position{mesh_t} x) = true;
119
120 function bool posTest(position{mesh_t} x) =
121 (x.isValid // Valid test replaces border control

122 && fStrength(x) > fStrTh // possibly near feature
123 && fMask(x) >= fMaskTh // meets feature mask

124 && fTest(x)); // passes addtl feature criterion

125 //End feature functions

126 //Auxiliary Particle system stuff:

127 int nnmin = 6 if (2==fDim) else 2 if (1==fDim) else 0;
128 int nnmax = 8 if (2==fDim) else 3 if (1==fDim) else 0;
129
130 function real phi(real r) {
131 real s=r-2.0/3;
132 return
133 1 + r*(-5.646 + r*(11.9835 + r*(-11.3535 + 4.0550625*r)))
134 if r < 2.0/3 else
135 -0.001 + ((0.09 + (-0.54 + (1.215 - 0.972*s)*s)*s)*s)*s
136 if r < 1 else 0;
137 }
138 function real phi’(real r) {
139 real t=3*r-2;
140 return
141 -5.646 + r*(23.967 + r*(-34.0605 + 16.22025*r))
142 if r < 2.0/3 else
143 0.01234567901*t*(4.86 + t*(-14.58 + t*(14.58 - 4.86*t)))
144 if r < 1 else 0;
145 }
146 real phiWellRad = 2/3.0;
147 real rad = tipd/phiWellRad;
148 function real enr(vec3 x) = phi(|x|/rad);
149 function vec3 frc(vec3 x) = phi’(|x|/rad) * (1/rad) * x/|x|;
150
151
152 real pchist = histˆ(1.0/(2*pcp));
153
154 int iter = 0;
155 real rpc = 1;
156 int popLast = -1;
157
158 function real urnd(real x) {
159 if (x==0) return 0;
160 real l2 = log2(|x|);
161 real frxp = 2ˆ(l2-floor(l2)-1);
162 return fmod((2ˆ20 + 2*iter)*frxp, 1);
163 }
164
165
166 function real v3rnd(position{mesh_t} p){ //type change
167 if(!p.isValid){ //border control

168 return 0;
169 }
170 vec3 v = p.refPos; //get ref pos

171 return(fmod(urnd(v[0]) + urnd(v[1]) + urnd(v[2]), 1));
172 }
173
174 //Another type change:

175 function real genID(position{mesh_t} v) = floor(1000000*v3rnd(v));
176
177 function int pcIter(){
178 if (pcp>0 && iter>0 && 0 == iter % pcp) {return (((iter/pcp)%2)*2 - 1);}
179 else {return 0;}
180 }

Figure 5: Part 1 of a particle system that uses guided search and is aimed at ridge surfaces. This section contains the search and the particle
system parameters. The parameters used to produce the figure in the paper are fStrTh=24, fBias=0.1, tipd==0.1, fsEps=geoEps=mvmtEps=0.1,
rpcEps=0.01, pcmvEps=0.3, sfs=hist=0.5, pcp=5.



1 strand point (position{mesh_t} p0, real hh0) { //changed the type
2 output position{mesh_t} pos = p0; // changed the type
3 real ID = genID(p0);
4 real hh = hh0;
5 vec3 step = [0,0,0];
6 bool found = false;
7 int nfs = 0;
8 real trav = 0;
9 real mvmt = 1;

10 real closest = rad;
11 int born = 0;
12 bool first = true;
13 update {
14 if (!posTest(pos)) {
15 die;
16 }
17 if (travMax > 0 && trav > travMax) {
18 die;
19 }
20 if (!found) {
21 if (nfsMax > 0 && nfs > nfsMax) {
22 die;
23 }
24 step = sfs*fStep(pos);
25 pos = pos + step;
26 mvmt = lerp(|step|/tipd, mvmt, hist);
27 if (mvmt > fsEps) {
28 trav += |step|/tipd;
29 nfs += 1;
30 } else {
31 found = true;
32 mvmt = 1;
33 trav = 0;
34 }
35 } else {
36
37 if (0 == fDim) { stabilize; }
38 step = sfs*fStep(pos); pos = pos + step; trav += |step|/tipd;
39 real oldE = 0;
40 vec3 force = [0,0,0];
41 int nn = 0;
42 foreach (point P in sphere(rad)) {
43 vec3 off = P.pos - pos;
44 if (|off|/tipd < fsEps && ID <= P.ID) {
45 die;
46 }
47 oldE += enr(off);
48 force += frc(off);
49 nn += 1;
50 }
51 if (0 == nn) {
52 if (!( pcIter() > 0 && born < nnmax )) { continue; }
53 vec3 noff0 = fPerp(pos)•[tipd,0,0];
54 vec3 noff1 = fPerp(pos)•[0,tipd ,0];
55 vec3 noff2 = fPerp(pos)•[0,0,tipd];
56 vec3 noff = noff0;
57 noff = noff if |noff| > |noff1| else noff1;
58 noff = noff if |noff| > |noff2| else noff2;
59 //changed the type:

60 position{mesh_t} npos = pos + tipd*normalize(noff);
61 npos = npos + sfs*fStep(npos);
62 if (posTest(pos)) {
63 new point(npos, hh); born += 1;
64 }
65 continue;
66 }
67 vec3 es = hh*fPerp(pos) ¢ f o r c e ;
68 if (|es| > tipd) {
69 hh *= tipd/|es|;
70 es *= tipd/|es|;
71 }
72 vec3 fs = sfs*fStep(pos+es);
73 if (|fs|/(fsEps*tipd + |es|) > 0.5) {
74 hh *= 0.5;
75 continue;
76 }
77 //changed the type:

78 position{mesh_t} oldpos = pos;
79 vec3 up = fs + es;
80 pos = pos + up;

81 real newE = 0;
82 closest = rad;
83
84 vec3 mno = [0,0,0];
85 nn = 0;
86 foreach (point P in sphere(rad)) {
87 vec3 off = P.pos - pos;
88 newE += enr(off);
89 closest = min(closest, |off|);
90 mno += off;
91 nn += 1;
92 }
93 mno /= nn;
94
95 if (newE - oldE > gdeTest*(pos - oldpos)•(-force)) {
96 hh *= gdeBack;
97 if (0 == hh) {
98 die;
99 }

100 pos = oldpos;
101 continue;
102 }
103 hh *= gdeOppor;
104 step += fs + es;
105 trav += |step|/tipd;
106 mvmt = lerp(|step|/tipd, mvmt, hist);
107 if (|step|/tipd < pcmvEps && pcIter() != 0) {
108 if (pcIter()>0
109 && newE<0
110 && nn<nnmin
111 && born<nnmax) {//changed the type:
112 position{mesh_t} npos = pos + (-tipd*normalize(mno));
113 npos = npos + sfs*fStep(npos); npos = npos + sfs*fStep(npos);
114 bool birth = true;
115 if (fDim == 2 && nn >= 4) {
116 foreach (point P in sphere(npos, tipd*mabd)) {
117 birth = false;
118 }
119 if (birth) {
120 birth = v3rnd(pos) < (nnmin - nn)/real(nnmin);
121 }
122 }
123 if (birth && posTest(npos)) {
124 new point(npos, hh); born += 1;
125 }
126 } else if (pcIter() < 0 && newE > 0 && nn > nnmax) {
127 if (v3rnd(pos) < (nn - nnmax)/real(nn)) {
128 die;
129 }
130 }
131 }
132 }
133 first = false;
134 }
135 }
136 update {
137 int pop = numActive();
138 int pc = 1 if pop != popLast else 0;
139 rpc = lerp(pc, rpc, pchist);
140 bool allfound = all { P.found | P in point.all};
141 real percfound =
142 100* mean { 1.0 if P.found else 0.0 | P in point.all};
143 real meancl = mean { P.closest | P in point.all };
144 real varicl = mean { (P.closest - meancl)ˆ2 | P in point.all };
145 real covcl = sqrt(varicl) / meancl;
146 real maxmvmt = max { P.mvmt | P in point.all };
147 //added new convergence test

148 //to find avoid saving invalid positions:

149 bool allValid = all {P.pos.isValid | P in point.all};
150 if (allfound
151 && covcl < geoEps
152 && maxmvmt < mvmtEps
153 && rpc < rpcEps && allValid) { // use this new test.
154 stabilize;
155 }
156
157 iter += 1;
158 popLast = pop;
159 }
160 create_collection { point(mesh.findPos(p), 1) | p in ipos};

Figure 6: Part 2 of a particle system that uses guided search and is aimed at ridge surfaces. This section contains the core of a Diderot program:
the strand definition.
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