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Isosurfaces show global structure … 

Isosurfaces show global structure … 

…. but don�t always show salient structure 



Creases! 

Creases (ridges and valleys) do 
capture salient structure 

FA 

Creases for DTI? 
•  Goal: model large-scale white 

matter structures 

•  Robust + Repeatable 

•  Few or Zero Parameters 

•  �Sulci for white matter� 

•  Basic Idea: Creases of FA 

•  Ridges: �cores� 

•  Valleys: interfaces 

•  Shape, not connectivity 



•  Mathematical definition of creases 

•  Measurement by convolution 

•  Analytical differentiation of FA 

•  Slice inspection (2-D results) 

•  Modified Marching Cubes for surface 

•  3-D results 

Rest of talk 

Crease feature definition (Eberly 1994) 

Constrained extremum 

Gradient g 

Hessian eigensystem ei, λi 

Crease: g orthogonal to 
one or more ei 

Eigenvalue gives strength 

 Ridge surface: g . e3 = 0; λ3 < thresh 

       Ridge line: g . e3 = g . e2 = 0; λ3, λ2 < thresh 

Valley surface: g . e1 = 0; λ1 > thresh 

g 
{ei} 



2-D Synthetic Scalar Example 

f |g . e3| 

strength: max(0,-λ3) �λ3 > thresh 

Continuous field: convolution of sampled coefficients with 
continuous reconstruction kernels 

k(x) 

* 
Differentiation: convolve w/ derivative of reconstruction kernel 

Measurement (of scalars) by convolution 

= 

f(t) f[i] 

k�(x) 

* 

f �(t) 

= 
f[i] 



Non-linear transform of data 

k(x) 

= 

f(t) f[i] 

* 

k�(x) 

* 

h[i] = g(f[i]) 

g 
h(t) = g(f(t)) 

g(y) = y2 

 h�(t) 

= 
h[i]*k�(x) !=  

Fractional Anisotropy (FA) is non-linear 

k(x) 

= 

f(t) f[i] 

* 

k�(x) 

* 

h[i] = g(f[i]) 

FA 

= 

h(t) = g(f(t)) 
FA 

!= 



FA(D(x,y,z)) 

|                      Δ|  #

FA is non-linear, close-up 

D[i,j,k] D(x,y,z)=D[ ] * k() 

FA(D[i,j,k]) FA(D[]) * k() 

FA(D[]) * k() 

|(                  )Δ| 
FA from invariants, from coefficients 

Hessian(FA) more complicated, but similarly derived 



Slice Inspection: RGB(e1) (original data) 

Slice Inspection: RGB(e1)  



Slice Inspection: FA 

Slice Inspection: |  FA| 

Δ#



Slice Inspection: ridge strength: max(0, λ3) 

Slice Inspection: |g.e3|  (modulated by strength) 



Slice Inspection: sqrt((g.e3)2 + (g.e2)2) 

•  Crease surface is isosurface 
(zero-crossing) of g . ei, but… 

•  Eigenvectors lack sign: 
enforce intra-voxel sign 
consistency 

•  Propagate eigenvector at one 
corner to all others 

•  g . e dot products, then MC 
case table 

Modified Marching Cubes for Surfaces 

g 
e 



3-D Results: coronal fibers 

3-D Results: ridge surfaces 



3-D Results: valley surfaces 

3-D Results: valley surfaces with fibers 



3-D Results: brainstem fibers 

3-D Results: brainstem ridge surfaces 



3-D Results: brainstem valley surfaces 

3-D Results: combined results 



Discussion & Ongoing Work 
•  Novel Aspects: 

•  Application of computer vision to DTI 

•  Extracting geometry from differential DTI structure 

•  Scale space: interfaces are easier than �cores� 

•  Tensor eigensystem orientation? 

•  Crease line extraction; line vs. surface decision 

•  Evaluation on more datasets 

•  Besides registration: Shape analysis, tracts as 
manifolds, assymetry measurement 

•  NIH funding: NIBIB T32-EB002177, NCRR P41-
RR13218 (NAC), 2-P41-RR12553-07 (CIBC), 
R01-MH050740 

•  Data: Dr. Susumu Mori, Johns Hopkins 
University, NIH R01-AG-20012-01, P41-
RR15241-01A1 

•  URL for paper + software info: 
•   http://lmi.bwh.harvard.edu/~gk/miccai06/ 
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