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Introduction:  Previous work has distinguished isotropic and anisotropic tissue structure through the use of invariant tensor measures such as fractional anisotropy 
(FA) and relative anisotropy (RA)[1].  While these metrics quantify one measure of anisotropy they do not specifically characterize the mode of anisotropy[2].  In 
general, anisotropy is an umbrella term for tensors whose mode can range from linearly anisotropic (one large eigenvalue, two small) to orthotropic (three distinct 
eigenvalues) to planar anisotropic (two large eigenvalues, one small), each of which potentially identifies unique neuroanatomy.  The magnitude of anisotropy 
characterizes the degree to which a tensor exhibits a particular mode of anisotropy.  Both the magnitude and the mode of anisotropy can be used to generate scalar 
colormaps of DTMRI data to provide insight to the underlying tissue structure. 

Theory:  Diffusion tensors are 3x3 real-valued symmetric positive definite tensors and can be decomposed into three eigenvalues and three eigenvectors.  The 
proposed metrics are formulated in terms of standard tensors operators, but for completeness the metrics are also cast in terms of the eigenvalues. The first three central 
moments of the eigenvalues are µ1 (bulk mean diffusivity), µ2 (related to the magnitude of the anisotropy); and µ3 (determines the mode of anisotropy). 
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Any tensor D can be decomposed into a sum of isotropic ( D ) and anisotropic ( ˜ D ) components, D = ˜ D + D .  ˜ D , also termed the deviatoric component, is defined 

as ˜ D = D − 1
3 tr(D)I , and the isotropic component D = 1

3 tr(D)I .  The isotropic and anisotropic tensors can be further decomposed into a magnitude and mode.  The 

magnitude of any tensor is defined as mag(A) = A : A = tr(AAT) .  It can be shown that mag( ˜ D ) = 3µ2 , mag(D ) = 3µ1, and mag(D) = 3µ1
2 + 3µ2 .  Thus, 

each of the tensor magnitudes is related to the first and second central moments of the eigenvalues and is defined over the interval [0,+∞) . 
The mode of a tensor is defined as mode(A ) = det(A / mag(A )).  The mode of the isotropic component of the tensor is constant; there is only one mode of dilatation: 

mode(D ) = det(D /mag(D )) = det((1/ 3)I) = 3−3 /2 .  The mode of anisotropy is found from mode( ˜ D ) = det( ˜ D /mag( ˜ D ))  and by definition it can be shown that 

mode( ˜ D ) ∈ [−1 / 3 6,1 / 3 6].  Furthermore mode( ˜ D )  is related to the third central moment of the eigenvalues by mode( ˜ D ) = µ3/(3µ2)3 /2 .  When 

mode( ˜ D ) = −1/3 6  the tensor is linearly anisotropic; when mode( ˜ D ) = 0 the tensor is orthotropic; when mode( ˜ D ) =1/3 6  the tensor is planar anisotropic. mode( ˜ D )  
is a distinct measure of diffusion anisotropy suitable for the assessment of neuroanatomy.  It can be shown that mag(D ),  mag( ˜ D ),  mode( ˜ D )  are mutually orthogonal 
and are consistent with previously described orthogonal metrics [3]. 

Basser [1] defined two common anisotropy metrics.  RA is defined as the ratio of the magnitude of the anisotropic part of D and the magnitude of the isotropic part 
of D and FA is defined as proportional to the ratio of the magnitude of the anisotropic part of D to the magnitude of D.  Both are related to the central moments. 
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The explicit dependence of RA and FA upon µ1and µ2  demonstrates that these measures are related to the mode of isotropy and the magnitude of the anisotropy, but 

not the mode of anisotropy.  As noted by Bahn [3], no single scalar measure can fully characterize tensor anisotropy. This is due to its fundamental constituency of both 
a magnitude and a mode.  Thus, mode( ˜ D )  usefully complements the otherwise incomplete description of anisotropy given by FA or RA alone.   

Results: To provide a qualitative assessment of the mag(D ) , mag( ˜ D ) , and mode( ˜ D )  relative to RA and FA colormapped images of a slice of human DTMRI are 

shown in Figure 1. Informative scalar colormaps are made from the individual metrics and from combinations of the same (Figure 1). For example, mode( ˜ D )〈FA〉  
produces an scalar map with the intensity of FA but with color coding that reveals the underlying mode of anisotropy.  In Figure 1H mode( ˜ D )  in the corpus callosum 
indicates linear anisotropy.  In contrast, a region of planar anisotropy  delineates the boundary between the corpus callosum and the cingulum bundle (see arrow). 
 

 
Figure 1.  A: RGB of principle eigenvector, B: RA, C: FA, D: mag( ˜ D )  E: mag(D )  F: mode( ˜ D ) , G: mode( ˜ D )〈mag( ˜ D )〉  H: mode( ˜ D )〈FA〉 .  The color indicates 
mode( ˜ D )  Blue– linearly anisotropic, Red–orthotropic, Green–planar anisotropic and intensity modulation is produced through the function within the 〈  〉 . 

 

Discussion: The fact that RA and FA do not depend upon the third central moment underlies their lower noise sensitivity and is perhaps the key to their popular and 
robust use.  The use of the third central moment to define a metric of anisotropy is likely to be more sensitive to noise as the metric depends upon the cube of 
eigenvalue differences.  Future work needs to characterize the noise sensitivity of the mode of anisotropy.  The new tensor decomposition offers a way to assess the 
anisotropy of a tensor.  Although another orthogonal decomposition has been proposed [3] the advantage of the basis contained herein is the use of conventional tensor 
operators and the avoidance of the need to explicitly calculate the eigenvalues.  Furthermore, it has been observed that mag(D ) = 3µ1is relatively constant in healthy 

parenchyma, hence its use within the orthogonal decomposition is potentially advantageous as anatomical variation is characterized by the two remaining orthogonal 
components mag( ˜ D )  and mode( ˜ D ) .  Westin [4] proposed a tensor decomposition that provided measures of linear and planar anisotropy, but without a convenient 
measure of orthotropy, nor were the metrics mutually orthogonal. 

Conclusions:  mag(D ) , mag( ˜ D )  and mode( ˜ D )  form an orthogonal basis for tensor decomposition and provide a basis for unique measures of anisotropy.  This 
description of anisotropy may provide improved insight for DTMRI analysis.  These metrics do not exclude FA and RA in a complete analysis of DTMRI data.  As 
shown in Figure 1H, for example, the combination of anisotropy metrics allows the simultaneous display of the mode( ˜ D )  and the FA. 
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