
Diderot: a Domain-Specific Language for
Portable Parallel Scientific Visualization and Image Analysis

Gordon Kindlmann Charisee Chiw Nicholas Seltzer Lamont Samuels John Reppy

Department of Computer Science, University of Chicago

Abstract— Many algorithms for scientific visualization and image analysis are rooted in the world of continuous scalar, vector,
and tensor fields, but are programmed in low-level languages and libraries that obscure their mathematical foundations. Diderot
is a parallel domain-specific language that is designed to bridge this semantic gap by providing the programmer with a high-level,
mathematical programming notation that allows direct expression of mathematical concepts in code. Furthermore, Diderot provides
parallel performance that takes advantage of modern multicore processors and GPUs. The high-level notation allows a concise and
natural expression of the algorithms and the parallelism allows efficient execution on real-world datasets.

Index Terms—Domain specific language, portable parallel programming, scientific visualization, tensor fields.

1 INTRODUCTION

Scientific visualization and image analysis research seeks better ways
to extract knowledge from scientific data. However, writing software
is hard: it can be difficult to translate ideas and algorithms to working
code, often due to a semantic gap between the mathematical concepts
at the computational core of algorithms, and their actual expression in
source code. This often happens with algorithms defined in terms of
abstractions like fields or tensors, but implemented with library func-
tion calls or interfaces that do not reflect the basic mathematical struc-
tures. Another challenge is that visualization and analysis tools typ-
ically require parallel computing, either because new analysis meth-
ods may require more computation per iteration, or because meaning-
ful evaluation of new methods requires their application to large real-
world datasets. Datasets grow in size and complexity with continuing
advances in scientific imaging modalities.

Domain-specific languages (DSLs) can address both of these chal-
lenges. By addressing a more narrowly-defined class of data types and
operations than general-purpose languages, DSLs bridge the semantic
gap by supporting mathematically idiomatic expression of algorithms.
By targetting a specific class of algorithms, DSLs also facilitate com-
piling algorithms to efficient parallel execution, as well as achieving
portable parallelism: mapping the same program to different paral-
lel computing back-ends. Scientific visualization is an especially apt
target for DSLs because many of its elementary abstractions are not
directly supported by general-purpose languages, so the implemen-
tation of even basic methods obscures their underlying algorithmic
simplicity. While many languages support vector- or matrix-valued
variables, for example, we are not aware of languages that directly
and idiomatically support the abstraction of a continuous scalar, vec-
tor, or tensor field, along with arithmetic and differential operations
on fields. Fields, however, are fundamental to the basic definition of
many core scientific visualization algorithms (e.g. ray-cast volume
rendering, streamline integration, and fiber tractography).

Diderot is a portable parallel domain-specific language developed
out of frustration with the lack of mathematical abstraction and the
difficulty of parallel programming associated with research in scien-
tific visualization and image analysis. Previous work [16] described an
early version of Diderot, introducing its program structure, intermedi-

• All authors are with Dept. of Computer Science, University of Chicago.
E-mails: {glk,cchiw,nseltzer,lamonts,jhr}@cs.uchicago.edu

Manuscript received 31 Mar. 2015; accepted 1 Aug. 2015; date of
publication xx Aug. 2015; date of current version 25 Oct. 2015.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

ate representations in compilation, computational abstraction of fields,
and efficient parallel execution via pthreads. This paper presents a
range of advances:
• Portable parallelism: With no more user intervention than set-

ting a compiler command-line flag, Diderot can generate sequential
code using SSE vector instructions, pthreads-based parallel code
for shared-memory multicore systems, or OpenCL code for GPUs.
Portable parallelism is increasingly useful in the context of rapidly
evolving architectures for parallel computing.

• Strand creation and communication: The threads of execution
(called strands) in Diderot can spawn new strands, strands can com-
municate with each other, and global reductions can be computed
over the entire program. These features are important for algorithms
such as particle systems that require creating dynamically new par-
ticles, and computing the interactions between particles.

• Higher-order mathematical functions: Fields in Diderot (scalar,
vector, or tensor) can be operated on and combined as they would be
in mathematics, creating new fields with expressions like “G=∇F” or
“H=(∇×V)•V.” While the previous compiler [16] had some higher-
order operators, here we describe a general system for lifting tensor
operations to fields and combinations of fields and tensors. Sup-
porting idiomatic expressions of these operations simplifies imple-
menting algorithms that depend on them.

• Compiling to a library: Rather than compiling to a self-contained
executable, Diderot programs may be compiled to a C library with
an API for setting global variables, defining the initial state of
the computation, controlling program iterations, and accessing the
computed output. This mechanism facilitates integrating Diderot
into existing environments written in C or C++, as well as high-
level languages that support C extensions.

• Other language conveniences: The Diderot programs shown here
benefit from other new language features such as user-defined func-
tions, dynamic sequences (e.g., for generating streamline geome-
try), and operations like clamp, mirror, and wrap on the convolu-
tion domains of fields.

2 BACKGROUND AND RELATED WORK

There are a number of approaches to supporting scientific visualiza-
tion and biomedical-image processing applications. A common way
is to build upon a domain-specific library or toolkit such as the Vi-
sualization Toolkit (VTK) [42], ParaView [2], and the Insight Toolkit
(ITK) [53]. Related to libraries and toolkits are software tools that tar-
get a specific visualization method in a highly configurable way, such
as the wealth of GPU-based volume rendering tools [11, 38, 34, 41].

(a) Image data (b) Discrete thresholding (c) Continuous reconstruction (d) Dense isocontour (e) Isocontour particles

Fig. 1. Image data in Diderot are discretely sampled arrays (a), but Diderot is not designed for direct computations on arrays per se, like per-pixel
thresholding (b). Rather, Diderot works with continuous fields (c) reconstructed by convolving data arrays with continuous kernels. Computations
can involve many independent strands, such as to produce a dense isocontour sampling (d), or strands that communicate, such as uniform sampling
of isocontours via interacting particles (e).

An alternative to libraries and toolkits are domain-specific lan-
guages (DSLs), which trade generality and flexibility for expres-
siveness and ease of use [32]. There is a long and rich history of
DSLs [50], but here we limit our comparison to DSLs that have some
commonality with our rationale and application domain.

DSLs can either be implemented as libraries in a host language (em-
bedded DSLs) or as standalone programming languages. For exam-
ple, Delite is a framework for implementing embedded parallel DSLs
on heterogeneous processors [15, 10]. Delite uses Scala as its host
language and provides sophisticated compilation support for mapping
DSL features to efficient code. The distinction between libraries and
embedded DSLs is fuzzy; systems like Protovis [8] and D3 [9] are
implemented as libraries, but are sometimes described as DSLs.

DSLs (and especially standalone DSLs) have several advantages
over domain-specific libraries. First, their syntax can match the no-
tation used by domain experts and their types and semantics can be
designed to model the important domain concepts. Second, their im-
plementations can use analyses and optimizations that take advantage
of domain-specific knowledge and restrictions on the language’s pro-
gramming model. Third, they often provide a high-level program
model that abstracts away from hardware and operating-system de-
pendencies, providing greater portability. This last point is particularly
relevant to parallel DSLs, such as Diderot, which can support portable
parallel programming across a range of parallel hardware.

There are several recent examples of DSLs targeted at image pro-
cessing, image analysis, and visualization. Scout is a DSL that extends
the data-parallel programming model with shapes — regions of vox-
els in the image data — to accelerate visualization tasks on GPUs [31].
Whereas Diderot is design to compute over continuous tensor fields,
Scout is designed for computations over discrete voxels, such as sten-
cil algorithms. Halide is a DSL for pixel-based image processing (e.g.
computational photography), with a novel mechanism for separating
the definition of what is to be computed from the schedule that speci-
fies how to compute it [39]. Halide demonstrates that high-level DSLs
can both make programming easier and deliver high performance, but
it addresses a different application domain from Diderot. Vivaldi [17]
is a recent DSL that supports parallel volume-rendering applications
on heterogeneous systems. It has some support for differential opera-
tors, but it does not support the full range of higher-order field oper-
ations that Diderot provides. Another recent project is ViSlang [40],
which is a system for developing and integrating DSLs for visualiza-
tion. It provides a concise way to define a programmatic interface to
high-performance libraries for scientific visualization. The resulting
DSLs can be integrated to form complete applications.

3 LANGUAGE DESIGN

3.1 Elements of Diderot programs

This section uses Fig. 1 to introduce elements of Diderot. Appendix A
gives a more detailed summary of the language. Datasets visualized
or analyzed in Diderot are discretely sampled arrays of scalar, vector,
or tensor data (Fig. 1(a)). The image type holds such data:

image(2)[] I = image("hand.nrrd");

image(2) says that the image is sampled over a 2D domain, and ten-
sor shape specification [] says that the samples are just scalars. 3-
vectors have shape [3]; 3×3 matrices are [3,3]. Diderot programs
do not typically operate on the image array itself, or address its indi-
vidual elements. Diderot is not designed for uniformly data-parallel
image computations, such as per-pixel thresholding (Fig. 1(b)).

The visualization and analysis methods in the target domain of
Diderot are defined in terms of continuous scalar, vector, or tensor
fields. Accordingly, Diderot programs typically start by defining a
field as the convolution of discretely sampled data with a continuous
reconstruction kernel. For example,

field#1(2)[] F = ctmr � image("hand.nrrd");

defines a C1 continuous (“#1”) scalar (“[]”) field F over a two-
dimensional (“(2)”) world-space, by convolving (“�”) the image data
in hand.nrrd with the Catmull-Rom cubic spline ctmr. Fig. 1(c)
shows a dense sampling of this field.

Diderot programs are decomposed in terms of strands, either au-
tonomous or interacting, which can move throughout fields. Fig. 1(d)
shows a dense sampling of an isocontour of F found via Newton-
Raphson iteration. Isosurface sampling in Fig. 1(d) is computed by:
1 strand isofind (vec2 pos0) {
2 output vec2 x = pos0;
3 int steps = 0;
4 update {
5 // Stop after too many steps or leaving field
6 if (steps > stepsMax || !inside(x, F))
7 die;
8 // one Newton-Raphson iteration
9 vec2 delta = -normalize(∇F(x)) * F(x)/|∇F(x)|;

10 x += delta;
11 if (|delta| < epsilon)
12 stabilize;
13 steps += 1;
14 }
15 }

The heart of a Diderot program is the “update” function, which ex-
presses one iteration of the algorithm. Strands can die to terminate
without saving any output, or stabilize to save the most recently

computed value of the variables tagged with output. Here, output po-
sition x (line 2) is saved when the Newton-Raphson iteration (line 9)
converges to within epsilon (line 12).

For a more complete example of a Diderot program, Fig. 2 lists a
particle-based isocontour sampler (Fig. 1(e)), a simple 2-D version of
the method of Meyer et al. [33], without curvature-dependent density.
At a high level, the program starts with (lines 1-6) the declaration of
global inputs, to be set either on the command-line when compiling
to a stand-alone executable, or via API when compiling to a library.
After creating (line 8) the scalar field in which the isocontour F(x)=0
will be sampled by interacting particles (according to pairwise energy
phi and force phi’), the strand definition includes local strand state
(lines 15-19) and the update method, which proceeds in two stages.

1 input real radius; // particle interaction radius
2 input real epsilon; // convergence criterion
3 input int res; // initial grid sampling resolution
4 input real isoval; // isovalue
5 input real xmin; input real xmax; // sampling extent
6 input real ymin; input real ymax;
7 real limit = radius/7; // limit on motion
8 field#1(2)[] F = ctmr � image("hand.nrrd") - isoval;
9 // inter-particle energy, and its derivative

10 function real phi(real x) =
11 (1 - |x|/radius)ˆ4 if (|x| < radius) else 0.0;
12 function real phi’(real x) =
13 -(4/radius)*(1 - |x|/radius)ˆ3 if |x| < radius else 0.0;
14 strand point (vec2 pos0) {
15 output vec2 pos = pos0; // particle position
16 vec2 delta = [0,0]; // change in position
17 bool foundIso = false; // initial isocontour search done
18 real hh = 1; // line search step size
19 int iter = 0; // iteration count
20 update {
21 iter += 1;
22 if (!foundIso) {
23 if (iter > 10 || !inside(x, F))
24 die;
25 // Newton-Raphson
26 delta = -normalize(∇F(pos)) * F(pos)/|∇F(pos)|;
27 pos += delta;
28 if (|delta| < epsilon*radius) {
29 foundIso = true;
30 }
31 } else { // we have foundIso
32 real energy=0; vec2 force=[0,0]; int ncount = 0;
33 foreach (point P in sphere(radius)) {
34 ncount += 1;
35 vec2 r_ij = pos - P.pos;
36 energy += phi(|r_ij|);
37 force -= normalize(r_ij)*phi’(|r_ij|);
38 }
39 vec2 norm = -normalize(∇F(pos));
40 if (ncount <= 1 && iter % 10 == 0) {
41 vec2 npos = pos + 0.2*radius*[norm[1],-norm[0]];
42 new point(npos);
43 }
44 // project force onto tangent plane
45 force -= norm⊗norm•force;
46 if (|force| > 0) { // take gradient descent step
47 delta = hh*force;
48 if (|delta| > limit) { // enforce speed limit
49 hh *= limit/|delta|;
50 delta = hh*force;
51 }
52 vec2 posLast = pos;
53 pos += delta;
54 // take Newton-Raphson steps back to surface
55 pos -= normalize(∇F(pos)) * F(pos)/|∇F(pos)|;
56 pos -= normalize(∇F(pos)) * F(pos)/|∇F(pos)|;
57 delta = pos - posLast; // record change in this iter
58 real energyNew = 0;
59 foreach (point P in sphere(radius))
60 energyNew += phi(|pos - P.pos|);
61 // Line search with backtracking
62 if (energyNew > energy - 0.3*delta•force) {
63 hh *= 0.5; // backtrack
64 pos = posLast;
65 } else {
66 hh *= 1.1; // bigger step next time
67 }
68 }
69 }
70 }
71 }
72 global{
73 real motion = mean{ |P.delta|/radius | P in point.all };
74 if (motion < epsilon)
75 stabilize;
76 }
77 initially { point([lerp(xmin, xmax, 0, ui, res-1),
78 lerp(ymin, ymax, 0, vi, res-1)])
79 | vi in 0..(res-1), ui in 0..(res-1) };

Fig. 2. Complete Diderot program for particle-based isocontour sam-
pling of scalar field F at isovalue isoval, producing Fig. 1(e).

First, while not foundIso, particles move towards the isocontour,
keeping only those that stay in the field domain and converge within
10 iterations. Second, particles query their radius neighborhood to
determine current energy and force (lines 33-38) due to nearby parti-
cles. If the particle has less than two neighbors, occasionally a new
particle will created nearby to fill in the gap. The force from neigh-
bors is projected to the tangent plane (line 45) and the particle position
is updated and re-projected onto the isocontour (lines 55, 56). The
new location is assessed by computing the new energy (lines 59, 60)
as part of a backtracking line search (line 62) [3]: the energy should
have gone down by an amount roughly predicted by the force, or else
we backtrack and try again on the next iteration (line 64).

In addition to the code executed in parallel by strands, Diderot pro-
grams may also have global code that executes between iterations, to
monitor the state of computation. In this example, lines 73-75 find av-
erage motion of all the strands, and terminate when the particle system
has stabilized. The final part of the program is the initialization (line
77) of particles on a coarse grid covering the image domain.

3.2 Design rationale
The design of Diderot is motivated by a desire to speed the devel-
opment and refinement of new image analysis and visualization al-
gorithms, as evaluated on real-world datasets. Diderot addresses this
motivation with two design goals, which are reflected in the two major
facets of its design: ease of programming and parallel performance.

The ease of Diderot programming is fostered by notational and
structural aspects of the language. The mathematical notation we write
on whiteboards should work in programs, so Diderot supports tensor
fields as computational values, and uses Unicode to idiomatically ex-
press mathematical operations1. At a structural level, computation in
Diderot is organized into strands according to the structure of the al-
gorithm output. The output may be an image (in the case of volume
rendering), or a set of polylines (for streamlines), or simply a point set
(for particle systems). For these examples, the Diderot program states
the work required of each strand to produce one rendered pixel, one
streamline, or one particle, respectively. This increases the flexibility
of Diderot relative to languages that structure parallelism around the
input data domain (pixels or voxels).

The second goal is to efficiently execute Diderot programs by using
modern parallel hardware, such as GPUs. Diderot’s execution model
attempts to achieve expressiveness while avoiding features that would
be difficult to map onto parallel hardware, or that would force pro-
grammers to worry about parallel programming challenges like data
races, synchronization, and locality. We have therefore based the se-
mantics of Diderot on a simple deterministic parallel programming
model, described in Sec. 3.5. This model fits the iterative structure of
typical scientific visualization algorithms, while allowing some flexi-
bility in how the model is mapped to different hardware targets.

3.3 Computing with tensors
Diderot strives to mimic the “direct” or coordinate-free notation for
vector and tensor expressions commonly used in continuum mechan-
ics [27]. This motivates using u ⊗ v for the tensor product, instead
of something like “u vˆT”, which depends on recognizing u and v
as N-by-1 column vectors, and which does not generalize to higher-
order tensors. Expressing computations in a coordinate-free way tends
to clarify mathematical intent. The direct notation encouraged by
Diderot also fosters dimensionally general code. For example, to turn
Fig. 2 into a program to sample isosurfaces in three dimensions, the
only changes required are replacing vec2 and field#1(2)[] with
vec3 and field#1(3)[], respectively, and adding a dimension to
the strand initialization (line 72).

3.4 Reconstructing and computing with fields
Fields are created by convolving (notated with �) data on regularly
sampled grids with continuous reconstruction kernels. Diderot cur-
rently knows a variety of kernels that differ in their continuity and

1Unicode character entry is a possible concern, but the range of practical
solutions is expanding: http://en.wikipedia.org/wiki/Unicode input.

http://en.wikipedia.org/wiki/Unicode_input

support (how many samples along each axis are needed in convolu-
tion). Besides the ctmr Catmull-Rom C1 cubic spline (4-sample sup-
port) used in Fig. 1, other possible kernels include C0 linear interpo-
lation tent (2 samples), C2 cubic B-spline bspln3 (4 samples), and
a C4 piecewise hexic kernel c4hexic (6 samples) that accurately re-
constructs cubic polynomials (a 4th-degree error filter or 4EF in the
terminology of [36]).

Reconstruction of fields in Diderot is by separable convolution; the
same kernel is convolved with each image data axis. For example,
the convolution F =V �h of image data V [i, j] with s-sample support
kernel h is evaluated at image-space location (x1,x2) with

F(x1,x2) = ∑
i, j

V [i, j]h(x1− i)h(x2− j); (1)

ni = bxic ⇒ αi = xi−ni ∈ [0,1)⇒ (2)

F(x1,x2) =
s/2

∑
i, j=1−s/2

V [n1 + i,n2 + j]h(α1− i)h(α2− j). (3)

The statement (1) of separable convolution typical in image processing
and computer graphics [35] shows how the continuity order of field F
is the same as that of reconstruction kernel h, and that partial deriva-
tives ∂F/∂xi are reconstructed by convolving with kernel derivatives
h′ on one axis. Diderot uses (3) to limit the convolution to the kernel
support. A field F in Diderot is defined over world-space and evaluated
with F(p) at world-space position vector p. The field implementation
includes the homogeneous coordinate matrix M, transforming index-
space location ~x to world-space ~p, to represent the image orientation
learned from the image data file. Field evaluation F(p) first computes
~x = M−1~p (the inverse M−1 is pre-computed once) before applying
(3). Further details of the convolution implementation are in [16].

Diderot supports differential and arithmetic operators on fields in
a mathematically idiomatic way. Evaluation of the field derivative
∇F(x) correctly returns the gradient in world space, according to the
covariant transform of the index-space partial derivatives ∂F/∂xi. The
derivative of a field G of order-n tensors (n > 0) is field ∇⊗G of order-
(n+1) tensors. A compile-time type error results from differentiating
a field beyond its continuity order, like the (second derivative) Hessian
∇⊗∇F of a C1 scalar field field#1(3)[] F.

While thinking mathematically about visualization algorithms on
fields, it is natural for programmers to consider expressions like f =
u•v, with the understanding that variables u, v, and f could stand for
constant values, or fields, or some mix of both. Diderot syntax sup-
ports this convention. As defined in Sec. A.10, arithmetic operators
like addition, subtraction, scalar multiplication ∗, and inner product •
can work on a mix of tensors and tensor fields. Two fields arising from
image data with different orientations and resolutions may be added
without restriction. Furthermore, as described in Sec. 5.2, differen-
tial operators like gradient ∇, Jacobian ∇⊗, curl ∇×, and divergence
∇• may be applied to such arithmetically constructed fields, and the
Diderot compiler determines how to compute their evaluation.

3.5 Bulk-Synchronous Parallel Strand Execution
The bulk-synchronous parallel (BSP) programming model of Va-
lient [49, 44] provides the basis of Diderot’s execution semantics, il-
lustrated in Fig. 3. All active strands execute in parallel execution
steps called super-steps, each with two phases: a strand update phase
and an optional global computation phase. First, each active strand
executes its update method once, to update its local state, includ-
ing output variables. Strands do not directly communicate, but they
may learn the state of nearby strands according to their position in
world space, as used in the particle system code in Fig. 2. A strand
makes a spatial query to get an iterable sequence of all strands within
some world-space radius, providing (read-only) access to their state at
the beginning of the super-step. This requires maintaining two copies
of strand state, but we can optimize away the extra storage in many
cases. Diderot is not intended for applications in which all pairs of
strands need to directly communicate, and of the possible mechanisms
for limiting strand communication we choose spatial proximity. The

die

execution
step

strands

update

idle

read

spawn

global computation

global computation

strand state

newstabilize

Fig. 3. The Diderot bulk synchronous parallel (BSP) execution model
alternates between strand updates and global reductions.

assumption is that each strand is responsible for analyzing or visual-
izing some local region of the data (as with particle systems), so any
communication required between strands can likely be expressed in
terms of region (or strand) neighborhoods.

Second, the global phase computes reductions over strands (such
as finding average or extremal values of strand variables) to update
global variables, or to terminate program execution by stabilizing all
strands. At the start of the next super-step, strands created by new start
executing, and all strands can read (but not write) values of globals
set in the preceding global phase. Each strand is idle after it finishes
executing its update method until the end of the strand update phase.
Stable strands are idle for the entirety of their update. Dead strands are
also idle during update, but do not produce any output. The program
executes until all strands are either stable or dead. The BSP model
is deterministic because the order of strand scheduling does not affect
the computation. In practice, non-determinism may arise from the
non-associativity of floating-point arithmetic in global reductions, but
for debugging purposes this can be avoided at some performance cost.

3.6 Programs as libraries
One drawback of DSLs is their lack of infrastructure for I/O, graphics,
networking, or other services required of complete applications. Such
functionality requires significant implementation effort and may dilute
the domain-specific focus of the language. One solution is to embed
the DSL in a general-purpose host language, so the embedded DSL can
use all the features of the host language. Delite takes this approach, for
example [15, 10]. We did not embed Diderot because we did not want
to commit to a single host language, and be constrained by its syntax
and type system. Supporting idiomatic expression of mathematical
operators required Unicode, and field properties like continuity order
and tensor shape are not readily encoded in other languages.

To address the infrastructure problem, we compile Diderot pro-
grams to libraries with a C-language API. This allows programmers
to develop applications in any language that can call C code. The API
includes functions for setting inputs, reading outputs, and controlling
program execution. A Diderot program can either be run to completion
or for some number of super-steps. Snapshots of program state can
be accessed to create animations of program execution. The compiler
can additionally generate stand-alone executables (with command-line
options to set inputs), which link against the C library created by the
compiler. Appendix B demonstrates the API generated from a pro-
gram for isocontour sampling (Fig. 1(d)).

4 DEMONSTRATIONS AND RESULTS

4.1 Volume rendering
Volume rendering of scalar datasets is a well-studied research area,
with many efficient and configurable tools [11, 38, 34, 41]. We show
volume renderings here that go well beyond the capabilities of existing

tools, by exploiting Diderot’s ability to operate on continuous fields as
first-class mathematical objects. The quantities volume rendered in
these examples (scalar field Canny edges, flow field vortex structure
indicators, and tensor invariants) are all defined with a few lines of
Diderot code, and the subsequent volume rendering code remains the
same. Even though the code works from an underlying scalar-, vector-,
or tensor-valued volume dataset, the rendering is always of a scalar
field analytically derived from the data (not pre-computed on a grid)
and numerically evaluated at each sample along each ray. The Diderot
language permits a clean separation between the code that implements
the core visualization algorithm, and the code that defines the quantity
of interest to visualize.

1 input real isoval; input real thick;
2 input vec3 camEye; input vec3 camAt; input vec3 camUp;
3 input real camFOV; input int iresU; input int iresV;
4 input real refStep; input real rayStep;
5 input vec3 lightVsp; // light direction in view-space
6 input real phongKa; input real phongKd;
7
8 field#4(3)[] V = bspln5 � image("ctscan-prefilt.nrrd");
9 field#4(3)[] F = V - isoval; // isosurface is {x|F(x)=0}

10 function real mask(vec3 x) = 1.0;
11 field#0(1)[3] cmap = tent � clamp(image("bow.nrrd"));
12 function vec3 color(vec3 x) = cmap(V(x));
13 function real alpha(real v, real g)
14 = clamp(0, 1, 1.3*(1 - |v|/(g*thick)));
15
16 real camDist = |camAt - camEye|;
17 vec3 camN = normalize(camAt - camEye); // away
18 vec3 camU = normalize(camN × camUp); // right
19 vec3 camV = camU × camN; // up
20 real camVmax = tan(camFOV*π/360)*camDist;
21 real camUmax = camVmax*iresU/iresV;
22 vec3 light = transpose([camU,camV,camN])•normalize(lightVsp);
23
24 strand raycast (int ui, int vi) {
25 real rayU = lerp(-camUmax, camUmax, -0.5, ui, iresU-0.5);
26 real rayV = lerp(camVmax, -camVmax, -0.5, vi, iresV-0.5);
27 real rayN = camNear;
28 vec3 rayVec = camN + (rayU*camU + rayV*camV)/camDist;
29 real transp = 1;
30 vec3 rgb = [0, 0, 0];
31 output vec4 rgba = [0, 0, 0, 0];
32 update {
33 vec3 x = camEye + rayN*rayVec;
34 if (inside(x,V)) {
35 real val = F(x);
36 vec3 grad = -∇F(x);
37 real a = alpha(val, |grad|)*mask(x);
38 if (a > 0) {
39 a = 1 - pow(1-a, rayStep*|rayVec|/refStep);
40 real depth = lerp(1.1, 0.7, camNear, rayN, camFar);
41 real shade = max(0, normalize(grad)•light);
42 rgb += transp*a*depth*(phongKa + phongKd*shade)*color(x);
43 transp *= 1 - a;
44 }
45 }
46 if (transp < 0.01) { // early ray termination
47 transp = 0;
48 stabilize;
49 }
50 if (rayN > camFar) stabilize;
51 rayN = rayN + rayStep;
52 }
53 stabilize {
54 real a = 1 - transp; // undo pre-multiplied alpha
55 if (a > 0) rgba = [rgb[0]/a, rgb[1]/a, rgb[2]/a, a];
56 }
57 }
58 initially [raycast(ui, vi) | vi in 0..iresV-1, ui in 0..iresU-1];

Fig. 4. Complete Diderot program for volume rendering an approximate
isocontour at isovalue isoval with thickness thick in scalar field F.

Fig. 4 shows the complete listing of a Diderot program for ray-cast
volume rendering. While the code is mostly self-explanatory, lines 8
to 14 merit further explanation, since they will be changed in subse-
quent examples. The CT scan volume dataset ctscan.nrrd used on
line 8, and all subsequent volume datasets used in these volume ren-
dering examples, are pre-filtered so that convolution with the 5-order
B-spline bspln5 (piece-wise quintic, C4 continuous, 6-sample sup-
port) interpolates [48]. The scalar field in which to render the zero
isocontour is (line 9) F=V-isoval. The per-sample color and opacity
in the ray-casting are defined in terms of the cmap colormap (1-D field
of 3-vectors, line 11) and the alpha bivariate opacity function (13)
based on Levoy [30].

Fig. 5 shows a CT scan of a Cebus apella (capuchin) head, for
which an image analysis goal involves recovering the bone surface.
Diderot can visualize the bone surface by volume rendering. The left

 V=1300

 V=2150

 V=3000

3300

1200

!"(|"V|) • "V/|"V| = 0

Fig. 5. Volume rendering of isocontours (left) and Canny edges (right)
from a CT scan of Cebus apella (capuchin) head.

side of Fig. 5 shows isocontours rendered with the code in Fig. 4, at
three isovalues that span the range of CT values for bone. At too low
an isovalue (V=1300) some of the soft tissue is visible, but at a higher
isovalue (V=2150) suitable for most of the skull, holes incorrectly ap-
pear at the frontal sinuses (above and between the eye sockets). The
tooth surface is cleanest at yet another isovalue (V=3000). The col-
ormap is approximately isoluminant.

A classical principle of edge detection proposed by Canny is that
edge points are where the image gradient magnitude is maximized
with respect to motion along the (normalized) gradient direction [14].
Algorithmically, Canny edge detection also involves finding optimal
smoothing, and hysteresis thresholding of edge components based on
gradient magnitude. These are outside the scope of Diderot, but we
can still capture Canny’s principle of edge localization. In scalar
volume data field V (x), we seek locations where |∇V (x)| is maxi-
mized with respect to motion along ∇V (x)/|∇V (x)|, which means that
∇|∇V (x)| (the gradient of quantity being maximized) is orthogonal to
∇V (x)/|∇V (x)|. In Diderot, we write:

9 field#2(3)[] F = -∇(|∇V|) • ∇V/|∇V|;
10 function real mask(vec3 x) =

1.0 if (|∇V(x)| > gmin) else 0.0;

in place of lines 9 and 10 in Fig. 4. Strong edges (as opposed to min-
ima of gradient magnitude) are selected by user-specified threshold
gmin. The right of Fig. 5 shows the results, with no other changes
to the code of Fig. 4. Note that the Canny edges are shaded cor-
rectly, based ∇F. The isocontour shading also used ∇F (line 41), but
now ∇F is some expression involving third derivatives of the volume
data V, which the Diderot compiler generates automatically, based on
its understanding of vector calculus. The smoothness apparent in the
bone surface is thanks to the C4 continuous reconstruction of the data
field#4(3)[] V (line 8). The Canny function field#2(3)[] F
is C2 continuous (based the second derivative of V), and its gradient
∇F will be C1 continuous. With no prior segmentation or parameter
tuning, Fig. 5 correctly shows the skull surface over the frontal si-
nuses, as well as the very thin bones of the orbital walls (within the eye
socket), neither of which are visible with any isovalue reliably higher
than all the soft tissue. Diderot has thus greatly simplified the suc-
cessful visual exploration (by volume rendering) of a first-principles
approach (Canny edges) to bone surface extraction in real-world three-
dimensional image data.

Flow visualization is another domain of scientific visualization that
involves mathematically sophisticated consideration of vector fields
and their derivatives. For example, one statement of vortex structure

(a) Flow magnitude |v|= 0.8 and |v|= 0.4.

(b) Surfaces around extremum lines: v
|v| ·

∇|v|
|∇|v|| =±0.99.

�(J)

(c) Normalized helicity v
|v| · ∇×v

|∇×v| =±0.99.

Fig. 6. Volume rendering of isocontours of vector field attributes, colored
by the discriminant of the Jacobian ∆(J).

identifies them with locations where the direction of flow v
|v| is aligned

with that of its curl ∇×v
|∇×v| [20, 37]. This is equivalent to saying that the

normalized helicity v
|v| ·

∇×v
|∇×v| is at an extremum (near +1 or -1). We

show here how volume rendering in Diderot can directly visualize the
mathematical elements of this type of flow field analysis.

The renderings in Fig. 6 use a single time-step from a Navier-Stokes
simulation of flow (from left to right) past a square rod, creating a train
of vortices [13, 51]. The Fig. 4 volume rendering code is re-used, but
with V defining a 3-D vector field:

8 field#4(3)[3] V = bspln5 � image("flow.nrrd");

and with a diverging colormap of the Jacobian discriminant (in lieu of
lines 11 and 12):

field#3(3)[3,3] J = ∇×V;
field#3(3)[] A = -trace(J);
field#3(3)[] B = (trace(J)*trace(J) - trace(J•J))/2;
field#3(3)[] C = -det(J);
field#3(3)[] Q = (A*A/3.0 - B)/3.0;
field#3(3)[] R = (-2.0*A*A*A/27.0 + A*B/3.0 - C)/2.0;
field#3(3)[] D = R*R - Q*Q*Q; // the discriminant
field#0(1)[3] dmap = clamp(tent�image("diverg.nrrd"));
function vec3 color(vec3 x) = dmap(D(x));

After forming a field of the Jacobian ∇×v, fields A, B, and C are the co-
efficients of the characteristic polynomial p(λ) = λ 3+Aλ 2+Bλ +C,
and the discriminant field D is the pre-cursor to analytically solving
p(λ) = 0 for λ . There are two complex-conjugate eigenvalues (indi-
cating rotational flow) when the discriminant D(x) is negative [37].

The only substantial difference in how the various renderings in
Fig. 6 were computed was in the statement of the derived scalar field F
being rendered. Fig. 6(a) shows simple isosurfaces of flow magnitude,

(a) Lines of degeneracy in a stress tensor field revealed by volume rendering
isosurfaces of tensor mode +1 (yellow) and -1 (blue).

(b) Volume rendering a diffusion tensor field of the human brain at FA=0.3.

Fig. 7. Volume rendering stress tensor (a) and diffusion tensor (b) fields.

created by using
9 field#4(3)[] F=|V|;

Fig. 6(b) visualizes isosurfaces (at ±0.99) of a quantity related to the
extremal lines of the field: places where the vector magnitude is ex-
tremal with respect to motion perpendicular to the vector, or, where
∇|v| is aligned with v [46, 37]:

9 field#3(3)[] F = (V/|V|) • (∇|V|/|(∇|V|)|);

Fig. 6(c) visualizes isosurfaces (at±0.99) of normalized helicity, using
9 field#3(3)[] F = (V/|V|) • (∇×V/|∇×V|);

Note that in all cases, the Diderot compiler is determining how to an-
alytically differentiate field F so that it can be shaded correctly. These
renderings use two-sided lighting:

41 real shade = |normalize(grad)•light|;
It should be emphasized that although a scalar field is being vol-
ume rendered to make these images, there is no pre-computed scalar
dataset: the scalar field is defined symbolically in terms of a vector
field (reconstructed by convolution), and the Diderot compiler gen-
erates the necessary instructions to probe the scalar field at each ray
sample position during rendering.

Two examples of volume rendering tensor fields further demon-
strate the simplicity of creating mathematically and computationally
sophisticated visualization tools with few lines of Diderot code. Re-
search in tensor field topology often investigates lines of degeneracy:
locations in a tensor field where two of the tensor eigenvalues are
equal, or equivalently, places where the tensor mode is ±1 [19, 47].

The mode of tensor D is defined as

mode(D) = 3
√

6det(D̃/|D̃|) (4)

D̃ = D− tr(D)I/3 (5)

|D̃|=
√

tr(D̃D̃T). (6)

This can be directly expressed in Diderot, starting with a stress tensor
dataset (simulating a double point load), then defining fields of tensor
deviatoric E= D̃ and mode F:

field#4(3)[3,3] V = bspln5 � image("stress.nrrd");
field#4(3)[3,3] E = V - trace(V)*identity[3]/3;
field#4(3)[] F = 3*sqrt(6)*det(E/|E|);

Fig. 7(a) shows F rendered with the same code as in Fig. 6, with yellow
for mode = +1 and blue for mode = −1. The rendering shows the
lines of degeneracy (the ridge and valley lines of tensor mode) [47].

Finally, Fig. 7(b) shows a volume rendering of half of a human brain
diffusion tensor scan, showing an isosurface of fractional anisotropy
(FA), which quantifies the amount of directional organization in the
white matter as captured by the single tensor model of diffusion.
Though FA is often defined in terms of eigenvalues, its original defini-
tion [5] involved just the tensor D and its deviatoric D̃ (5)

FA =

√
3
2
|D̃|
|D| . (7)

Diderot permits directly translating this definition into working code:
field#4(3)[3,3] V = bspln5 � image("dti.nrrd");
field#4(3)[3,3] E = V - trace(V)*identity[3]/3;
field#4(3)[] F = sqrt(3.0/2.0)*|E|/|V| - isoval;

The RGB coloring is provided by the traditional map of the principal
eigenvector, modulated by linear anisotropy [52]. In Diderot:

function vec3 color(vec3 x) {
real{3} ev = evals(V(x));
vec3 dir = evecs(V(x)){0};
real CL = (ev{0} - ev{1})/ev{0};
return [|dir[0]|,|dir[1]|,|dir[2]|]*CL;

}

Note also that in both tensor invariant (mode or FA) volume render-
ings, the Diderot compiler did the “heavy lifting” of analytically de-
riving and numerically computing the spatial derivatives of the tensor
invariants, expanded in terms of the spatial derivatives of the individ-
ual tensor components. Manually deriving and implementing these
expressions is tedious and error-prone [47].

4.2 LIC and Streamlines

Fig. 8 lists a Diderot program for computing a line-integral convo-
lution (LIC) visualization of a two-dimensional vector field, seen as
the background image of Fig. 10. The program is a straight-forward
implementation of the original LIC method [12], in which samples
of a noise texture (field R) are averaged along a streamline through
normalized vector field nV (line 6). The integration continues for
stepNum steps or until the streamline leaves the domain. Field evalu-
ations falling outside the domain are gracefully handled by the border
functions clamp (line 5) and wrap (line 6). Upon stabilization, the
output color value is computed by modulating the LIC contrast by the
velocity at the start point x0 (line 23) and colormapping by vorticity
∇×V(x0) (line 24). Over-all image contrast is clamped to encompass
roughly two standard deviations (line 25) in the convolution result,
where stdv is computed (line 5) as the expected standard deviation of
the average of stepNum samples in the unit standard deviation noise
field. Two strands are used for each output pixel; one upstream (line 32
si=0 and line 9 h=-h0) and one downstream (si=1 and h=h0).

To emphasize (along with the particle system in Fig. 1(e)) that
Diderot programs can generate geometry as well as values on grids,
the program in Fig. 9 computes the geometry of the streamlines over-
layed on the LIC result in Fig. 10. For each seedpoint x0 in text file

1 input int sizeX; input int sizeY; // LIC image size
2 input real h0; // step size of integration
3 input int stepNum; // steps taken up or downstream
4 real stdv = sqrt(1.0/stepNum);
5 field#1(2)[2] V = bspln3 � clamp(image("flow.nrrd"));
6 field#1(2)[2] nV = normalize(V);
7 field#0(2)[] R = tent � wrap(image("rand.nrrd"));
8 field#0(1)[3] cmap = tent � clamp(image("cmap.nrrd"));
9 strand LIC (vec2 x0, real sign) {

10 real h = sign*h0;
11 vec2 x = x0;
12 int step = 0;
13 real sum = R(x0)/2; // initialize convolution sum
14 output vec3 rgb = [0,0,0];
15 update {
16 x += h*nV(x + 0.5*h*nV(x)); // Midpoint method
17 if (step == stepNum || !inside(x, V))
18 stabilize;
19 sum += R(x);
20 step += 1;
21 }
22 stabilize {
23 sum *= sqrt(|V(x0)|)/stepNum;
24 rgb = cmap(∇×V(x0)) // colormap of vorticity
25 * clamp(0,1, lerp(0,1, -stdv, sum, stdv));
26 }
27 }
28 initially [LIC([lerp(0, 6.78, -0.5, xi, sizeX-0.5),
29 lerp(0, 3.72, -0.5, yi, sizeY-0.5)],
30 lerp(-1, 1, 0, si, 1))
31 | yi in 0..(sizeY-1), xi in 0..(sizeX-1),
32 si in 0..1];

Fig. 8. Complete Diderot program for LIC, creating the background
raster image in Fig. 10.

seeds.txt (line 1), sline(x0) outputs a sequence of vec2 stream-
line vertex positions, starting with x0 (line 9). As they are computed
by midpoint method integration (line 12), points x along the stream-
line are appended to the output path (line 13). A small arrowhead,
proportional to V(x) (line 18), is added in the stabilize method to
the downstream end of the streamline polyline; this is converted upon
rendering (not shown) to a filled triangle. In the program output, all
polyline vertices are concatenated into a single array, and a second
array stores the start indices for each streamline. The polylines were
post-processed to produce the vector graphics seen in Fig. 10.

5 IMPLEMENTATION

5.1 Strand communication and global reduction
Strands may communicate with neighboring strands according to their
proximity in world space. We accelerate the spatial queries with a k-d
tree [6, 24], a binary tree that at each internal node splits world space
along one axis. The split axis alternates (for two dimensions) or cycles
(three dimensions) through the axes as one descends the tree. Strands
are assigned to nodes in the tree by comparing their coordinate on the
splitting axis to the splitting value.

Spatial queries pose an implementation challenge for parallel tar-
gets. To account for strand motion, and the creation of new strands,
the tree must be maintained at the end of each super-step, prior to ex-
ecuting the next strand updates. Maintaining the spatial data structure
must be parallelized to avoid sequential bottlenecks. We use a parallel
version of the median-of-medians algorithm [7] to select the splitting
value for the world-space coordinate at each level of the tree. The GPU
presents additional challenges for the dynamic memory management
needed to support strand motion and creation. OpenCL requires that
GPU memory be preallocated on the host side before running the GPU
computation, but an execution step might exceed the allocation. For
example, if the host side preallocated memory for 30 strands, used to
store the states of 20 active or stable strands, then the current execution
step cannot successfully create more then 10 new strands. Fortunately,
Diderot’s execution model preserves the starting state of strands in a
given execution step, so we can abort the step if we run out of memory
and restart it with a larger preallocation.

1 vec2{} x0s = load("seeds.txt"); // list of seedpoints
2 real h = 0.02;
3 int stepNum = 200;
4 field#1(2)[2] V = bspln3 � image("flow.nrrd");
5 real arrow = 0.1; // scale from |V(x)| to arrow size
6 strand sline(vec2 x0) {
7 int step = 0;
8 vec2 x = x0;
9 output vec2{} p = {x0}; // start streamline at seed

10 update {
11 if (inside(x, V)) {
12 x += h*V(x + 0.5*h*V(x)); // Midpoint method
13 p = p @ x; // append new point to streamline
14 }
15 step += 1;
16 if (step == stepNum) {
17 // finish streamline with triangular arrow head
18 vec2 a = arrow*V(x); // length of arrow head
19 vec2 b = 0.4*[-a[1],a[0]]; // perpendicular to a
20 p = p@(x-b); p = p@(x+a); p = p@(x+b); p = p@x;
21 stabilize;
22 }
23 }
24 }
25 initially [sline(i, x0s{i}) | i in 0..length(x0s)-1];

Fig. 9. Diderot code for streamlines (with arrowheads) in a vector field.
This computed the streamlines drawn over the LIC result in Fig. 10.

r⇥V

Fig. 10. Two-dimensional turbulent flow visualization computed in
Diderot, with a LIC image (Fig. 8) underneath streamlines (Fig. 9). In
the LIC image, contrast indicates velocity, and color indicates vorticity.

Strands may indirectly share information via global reductions (the
second part of the super-step), which can modify the global variables
that strands may read in their subsequent update. We accelerate the
reductions by regrouping them to avoid needlessly repeating work.
For example, if a mean and product reduction can be performed to-
gether then the Diderot compiler will group them into the same execu-
tion phase rather than executing them individually. The regrouping is
straightforward to implement in the sequential version; the main chal-
lenge is fusing reduction phases to reduce overhead. For the parallel
version, we integrate the reductions into the barrier synchronization
that ends the super-step.

5.2 EIN Intermediate Representation
Relative to [16], Diderot has a new intermediate representation (IR),
called EIN. EIN is inspired by Einstein index notation or the summa-
tion convention, a concise notation for tensor calculus [23]. Others
have previously extended Einstein notation, based on close study of
its ambiguities and limitations [26, 1, 4, 18, 43, 45, 21]. Part of the
ambiguity is related to implicit summation. EIN uses explicit summa-
tion, and adds representation of operations such as convolution, image
indexing, kernel differentiation, and trigonometry.

The EIN IR is embedded Diderot’s static single assignment (SSA)
representation, with EIN assignment nodes of the form

t = λparams〈e〉α (args)

Number of threads

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p
ee

d
u
p

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
perfect speedup

vr−lite

illust−vr

lic2d

ridge3d

vr−lite (PLDI’12)

illust−vr (PLDI’12)

lic2d (PLDI’12)

ridge3d (PLDI’12)

Fig. 11. A comparison of parallel speedup on the benchmark programs
from [16] on a 16-core Intel Xeon E5-2687W.

where t is the variable being assigned, λparams〈e〉α is an EIN oper-
ator with formal parameters params and body 〈e〉α , and args are the
arguments to the EIN operator. Once a surface language operation is
mapped to an EIN operator, the compiler can handle the computations
generically, by systematically applying EIN operators to one another,
normalizing, and optimizing. The compiler can then break the EIN
operator apart into simple and direct scalar and vector operations to
generate code.

A family of operations (like tensor plus tensor, field plus tensor,
field plus field) that previously [16] required several type-specific op-
erations and case analysis can be captured with a single EIN operator.
All tensor operators are lifted to tensor fields as consequence of their
expression in EIN. The previous compiler generated code for a fixed
set of tensor types, and a fixed set of operations between them, which
impeded adding new operators to Diderot. EIN represents tensors and
tensor fields of arbitrary shape. The new compiler simplifies compli-
cated and large EIN operators into operations on scalars and vectors. It
needs only to generate code for scalar and vector operations, avoiding
the explosion of shape-specific operators in the compiler.

The compiler uses a rewrite system to optimize and lower the EIN
representation. The Diderot programmer can then define fields with
expressions like ∇(F •G) without worrying about how to expand and
simplify this in terms of derivatives of F and G, and their individual
scalar components. Rewrite rules include derivative identities such as
∇(F +G) =⇒ (∇F +∇G), the product rule ∇(f ∗g) =⇒ g∇ f + f ∇g,
the quotient rule, and the chain rule. EIN also includes the per-
mutation tensor Ei jk and the Kronecker delta δi j. The compiler
understands that Ei jk∂ jk =⇒ 0, where ∂ jk indicates partial deriva-
tives along axes j and k, which produces well-known identities like
∇×∇ϕ =⇒ 0 and ∇• (∇×F) =⇒ 0. The compiler also understands
that Ei jkEilm =⇒ δ jlδkm − δ jmδlk and δi jTj =⇒ Ti, which produces
identities such as (a× b)× c =⇒ b(a • c)− a(b • c). Being able to
automatically find identities as part of optimization provides the bene-
fits of domain-specific optimizations without having to encode a lot of
domain-specific knowledge in the compiler.

6 PERFORMANCE EVALUATION

While space does not permit an in-depth performance analysis, we
revisit previously published benchmarks [16] to demonstrate signifi-
cant performance improvements provided by the new compiler. These

Diderot (PLDI ’12) Diderot (this paper)
Program Teem Seq. 1P 6P 12P 16P Seq. 1P 6P 12P 16P OpenCL
vr-lite 19.93 8.63 9.51 2.57 2.94 3.20 7.46 7.52 1.36 0.74 0.59 1.43
illust-vr 86.16 44.30 48.55 8.65 5.61 5.19 38.12 38.28 7.00 3.79 2.88 4.32
lic2d 3.03 1.59 1.64 0.33 0.19 0.16 1.56 1.51 0.28 0.15 0.12 1.09
ridge3d 7.92 5.96 6.36 1.12 0.62 0.56 5.22 5.26 0.93 0.50 0.39 1.77

Table 1. Average performance results over 10 runs (times in seconds).

results address our second design goal (Sec. 3.2) of combining good
parallel performance with our high-level programming model.

Our test machine is a dual Intel Xeon E5-2687W system (16 cores)
running Ubuntu 12.04 Linux. The OpenCL measurements were taken
on the same system using a NVIDIA Tesla K20c with NVIDIA’s
CUDA 6.0 driver. All code was compiled with optimization level -O3.
For each benchmark, we report the average wall-clock time for the
computational part from 10 runs on a lightly-loaded machine.

The benchmarks presented here are from our earlier work, and were
originally chosen to represent typical workloads:
• textbf: a simple volume renderer with Phong shading, like Fig. 4.

• illust-vr: A more complex volume renderer with curvature-based
illustrative rendering [29], including tensor calculations that are
awkward to express in other languages.

• lic2d: Line integral convolution visualization of a synthetic 2D vec-
tor field [12], like in Fig. 8 but simpler.

• ridge3d: An initial uniform distribution of points within a por-
tion of CT scan of a lung is moved iteratively towards the cen-
ters of blood vessels, using Newton optimization to compute ridge
lines [22], requiring eigenvalues and eigenvectors of the Hessian.
The most striking improvement of our current system over our pre-

viously reported work is in the performance scaling on SMP hard-
ware. Fig. 11 shows the speedup curves for our benchmarks using
both the current version of Diderot (solid lines) and the prevoius ver-
sion (dashed lines). We now get excellent speedup for all four bench-
marks at 16 cores, whereas the previous version scales poorly and does
significantly worse on three benchmarks. Furthermore, the baseline
performance of the previous version is worse ,often significantly, so
we are seeing better scaling even when compared to a better baseline.

Tbl. 1 presents selected numeric results from our experiments. For
each benchmark, we report several sets of numbers: the execution time
for the Teem version (hand-coded C), sequential and parallel (1, 6, 12,
and 16-core) execution times for the PLDI’12 version of the system,
sequential and parallel (1, 6, 12, and 16-core) execution times for the
current version of the system, and execution times for the OpenCL
version of the program. The sequential performance of our compiler
has improved — 15% faster for three of the four benchmarks.

The performance of the OpenCL target is benchmark dependent.
For a program like illust-vr, which has significant arithmetic intensity,
the GPU is comparable to 9-core performance. On the other hand, it
performs much worse on lic2d, which is more memory-bound. Ap-
pendix C compares Diderot with hand-written OpenCL code for two
kinds of volume rendering. These limited results suggest that non-
trivial programs are more easily expressed in Diderot than in OpenCL,
with a performance penalty that is acceptable when the coding skill
and time of researchers is the actual bottleneck. Nonetheless, there is
room for significant improvement in our OpenCL implementation.

7 DISCUSSION AND ONGOING WORK

This paper presents a significant step towards creating a powerful and
portable parallel DSL for scientific visualization and image analysis.
In particular, supporting fields as a fundamental abstraction in Diderot
frees programmers from worrying about the computational details of
convolving on the underlying sampling grid and the mathematical de-
tails of differentiating arithmetically constructed fields.

The utility of Diderot would be enhanced by further work on its
mathematical basis. We hope to expand the kinds of fields it can han-
dle. Sec. 4.1, for example, used the same volume rendering code
to visualize a variety of fields (all based on convolution on regular

grids). The same rendering code could in principle be re-used to visu-
alize fields arising from higher-order basis functions on unstructured
meshes, point clouds with radial basis function, or analytic closed-
form expressions. More ambitious would be a way of defining the
update method not with imperative program statements, but with a
declarative statement of mathematical intent. The volume rendering
code of Fig. 4 would be simplified by stating its goal as solving a
volume rendering integral, if the sampling and numerical integration
schemes could be automatically generated by the compiler. Diderot
cannot currently warn the user, for example, when too large a ray sam-
pling distance will cause undersampling artifacts.

Diderot will also benefit from work in less mathematical areas.
Most important are improvements to our implementation on GPUs.
These include developing a better scheduler for strands on the GPU;
our current scheduler does well with irregular workloads, but its base-
line performance is not very good. We are also looking to implement
a virtual memory strategy akin to that already developed for GPU-
based rendering [25]; such a scheme will allow us to scale to data sets
that are larger than the available memory on GPUs. Further work on
code generation may lead to other GPU performance improvements.
Our compiler currently generates OpenCL code, but generating CUDA
code should allow better performance on NVIDIA hardware. Target-
ing OpenCL or CUDA, instead of assembly code or low-level GPU
code (e.g., SPIR or PTX), greatly simplifies our Diderot compiler im-
plementation, while benefiting from the optimizing compilers special-
ized for the target hardware. Finally, automatically generating GUIs
for the input and output variables of a Diderot program would acceler-
ate the exploration of the parameter space of different algorithms.

The source code for the Diderot compiler is available2 and a release
is upcoming, which will merge features currently split across different
branches. Scripts for regenerating representative images from freely
available datasets will be made available from our web page.

ACKNOWLEDGMENTS

We gratefully acknowledge the anonymous reviewers for their con-
structive comments. We also thank the providers of data seen in the
figures. Fig. 1: University of Utah SCI group, NIH NIGMS grant
P41GM103545. Fig. 5: Callum Ross, University of Chicago. Fig. 6:
Resampling by Tino Weinkauf of Navier-Stokes simulation by S. Ca-
marri, M.-V. Salvetti, M. Buffoni, and A. Iollo [28]. Fig. 7(a): Xavier
Tricoche, Purdue University. Fig. 7(b): Centre for Functional MRI of
the Brain, John Radcliffe Hospital, Oxford University. Fig. 10: Wolf-
gang Kollmann, UC Davis. Portions of this research were supported
by National Science Foundation award CCF-1446412. The views and
conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of these organizations or the
U.S. Government.

REFERENCES

[1] K. Ahlander. Einstein summation for multi-dimensional arrays. Comput-
ers and Mathematics with Applications, 44:1007–1017, Oct.–Nov. 2002.

[2] J. Ahrens, B. Geveci, and C. Law. Paraview: An end-user tool for large
data visualization. In Visualization Handbook, pages 717–731. Academic
Press, Inc., Orlando, FL, USA, 2005.

[3] L. Armijo. Minimization of functions having Lipschitz continuous first
partial derivatives. Pac. J. Math., 16(1):1–3, 1966.

2 http://diderot-language.cs.uchicago.edu

http://www.sci.utah.edu/cibc-software/ctdata.html
http://www.sci.utah.edu/cibc-software/ctdata.html
http://pondside.uchicago.edu/oba/faculty/ross_c.html
http://people.mpi-inf.mpg.de/~weinkauf/notes/squarecylinder.html
http://people.mpi-inf.mpg.de/~weinkauf/notes/squarecylinder.html
http://faculty.engineering.ucdavis.edu/kollmann/
http://faculty.engineering.ucdavis.edu/kollmann/
http://diderot-language.cs.uchicago.edu

[4] A. H. Barr. The Einstein summation notation: Introduction and exten-
sions. In ACM SIGGRAPH 1989 Course Notes #30: Topics in Physically
Based Modeling, pages J1–J12, 1989.

[5] P. J. Basser and C. Pierpaoli. Microstructural and physiological features
of tissues elucidated by quantitative-diffusion-tensor MRI. J. Mag. Res.,
B, 111:209–219, 1996.

[6] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, Sept. 1975.

[7] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time
bounds for selection. J. Comp. Syst. Sci., 7(4):448–461, Aug. 1973.

[8] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization.
IEEE Trans. Vis. Comp. Graph. (Proc. InfoVis), 15(6):1121–1128, 2009.

[9] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents.
IEEE Trans. Vis. Comp. Graph. (Proc. InfoVis), 17(12):2301–2309, 2011.

[10] K. J. Brown, A. K. Sujeeth, H. Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun. A heterogeneous parallel framework for domain-specific
languages. In PACT ’11, Oct. 2011.

[11] S. Bruckner and E. Gröller. Volumeshop: An interactive system for direct
volume illustration. In Proc. IEEE Visualization, pages 671–678, Oct.
2005.

[12] B. Cabral and L. C. Leedom. Imaging vector fields using line integral
convolution. In Proc. SIGGRAPH 93, pages 263–270, Aug. 1993.

[13] S. Camarri, M.-V. Salvetti, M. Buffoni, and A. Iollo. Simulation of the
three-dimensional flow around a square cylinder between parallel walls
at moderate Reynolds numbers. In XVII Congresso di Meccanica Teorica
ed Applicata, 2005.

[14] J. Canny. A computational approach to edge detection. IEEE Trans.
Pattern Anal. Mach. Intell., 8(6):679–714, 1986.

[15] H. Chafi, Z. Devito, A. Moors, T. Rompf, A. K. Sujeeth, P. Hanrahan,
M. Odersky, and K. Olukotun. Language virtualization for heterogeneous
parallel computing. In OOPSLA ’10, pages 835–847, Oct. 2010. Part of
the Onward! 2010 Conference.

[16] C. Chiw, G. Kindlmann, J. Reppy, L. Samuels, and N. Seltzer. Diderot:
A parallel DSL for image analysis and visualization. In PLDI ’12, pages
111–120. ACM, June 2012.

[17] H. Choi, W. Choi, T. M. Quan, D. G. C. Hildebrand, H. Pfister, and W.-
K. Jeong. Vivaldi: A domain-specific language for volume processing
and visualization on distributed heterogeneous systems. IEEE Trans. Vis.
Comp. Graph. (Proc. SciVis), 20(12):2407–2416, Dec. 2014.

[18] T. L. Chow. Mathematical Methods for Physicists : A Concise Introduc-
tion. Cambridge University Press, Cambridge, 2000.

[19] J. C. Criscione, J. D. Humphrey, A. S. Douglas, and W. C. Hunter. An
invariant basis for natural strain which yields orthogonal stress response
terms in isotropic hyperelasticity. J. Mech. Phys. Sol., 48:2445–2465,
2000.

[20] D. Degani, Y. Levy, and A. Seginer. Graphical visualization of vortical
flows by means of helicity. AIAA Journal, 28:1347–1352, Aug. 1990.

[21] K. Dullemond and K. Peeters. Introduction to Tensor Calculus. Kees
Dullemond and Kasper Peeters, 1991.

[22] D. Eberly. Ridges in Image and Data Analysis. Kluwer Academic Pub-
lishers, Boston, MA, 1996.

[23] A. Einstein. The foundation of the general theory of relativity. In A. J.
Kox, M. J. Klein, and R. Schulmann, editors, The Collected papers of
Albert Einstein, volume 6, pages 146–200. Princeton University Press,
Princeton NJ, 1996.

[24] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding
best matches in logarithmic expected time. ACM Trans. Math. Softw.,
3(3):209–226, Sept. 1977.

[25] M. Hadwiger, J. Beyer, W.-K. Jeong, and H. Pfister. Interactive volume
exploration of petascale microscopy data streams using a visualization-
driven virtual memory approach. IEEE Trans. Vis. Comp. Graph. (Proc.
SciVis), 18(12):2285–2294, 2012.

[26] A. Hartono, A. Sibiryakov, M. Nooijen, G. Baumgartner, D. E. Bern-
holdt, S. Hirata, C.-C. Lam, R. M. Pitzer, J.Ramanuja, and P.Sadayappan.
Automated operation minimization of tensor contraction expressions in
electronic structure calculations. Proc. ICCS 2005 5th International Con-
ference on Computational Science, pages 155–164, 2005.

[27] G. A. Holzapfel. Nonlinear Solid Mechanics. John Wiley and Sons, Ltd,
England, 2000.

[28] International CFD database. http://cfd.cineca.it/. Fur-
ther info at https://people.mpi-inf.mpg.de/˜weinkauf/
notes/squarecylinder.html.

[29] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Möller. Curvature-based

transfer functions for direct volume rendering: Methods and applications.
In Proc. IEEE Visualization, pages 67–74, Oct. 2003.

[30] M. Levoy. Display of surfaces from volume data. IEEE Computer Graph-
ics & Applications, 8(5):29–37, 1988.

[31] P. McCormick, J. Inman, J. Ahrens, J. Mohd-Yusof, G. Roth, and S. Cum-
mins. Scout: A data-parallel programming language for graphics proces-
sors. J. Par. Comp., 33:648–662, Nov. 2007.

[32] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop
domain-specific languages. ACM Comput. Surv., 37(4):316–344, Dec.
2005.

[33] M. D. Meyer, P. Georgel, and R. T. Whitaker. Robust particle systems
for curvature dependent sampling of implicit surfaces. In SMI ’05, pages
124–133, June 2005.

[34] J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. Hinrichs. Voreen:
A Rapid-Prototyping Environment for Ray-Casting-Based Volume Visu-
alizations. IEEE Comp. Graph. App., 29(6):6–13, 2009.

[35] D. P. Mitchell and A. N. Netravali. Reconstruction filters in computer
graphics. Computer Graphics (SIGGRAPH), 22(4):221–228, Aug. 1988.

[36] T. Möller, R. Machiraju, K. Mueller, and R. Yagel. Evaluation and design
of filters using a Taylor series expansion. IEEE Trans. Vis. Comp. Graph.,
3(2):184–199, 1997.

[37] R. Peikert and M. Roth. The ”parallel vectors” operator - a vector field
visualization primitive. In Proc. IEEE Visualization ’99, pages 263–270,
1999.

[38] J. Plate, T. Holtkaemper, and B. Froehlich. A flexible multi-volume
shader framework for arbitrarily intersecting multi-resolution datasets.
IEEE Trans. Vis. Comp. Graph. (Proc. Vis.), 13(6):1584–1591, Nov.
2007.

[39] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and
F. Durand. Decoupling algorithms from schedules for easy optimization
of image processing pipelines. ACM Trans. Graph. (Proc. SIGGRAPH),
31(4):32:1–32:12, July 2012.

[40] P. Rautek, S. Bruckner, M. E. Gröller, and M. Hadwiger. ViSlang: A sys-
tem for interpreted domain-specific languages for scientific visualization.
IEEE Trans. Vis. Comp. Graph. (Proc. SciVis), 20(12):2388–2396, Dec.
2014.

[41] C. Rieder, S. Palmer, F. Link, and H. K. Hahn. A shader framework for
rapid prototyping of GPU-based volume rendering. Computer Graphics
Forum (Proc. EuroVis’11), 30(3):1031–1040, June 2011.

[42] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit: An
Object Oriented Approach to 3D Graphics. Kitware, Inc., Clifton Park,
New York, 3rd edition, 2004.

[43] J. Simmonds. A Brief on Tensor Analysis. Springer-Verlag, New York,
1982.

[44] D. Skillicorn, J. M. Hill, and W. McColl. Questions and answers about
BSP. Scientific Programming, 6(3):249–274, 1997.

[45] I. S. Sokolinkoff. Tensor Analysis. John Wiley and Sons, New York,
1960.

[46] C.-K. Tang and G. Medioni. Extremal feature extraction from 3-D vector
and noisy scalar fields. In Proc. Visualization ’98, pages 95–102, Oct.
1998.

[47] X. Tricoche, G. Kindlmann, and C.-F. Westin. Invariant crease lines
for topological and structural analysis of tensor fields. IEEE Trans. Vis.
Comp. Graph. (Proc. Vis.), 14(6):1627–1634, Nov.–Dec. 2008.

[48] M. Unser, A. Aldroubi, and M. Eden. B-Spline signal processing: Part II–
Efficient design and applications. IEEE Trans. Sig. Proc., 41(2):834–848,
Feb. 1993.

[49] L. G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8):103–111, Aug. 1990.

[50] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: an
annotated bibliography. SIGPLAN Not., 35(6):26–36, June 2000.

[51] W. von Funck, T. Weinkauf, H. Theisel, and H.-P. Seidel. Smoke surfaces:
An interactive flow visualization technique inspired by real-world flow
experiments. IEEE Trans. Vis. Comp. Graph. (Proc. Vis.), 14(6):1396–
1403, Nov.–Dec. 2008.

[52] C.-F. Westin, S. E. Maier, B. Khidhir, P. Everett, F. A. Jolesz, and R. Kiki-
nis. Image processing for diffusion tensor magnetic resonance imaging.
In Proc. MICCAI, volume 1679 of LNCS, pages 441–452, 1999.

[53] T. S. Yoo, editor. Insight into Images: Principles and Practice for Seg-
mentation, Registration, and Image Analysis. A K Peters/CRC Press,
2004.

http://cfd.cineca.it/
https://people.mpi-inf.mpg.de/~weinkauf/notes/squarecylinder.html
https://people.mpi-inf.mpg.de/~weinkauf/notes/squarecylinder.html

A THE DIDEROT LANGUAGE

This appendix provides a concise, but complete tour of the Diderot
language.

A.1 Types
Diderot is a strongly-typed language with a novel, dependent-type sys-
tem that statically tracks important mathematical properties of the pro-
gram. The following table summarizes the types of the language:

τ ::= bool booleans
int integers
string strings
tensor[σ] tensor with shape σ

S reference to a strand S
τ{d} known-size sequence (1≤ d)
τ{} unknown/dynamic length sequence
image(d)[σ] dimension-d image (1≤ d ≤ 3)
kernel#k reconstruction kernel of continuity

k (0≤ k)
field#k(d)[σ] tensor field with continuity k, di-

mension d, and shape σ

σ ::= d1, . . . , dn tensor shape (0≤ d)

Diderot also defines synonyms for common tensor shapes, such as
real for tensor[] and vec3 for tensor[3].

A.2 Top-level definitions
A Diderot program consists of a sequence of top-level definitions. At
a minimum, the top-level definitions include a strand definition and
a global initially block, but they may also include function defi-
nitions, global variable declarations, input declarations, and a global
update block.

A.3 Global variables
Global variables, which include input variables, provide a mechanism
to communicate information to all of the strands in the program. They
are typically declared and initialized at the beginning of the program
and may be updated in the global update block. Globals may be an-
notated as input variables, in which case they can be initialized from
outside the Diderot program (either from the command-line in a stan-
dalone executable or using a library call).

A.4 Functions
Diderot allows the definition of user-defined functions at top level.
There are two syntactic forms. For a function whose definition can be
given as an expression, we write
function type Name (parameters) = expression;

whereas if the function implementation requires local variables and/or
statements, we write
function type Name (parameters) {
statements

}

A.5 Strand definitions
Every Diderot program has a single strand definition, which has the
form
strand Name (parameters) {

state variables
update { statements }
stabilize { statements }

}

The (optional) strand parameters are used to pass instance-specific
data to the strand initialization. The strand state variables hold the
strand’s state; some variables may annotated as output variables,
which means that there final values are included in the result of the
program. The strand state variables are initialized with the strand is

created and are modified by the strand methods. Strands have one or
two methods: the required update method that is invoked at each step
and an optional stabilize method that is invoked when the strand
stabilizes.

A.6 Global update block

Diderot programs may optionally include a global update block that
is run at the end of each execution step. The code in this block may
perform global reductions over the strands in the program and is also
allowed to update global variables.

A.7 Global initially block

The global initially block is used to create the initial set of strands.
Diderot uses a comprehension syntax, similar those of Haskell or
Python, to define the initial set of strands. For example, the follow-
ing code specifies a grid of initial ray positions:
initially [

RayCast(ui, vi)
| vi in 0 .. imgResV-1, ui in 0 .. imgResU-1

];

When the strands are initialized as a grid, it implies that the strands will
all stabilize (i.e., they do not die). The grid structure is then preserved
in the output.

Diderot also allows one to specify an initial collection of strands by
using “{ }” as the brackets around the comprehension (instead of “[
]”). In this case, the program’s output will be a one-dimension array
of values for each output variable in a stable strand.

A.8 Statements

Statements in Diderot are a subset of C statements and include local-
variable definitions, assignments, conditionals, and blocks that define
a nested scope. In addition, there are several statement forms that are
special to Diderot. The new statement is used to dynamically create
a new strand. The stabilize and die statements terminate the call-
ing strand; in the case of stabilize, the strand’s state is preserved
and may contribute to the remaining computation and to the result.
Lastly, Diderot has a looping statement form (foreach) that provides
iteration over dynamic sequences.

A.9 Expressions

Diderot’s expression syntax is fairly standard, with infix binary op-
erators, unary operators, function application (including field appli-
cation), etc. Conditional expressions follow the Python syntax. We
use Unicode characters for operators and literals to support tradi-
tional mathematical notation. Tensor values can be constructed from
lower-order tensors using the notation [e1, . . . , en]. We also provide
the special tensor literals identity[d] for the d×d identity matrix,
zeros[σ] for the zero tensor of the given shape, and nan[σ] for the
tensor of the given shape initialized to NaN.

A.10 Operators and built-in functions

Diderot provides a rich set of unary and binary operations, as well as
various built-in functions. These can be be overloaded (e.g., + works
on integers, tensors, fields, etc.) and polymorphic (e.g., + operates
on tensors of any shape). A major use of overloading is to support
lifted versions of tensor operations. We first present the overloaded
operators and functions, along with the types at which they are defined.
In this description, we use the type synonyms real, vec2, and vec3.

A.10.1 Overloaded operators and functions

Comparison operators: <,<=,>,>=

int * int → bool
real * real → bool

Equality operators: ==, !=

int * int → bool
real * real → bool
bool * bool → bool
string * string → string

Minimum and maximum (including reductions): min, max

int * int → int
real * real → real
real{} → real

Unary negation: -

int → int
tensor[σ] → tensor[σ]
field#k(d)[σ] → field#k(d)[σ]

Logical negation: not

bool → bool

Addition operators: +, -

int * int → int
tensor[σ] * tensor[σ] → tensor[σ]
field#k(d)[σ] * field#k(d)[σ] → field#k(d)[σ]
tensor[σ] * field#k(d)[σ] → field#k(d)[σ]
field#k(d)[σ] * tensor[σ] → field#k(d)[σ]

Scalar multiplication: *

int * int → int
real * real → real
real * tensor[σ] → tensor[σ]
tensor[σ] * real → tensor[σ]
real * field#k(d)[σ] → field#k(d)[σ]
tensor[σ] * field#k(d)[] -> field#k(d)[σ]
field#k(d)[] * tensor[σ] -> field#k(d)[σ]
field#k(d)[σ] * real → field#k(d)[σ]
field#k(d)[] * field#k(d)[] → field#k(d)[]
field#k(d)[] * field#k(d)[σ] → field#k(d)[σ]
field#k(d)[σ] * field#k(d)[] → field#k(d)[σ]

Scalar division: /

int * int → int
real * real → real
tensor[σ] * real → real
field#k(d)[σ] * real → field#k(d)[σ]
field#k(d)[] * field#k(d)[] → field#k(d)[]
field#k(d)[σ] * field#k(d)[] → field#k(d)[σ]

Scalar exponentiation: ˆ

real * int → real
real * real → real

Inner product: •
tensor[σ1,d] * tensor[d,σ2] → tensor[σ1,σ2]
tensor[σ1,d′] * field#k(d)[d′,σ2]
→ field#k(d)[σ1,σ2]

field#k(d)[σ1,d′] * tensor[d′,σ2]
→ field#k(d)[σ1,σ2]

field#k(d)[σ1,d′] * field#k(d)[d′,σ2]
→ field#k(d)[σ1,σ2]

Double-dot product: :

tensor[σ1,d1,d2] * tensor[d1,d2,σ2]
→ tensor[σ1,σ2]

tensor[σ1,d1,d2] * field#k(d)[d1,d2,σ2]
→ field#k(d)[σ1,σ2]

field#k(d)[σ1,d1,d2] * tensor[d1,d2,σ2]
→ field#k(d)[σ1,σ2]

field#k(d)[σ1,d1,d2] * field#k(d)[d1,d2,σ2]
→ field#k(d)[σ1,σ2]

Cross product: ×

vec2 * vec2 → real
vec3 * vec3 → vec3
field#k(d)[2] * field#k(d)[2] → real
field#k(d)[3] * field#k(d)[3] → field#k(d)[3]

Outer product: ⊗

tensor[d1] * tensor[d2] → tensor[d1,d2]
field#k(d)[d1] * field#k(d)[d2] → field#k(d)[d1,d2]

Convolution: ~

image(d)[σ] * kernel#k → field#k(d)[σ]
kernel#k * image(d)[σ] → field#k(d)[σ]

Gradient: ∇

field#k+1(d)[] → field#k(d)[d]

Tensor derivative: ∇⊗

field#k+1(d)[σ] → field#k(d)[sh,d]

Curl: ∇×

field#k+1(2)[2] → field#k(2)[]
field#k+1(3)[3] → field#k(3)[3]

Divergence: ∇•

field#k+1(d_1)[sh,d2] → field#k(d)

Norm: |·|

tensor[σ] → real
field#k(d)[σ] → field#k(d)[]

Normalization: normalize

tensor[σ] → tensor[σ]
field#k(d_1)[σ] → field#k(d_1)[σ]

Trace of a matrix: trace

tensor[d,d] → real
field#k(d_1)[sh,d2,d2] → field#k(d_1)[σ]

Transpose of a matrix: transpose

tensor[d1,d2] → tensor[d2,d1]
field#k(d)[d1,d2] → field#k(d)[d2,d1]

Eigenvalues: evals

tensor[2,2] → real{2}
tensor[3,3] → real{3}

Eigenvectors: evecs

tensor[2,2] → vec2{2}
tensor[3,3] → vec3{3}

Determinate: det

tensor[2,2] → real
tensor[3,3] → real
field#k(d)[2,2] → field#k(d)[]
field#k(d)[3,3] → field#k(d)[]

Clamping: clamp

real * real * real → real
tensor[d] * tensor[d] * tensor[d] → tensor[d]

Lerp: lerp

tensor[σ] * tensor[σ] * real → tensor[σ]
tensor[σ] * tensor[σ] * real * real * real
→ tensor[σ]

Trigonometry: arccos, arcsin, cos, sin

real → real
field#k(d)[] → field#k(d)[]

Sequence concatenation: @

τ * τ{} → τ{}
τ{} * τ → τ{}
τ{} * τ{} → τ{}

A.10.2 Other operators and functions

Pointwise vector multiplication: modulate

tensor[d] * tensor[d] → tensor[d]

Testing the domain of a field: inside

tensor[d] * field#k(d)[σ] → bool

Sequence length: length

τ{} → int

Boolean-sequence reductions: all, exists

bool{} → bool

Scalar-sequence reductions: mean, product, sum, variance

real{} → real

Loading images: image

string → image(d)[σ]

Image dimensions: load

image(d)[σ] → int{d}

Loading sequences: load

string → τ[σ]{}

B EMBEDDING DIDEROT INTO AN APPLICATION

In addition to compiling to a self-contained executable, a Diderot pro-
gram may be compiled to a C library, which allows Diderot programs
to be embedded in any language that supports calling C code. We
demonstrate this here with the program that produced the dense iso-
contour sampling seen in Fig. 1(d). The complete Diderot code is
below.
1 field#1(2)[] F = c4hexic � image("hand.nrrd");
2 input vec2 cent;
3 input real hght;
4 input int size0;
5 input int size1;
6 input int stepsMax = 10;
7 input real epsilon = 0.0001;
8 real wdth = hght*size0/size1;
9 vec2 spc = [wdth/(size0-1), hght/(size1-1)];

10 vec2 dir0 = [spc[0], 0.0];
11 vec2 dir1 = [0.0, spc[1]];
12 vec2 orig = cent - (dir0*(size0-1) + dir1*(size1-1))/2;
13
14 strand isofind(vec2 pos0) {
15 output vec2 pos = pos0;
16 int steps = 0;
17 update {
18 // Stop after too many steps or leaving field
19 if (steps > stepsMax || !inside(pos, F))
20 die;
21 // one Newton-Raphson iteration
22 vec2 delta = -normalize(∇F(pos)) * F(pos)/|∇F(pos)|;
23 pos += delta;
24 if (|delta| < epsilon)
25 stabilize;
26 steps += 1;
27 }
28 }
29
30 initially { isofind(orig + ui*dir0 + vi*dir1) |
31 vi in 0..(size1-1), ui in 0..(size0-1) };

The stand-alone executable produced by compiling the program
above can be run with:

isofind -cent 61 40.7 -hght 53 -size0 50 -size1 30 -n 8

The executable has command-line options to set all the input
variables; values must be given for those lacking defaults. Inputs
stepsMax and epsilon do have defaults (lines 6 and 7). The
final “-n 8” option sets the number of cores for parallel execution,
available when the program was compiled for the SMP target.

When compiling a Diderot program to a library, the compiler pro-
duces functions for initializing the program, setting the values of input
variables, stepping through program execution, and getting program
output. To avoid symbol name clashes, one specifies to the Diderot
compiler a string, for example “ISO_”, which the compiler will use
as a prefix for all symbols in the generated C library API. The C code
below calls into the API generated from the Diderot program above,
to replicate the effects of the invoking the stand-alone executable.
1 int main (int argc, const char **argv) {
2 . . .
3
4 // Create execution context
5 ISO_World_t *wrld = ISO_New ();
6
7 #ifdef ISO_TARGET_PARALLEL
8 ISO_SetNumWorkers (wrld, 8);
9 #endif

10
11 // initialize the Diderot program
12 ISO_Init (wrld);
13
14 // initialize inputs
15 float cent[2] = {61, 40.7};
16 ISO_InVarSet_cent (wrld, cent);
17 ISO_InVarSet_hght (wrld, 53);
18 ISO_InVarSet_size0 (wrld, 50);
19 ISO_InVarSet_size1 (wrld, 30);

20
21 // global initialization
22 ISO_Initially (wrld);
23
24 // wrapper for output data
25 Nrrd *nout = nrrdNew();
26
27 // Main loop
28 while (ISO_NumActive(wrld) > 0) {
29 // get and render the state
30 if (ISO_Snapshot_pos(wrld, nout)) {
31 · · · handle error · · ·
32 }
33 Draw (nout);
34 // step the computation
35 ISO_Run (wrld, 1);
36 }
37
38 // get and render final state
39 if (ISO_OutputGet_pos(wrld, nout)) {
40 · · · handle error · · ·
41 }
42 Draw (nout);
43
44 // shutdown the world
45 ISO_Shutdown (wrld);
46 . . .
47 }

Lines 4–25 start the Diderot program. Line 5 allocates a new exe-
cution context, called a world. This context contains all runtime state
of the program. Line 8 requests 8 cores for parallel execution, but
only when the program was compiled for the SMP target. Line 12 al-
locates the computational resources needed to support the program’s
execution (such as memory and threads). Lines 15 through 19 initial-
ize those program input variables lacking defaults (the same ones set
via command-line options above). Line 23 initializes the program, in-
cluding allocating the initial set of strands. Line 25 allocates a Nrrd
struct to contain the program output.

The while loop (lines 28–36) runs the program until all of the
strands have stabilized or died. For each iteration of the loop, we
grab (line 30) a snapshot of the program state (the union of all active
and stable strands) and display it (line 33) with some Draw function,
the details of which are not important here. For this program, which
computes a collection of strands (due to the initially { . . . } in
lines 30 and 31 of Diderot code above), the output allocated in nout by
ISO_Snapshot_pos will be a two-dimensional 2–by–N array, where
N is the number of output values, and the (faster) first axis is length 2
because the output variable pos is a vec2. Had this program initial-
ized on grid of strands (with initially [. . .]) the output would
be a higher dimensional array, with one axis for each dimension of the
grid, and an additional axis if the output variable was not real.

Each while loop iteration executes (line 35) one super-step of the
Diderot program. It is also possible to run all strands to completion
(without being able to access snapshots of intermediate state) with
ISO_Run(wrld,0). The while loop terminates when there are zero
active strands (line 28). The final output of the program execution is
grabbed by line 39 and displayed in line 42. The resources allocated
by program initialization and execution are released by line 45.

C COMPARISON WITH HAND-CODED OPENCL
We show here comparisons between Diderot and hand-coded OpenCL
code, for two simple volume renders: a maximum intensity projection
(MIP), and isosurface rendered colormapped by the second derivative.
These examples are somewhat favorable to OpenCL due to their sim-
plicity compared to the previous examples in the paper, but the prop-
erties of the code, and changes required for a more sophisticated algo-
rithm, nonetheless demonstrate benefits of Diderot.

1 // coefficients of piece-wise cubic bspln3
2 __constant float h[4][4] = {
3 { 1.33333f, 2.0f, 1.0f, 0.166667f }, // -2 .. -1
4 { 0.666667f, 0.0f, -1.0f, -0.5f }, // -1 .. 0
5 { 0.666667f, 0.0f, -1.0f, 0.5f }, // 0 .. 1
6 { 1.33333f, -2.0f, 1.0f, -0.166667f }, // 1 .. 2
7 };
8 __constant int hs = 2; // half of support=4
9

10 #define FLOAT4(p) (float4)((p)[0], (p)[1], (p)[2], (p)[3])
11
12 static inline float probeVal (global ushort * volData,
13 int sx, int sy, float4 volPos) {
14 float4 nf, t;
15
16 float4 d = (float4) (h[3][0],h[2][0],h[1][0],h[0][0]);
17 float4 c = (float4) (h[3][1],h[2][1],h[1][1],h[0][1]);
18 float4 b = (float4) (h[3][2],h[2][2],h[1][2],h[0][2]);
19 float4 a = (float4) (h[3][3],h[2][3],h[1][3],h[0][3]);
20
21 float4 f = modf(volPos,&nf);
22 int4 n = convert_int4(nf);
23
24 t = (float4) (f.x + 1, f.x, f.x -1, f.x - 2);
25 float4 hx = d + t * (c + t * (b + t*a));
26 t = (float4) (f.y + 1, f.y, f.y - 1, f.y - 2);
27 float4 hy = d + t * (c + t * (b + t*a));
28 t = (float4) (f.z + 1, f.z, f.z - 1, f.z -2);
29 float4 hz = d + t * (c + t * (b + t*a));
30
31 float vx[4], vy[4]; // 4 == kernel support
32
33 for (int k = 1-hs; k <= hs; k++) { // slowest
34 for (int j = 1-hs; j <= hs; j++) { // medium
35 int index = n.x - 1 + sx*(n.y + j + sy*(n.z + k));
36 float4 v = FLOAT4(volData + index);
37 vx[j+hs-1] = dot(v, hx);
38 }
39 vy[k+hs-1] = dot(FLOAT4(vx),hy);
40 }
41 return dot(FLOAT4(vy), hz);
42 }
43
44 __constant float4 eye =
45 (float4)(-240.538f, 396.133f, 64.6804f, 1.0f);
46 __constant float4 orig =
47 (float4)(-47.5009f, 48.5999f, 71.5282f, 1.0f);
48 __constant float4 du =
49 (float4)(0.170942f, 0.146426f, -0.0851239f, 0.0f);
50 __constant float4 dv =
51 (float4)(0.049961f, 0.0720342f, 0.224239f, 0.0f);
52 __constant float raystep = 0.3f;
53 __constant float lenmax = 130;
54
55 __kernel void kern (global ushort * volData,
56 float16 w2iPos,
57 float16 i2wGrad, // (unused)
58 global int * volSize,
59 int imgSizeU, int imgSizeV,
60 global float * out) {
61 int ui = get_global_id(0), vi = get_global_id(1);
62 int sx = volSize[0];
63 int sy = volSize[1];
64 int sz = volSize[2];
65
66 float4 pos0 = orig + ui*du + vi*dv;
67 float3 raydir = normalize(pos0 - eye).s012;
68 float mip = 0;
69
70 for (float rlen = 0; rlen < lenmax; rlen += raystep) {
71 float4 wpos = pos0 + rlen*raydir;
72 // Transform position from world to index
73 float4 ipos = (float4)(dot(wpos, w2iPos.s0123),
74 dot(wpos, w2iPos.s4567),
75 dot(wpos, w2iPos.s89ab),
76 dot(wpos, w2iPos.scdef));
77 if ((ipos.x > 1) && (ipos.x < sx - 2)
78 && (ipos.y > 1) && (ipos.y < sy - 2)
79 && (ipos.z > 1) && (ipos.z < sz - 2)) {
80 float val = probeVal(volData, sx, sy, ipos);
81 mip = fmax(val, mip);
82 }
83 }
84
85 out[ui + imgSizeU*vi] = mip;
86 }

Above is hand-written OpenCL code for a simple ray-casting maxi-
mum intensity projection volume renderer. The code begins (lines 2-7)
with a hard-coded definition of cubic B-spline kernel, in terms of its

four piecewise cubic segments over [−2,2]. The probeVal function
(lines 12-42) implements convolution-based reconstruction with this
kernel. The evaluation of the B-spline kernel at the grid sample loca-
tions is four-way parallelized in the setting of hx, hy, and hz (lines
25, 27, 29). The Diderot compiler generates the same parallelization
for kernels with support four. After defining simple camera and ray-
casting parameters (lines 44-53), the remainder of the code defines the
computational kernel kern, which computes the maximum intensity
projection for a single ray, indexed by ui and vi. Rays are traversed
in world-space, and converted (lines 73-76) to index space, to deter-
mine (lines 77-79) if the sample location ipos falls within the volume
data, before evaluating the field with probeVal. There are about 400
additional lines of hand-written C driver code (not shown) for compil-
ing and running the kernel, and for saving its output.

1 vec3 eye = [-240.538, 396.133, 64.6804];
2 vec3 orig = [-47.5009, 48.5999, 71.5282];
3 vec3 du = [0.170942, 0.146426, -0.0851239];
4 vec3 dv = [0.049961, 0.0720342, 0.224239];
5 real raystep = 0.3;
6 real lenmax = 130;
7
8 field#2(3)[] F = bspln3 � image ("vfrhand.nrrd");
9 input int imgSizeU;

10 input int imgSizeV;
11
12 strand raycast (int vi, int ui) {
13 vec3 pos0 = orig + ui*du + vi*dv;
14 vec3 raydir = normalize(pos0 - eye);
15 real rlen = 0;
16 output real mip = 0;
17
18 update {
19 vec3 pos = pos0 + rlen*raydir;
20 if (inside(pos, F)) {
21 mip = max(F(pos), mip);
22 }
23 rlen += raystep;
24 if (rlen >= lenmax) {
25 stabilize;
26 }
27 }
28 }
29 initially [raycast(vi, ui) | vi in 0..imgSizeV-1,
30 ui in 0..imgSizeU-1];

Above is the same MIP renderer written in Diderot. The main
difference is that the Diderot code is expressed in terms of world
space, and that the details of convolution are hidden behind “�”
and “F(pos)”. The code for update (lines 12-28) is similar to
the OpenCL code. This is expected: Diderot is something like a
shader language for tensors and fields. However, to change the ker-
nel in Diderot, only the kernel name needs changing on line 8. In
OpenCL, the kernel coefficients would be different, and the details of
the OpenCL probeVal function would be significantly different for a
kernel with smaller or larger support, or higher or lower polynomial
order. The Diderot compiler automatically generates all the necessary
code for convolution in OpenCL, as well as the driver code needed to
compile and execute the computational kernels. Both programs pro-
duce the same rendering, seen in Fig. 12.

Fig. 12. 640×480 maximum intensity projection of right hand of Visible
Human female CT scan.

The Diderot-generated OpenCL code is not has fast as the hand-
written code, although it is more flexible. On the same platform as
used for benchmarking (Sec. 6), the OpenCL code took on average
0.53 seconds to run (excluding compilation and disk I/O), while the
Diderot code took on average 1.46 seconds. As noted in Sec. 6, our
OpenCL implementation does not currently perform as well as might
be hoped; work on it continues. On the other hand, as noted in Sec. 1,
in creating Diderot we are not seeking to optimize execution time so
much as human implementation time, with the long-term goal of as-
sisting the rapid development and application of novel visualization
algorithms.

The next rendering example illustrates this. Below is Diderot code
for a kind of shaded pseudo-isosurface volume rendering. The ren-
dering algorithm was designed to help assess whether an isosurface
coincides with a material edge, considered as the zero-crossing of
the second-directional derivative along the gradient direction. This
is complementary to the Canny edge criterion visualized in Sec. 4.1,
and requires only second (not third) derivatives.

1 vec3 eye = [-240.538, 396.133, 64.6804];
2 vec3 orig = [-47.5009, 48.5999, 71.5282];
3 vec3 du = [0.170942, 0.146426, -0.0851239];
4 vec3 dv = [0.049961, 0.0720342, 0.224239];
5 real raystep = 0.1;
6 real lenmax = 130;
7
8 real valIso = 1440;
9 field#2(3)[] F = bspln3 � image ("vfrhand.nrrd") - valIso;

10 input int imgSizeU;
11 input int imgSizeV;
12 real valTol = 150;
13 real isoThick = 3;
14 vec3 light = normalize([-1,2,-1]);
15 vec3 gray = 0.7*[1,1,1];
16
17 function real atxf (real vv, real gg) {
18 return clamp(0, 1, 1 - |vv|/(gg*isoThick));
19 }
20
21 strand raycast (int vi, int ui) {
22 vec3 pos0 = orig + ui*du + vi*dv;
23 vec3 raydir = normalize(pos0 - eye);
24 real rlen = 0;
25 output vec4 rgba = [0,0,0,0];
26 vec3 rgb = [0,0,0];
27 real transp = 1;
28
29 update {
30 vec3 pos = pos0 + rlen*raydir;
31 if (inside (pos, F) && |F(pos)| <= valTol) {
32 real alpha = atxf(F(pos), |∇F(pos)|);
33 if (alpha > 0) {
34 vec3 norm = -normalize(∇F(pos));
35 real lit = lerp(0, 1, -1, norm•light, 1)ˆ2;
36 real sdd = norm • ∇⊗∇F(pos) • norm/600;
37 vec3 col = lerp(gray, [1.0, 0.0, 0.7], -sdd)
38 if (sdd < 0) else
39 lerp(gray, [0.3, 1.0, 0.3], sdd);
40 rgb += transp*alpha*lit*col;
41 transp *= 1 - alpha;
42 }
43 }
44 rlen += raystep;
45 if (rlen >= lenmax) {
46 stabilize;
47 }
48 }
49 stabilize {
50 real a = 1 - transp;
51 if (a > 0) {
52 rgba = [rgb[0]/a, rgb[1]/a, rgb[2]/a, a];
53 }
54 }
55 }
56 initially [raycast(vi, ui) | vi in 0..imgSizeV-1,
57 ui in 0..imgSizeU-1];

The key lines are 36-39: the Hessian ∇⊗∇F(pos) is con-
tracted (by •) on both sides by the unit-length isosurface nor-
mal norm = -normalize(∇F(pos)) to find the second directional
derivative sdd of F along norm. Depending on the sign of sdd, a
per-sample color col is found by lerping between gray and magenta
(negative) or green (positive). Assuming materials of interest are more
dense than the background, if the isovalue is too low, the isosurface is
outside the material boundary and hence in a region of positive sec-
ond derivative. Conversely, isovalues too high will put the isosurface
within a negative second derivative.

This is precisely what is seen in the resulting rendering, in Fig. 13.
The isosurface is outside the dense cortical bone surface in the mid-

Fig. 13. 640×480 rendering of isosurface at 1440 of right hand of Visible
Human female CT scan, colored by second directional derivative (green:
positive, gray: zero, magenta: negative).

dle of the phalanges, but inside the thinner bone surface at the joints.
Four lines 36-39 of code make an otherwise generic isosurface volume
rendering into an informative illustration of the mathematical proper-
ties of isosurfaces and the bone surface. The Diderot programmer is
unburdened by the complexity associated with correctly computing
∇⊗∇F(pos) in world space. For this more complex rendering task,
however, the performance hit from Diderot (relative to hand-written
OpenCL code) is smaller than in the MIP example. The hand-written
OpenCL code took on average 1.84 seconds, while the Diderot code
took on average 3.30 seconds.

The OpenCL code is below. The computational kernel (starting
line 194) is about as legible as the Diderot update code, though
the double contraction of the Hessian (lines 232-234) is not as clear.
Also, whereas the Diderot compiler can easily optimize repetitions
of “∇F(pos)” with common subexpression elimination, the OpenCL
programmer is more likely to call functions like probeGrad once (line
224) and save the results in a suggestively named variable. Given
the mathematical limitations of OpenCL, is to hard to correctly im-
plement probeGrad (lines 44-86) for reconstructing the world-space
gradient, and probeHess (lines 88-166) for the Hessian, especially
the conversion of the index-space Hessian to world-space (lines 144-
163). Even with these utility functions written for scalar data, however,
the OpenCL programmer is no closer to having code for evaluating
∇(|∇F |) let alone ∇(∇(|∇F |)•∇F/|∇F |) used for rendering Canny
edges, which Diderot generated automatically. Additional OpenCL
code would be needed for doing convolution-based reconstruction of
vector- and tensor-valued data. Handling derivatives in vector and ten-
sor fields (including conversions from index to world space) would be
challenging even for the most meticulous programmer. We suggest
that this is exactly the kind of tedious error-prone work that should be
automated by the compiler of a high-level language like Diderot.

1 // coefficients of piece-wise cubic bspln3
2 __constant float h[4][4] = {
3 { 1.33333f, 2.0f, 1.0f, 0.166667f }, // -2 .. -1
4 { 0.666667f, 0.0f, -1.0f, -0.5f }, // -1 .. 0
5 { 0.666667f, 0.0f, -1.0f, 0.5f }, // 0 .. 1
6 { 1.33333f, -2.0f, 1.0f, -0.166667f }, // 1 .. 2
7 };
8 __constant int hs = 2; // half of support=4
9

10 #define FLOAT4(p) (float4)((p)[0], (p)[1], (p)[2], (p)[3])
11
12 static inline float probeVal (global ushort * volData,
13 int sx, int sy, float4 volPos) {
14 float4 nf, t;
15
16 float4 d = (float4) (h[3][0],h[2][0],h[1][0],h[0][0]);
17 float4 c = (float4) (h[3][1],h[2][1],h[1][1],h[0][1]);
18 float4 b = (float4) (h[3][2],h[2][2],h[1][2],h[0][2]);
19 float4 a = (float4) (h[3][3],h[2][3],h[1][3],h[0][3]);
20
21 float4 f = modf(volPos,&nf);
22 int4 n = convert_int4(nf);
23
24 t = (float4) (f.x + 1, f.x, f.x -1, f.x - 2);

25 float4 hx = d + t * (c + t * (b + t*a));
26 t = (float4) (f.y + 1, f.y, f.y - 1, f.y - 2);
27 float4 hy = d + t * (c + t * (b + t*a));
28 t = (float4) (f.z + 1, f.z, f.z - 1, f.z -2);
29 float4 hz = d + t * (c + t * (b + t*a));
30
31 float vx[4], vy[4]; // 4 == kernel support
32
33 for (int k = 1-hs; k <= hs; k++) { // slowest
34 for (int j = 1-hs; j <= hs; j++) { // medium
35 int index = n.x - 1 + sx*(n.y + j + sy*(n.z + k));
36 float4 v = FLOAT4(volData + index);
37 vx[j+hs-1] = dot(v, hx);
38 }
39 vy[k+hs-1] = dot(FLOAT4(vx),hy);
40 }
41 return dot(FLOAT4(vy), hz);
42 }
43
44 static inline float3 probeGrad (float16 i2wGrad,
45 global ushort * volData,
46 int sx, int sy, float4 volPos) {
47 float4 nf, t;
48
49 float4 d = (float4) (h[3][0],h[2][0],h[1][0],h[0][0]);
50 float4 c = (float4) (h[3][1],h[2][1],h[1][1],h[0][1]);
51 float4 b = (float4) (h[3][2],h[2][2],h[1][2],h[0][2]);
52 float4 a = (float4) (h[3][3],h[2][3],h[1][3],h[0][3]);
53
54 float4 f = modf(volPos,&nf);
55 int4 n = convert_int4(nf);
56
57 t = (float4) (f.x + 1, f.x, f.x -1, f.x - 2);
58 float4 h0x = d + t*(c + t*(b + t*a));
59 float4 h1x = c + t*(2*b + t*3*a);
60 t = (float4) (f.y + 1, f.y, f.y - 1, f.y - 2);
61 float4 h0y = d + t*(c + t*(b + t*a));
62 float4 h1y = c + t*(2*b + t*3*a);
63 t = (float4) (f.z + 1, f.z, f.z - 1, f.z -2);
64 float4 h0z = d + t*(c + t*(b + t*a));
65 float4 h1z = c + t*(2*b + t*3*a);
66
67 float v0x[4], v1x[4], v0x0y[4], v1x0y[4], v0x1y[4];
68
69 for (int k = 1-hs; k <= hs; k++) { // slowest
70 for (int j = 1-hs; j <= hs; j++) { // medium
71 int index = n.x - 1 + sx*(n.y + j + sy*(n.z + k));
72 float4 v = FLOAT4(volData + index);
73 v0x[j+hs-1] = dot(v, h0x);
74 v1x[j+hs-1] = dot(v, h1x);
75 }
76 v0x0y[k+hs-1] = dot(FLOAT4(v0x), h0y);
77 v0x1y[k+hs-1] = dot(FLOAT4(v0x), h1y);
78 v1x0y[k+hs-1] = dot(FLOAT4(v1x), h0y);
79 }
80 float3 igrad = (float3)(dot(FLOAT4(v1x0y), h0z),
81 dot(FLOAT4(v0x1y), h0z),
82 dot(FLOAT4(v0x0y), h1z));
83 return (float3)(dot(igrad, i2wGrad.s012),
84 dot(igrad, i2wGrad.s456),
85 dot(igrad, i2wGrad.s89a));
86 }
87
88 static inline float16 probeHess (float16 i2wGrad,
89 global ushort * volData,
90 int sx, int sy, float4 volPos) {
91 float4 nf, t;
92
93 float4 d = (float4) (h[3][0],h[2][0],h[1][0],h[0][0]);
94 float4 c = (float4) (h[3][1],h[2][1],h[1][1],h[0][1]);
95 float4 b = (float4) (h[3][2],h[2][2],h[1][2],h[0][2]);
96 float4 a = (float4) (h[3][3],h[2][3],h[1][3],h[0][3]);
97
98 float4 f = modf(volPos,&nf);
99 int4 n = convert_int4(nf);

100 float16 ret;
101
102 t = (float4) (f.x + 1, f.x, f.x -1, f.x - 2);
103 float4 h0x = d + t*(c + t*(b + t*a));
104 float4 h1x = c + t*(2*b + t*3*a);
105 float4 h2x = 2*b + t*6*a;
106 t = (float4) (f.y + 1, f.y, f.y - 1, f.y - 2);
107 float4 h0y = d + t*(c + t*(b + t*a));
108 float4 h1y = c + t*(2*b + t*3*a);
109 float4 h2y = 2*b + t*6*a;
110 t = (float4) (f.z + 1, f.z, f.z - 1, f.z -2);
111 float4 h0z = d + t*(c + t*(b + t*a));
112 float4 h1z = c + t*(2*b + t*3*a);
113 float4 h2z = 2*b + t*6*a;
114
115 float v0x[4], v1x[4], v2x[4],
116 v0x0y[4], v0x1y[4], v0x2y[4],
117 v1x0y[4], v1x1y[4], v2x0y[4];
118
119 for (int k = 1-hs; k <= hs; k++) { // slowest
120 for (int j = 1-hs; j <= hs; j++) { // medium
121 int index = n.x - 1 + sx*(n.y + j + sy*(n.z + k));
122 float4 v = FLOAT4(volData + index);
123 v0x[j+hs-1] = dot(v, h0x);
124 v1x[j+hs-1] = dot(v, h1x);
125 v2x[j+hs-1] = dot(v, h2x);
126 }
127 v0x0y[k+hs-1] = dot(FLOAT4(v0x), h0y);

128 v0x1y[k+hs-1] = dot(FLOAT4(v0x), h1y);
129 v0x2y[k+hs-1] = dot(FLOAT4(v0x), h2y);
130 v1x0y[k+hs-1] = dot(FLOAT4(v1x), h0y);
131 v1x1y[k+hs-1] = dot(FLOAT4(v1x), h1y);
132 v2x0y[k+hs-1] = dot(FLOAT4(v2x), h0y);
133 }
134 // hessian in index space
135 float3 ihes0 = (float3)(dot(FLOAT4(v2x0y), h0z),
136 dot(FLOAT4(v1x1y), h0z),
137 dot(FLOAT4(v1x0y), h1z));
138 float3 ihes1 = (float3)(ihes0.s1,
139 dot(FLOAT4(v0x2y), h0z),
140 dot(FLOAT4(v0x1y), h1z));
141 float3 ihes2 = (float3)(ihes0.s2,
142 ihes1.s2,
143 dot(FLOAT4(v0x0y), h2z));
144 // convert hessian to world space, 2nd index
145 float3 thes0 = (float3)(dot(ihes0, i2wGrad.s012),
146 dot(ihes1, i2wGrad.s012),
147 dot(ihes2, i2wGrad.s012));
148 float3 thes1 = (float3)(dot(ihes0, i2wGrad.s456),
149 dot(ihes1, i2wGrad.s456),
150 dot(ihes2, i2wGrad.s456));
151 float3 thes2 = (float3)(dot(ihes0, i2wGrad.s89a),
152 dot(ihes1, i2wGrad.s89a),
153 dot(ihes2, i2wGrad.s89a));
154 // convert hessian to world space, 1st index
155 ret.s0123 = (float4)(dot(thes0, i2wGrad.s012),
156 dot(thes1, i2wGrad.s012),
157 dot(thes2, i2wGrad.s012), 0.0f);
158 ret.s4568 = (float4)(dot(thes0, i2wGrad.s456),
159 dot(thes1, i2wGrad.s456),
160 dot(thes2, i2wGrad.s456), 0.0f);
161 ret.s89ab = (float4)(dot(thes0, i2wGrad.s89a),
162 dot(thes1, i2wGrad.s89a),
163 dot(thes2, i2wGrad.s89a), 0.0f);
164 ret.scdef = (float4)(0.0f, 0.0f, 0.0f, 1.0f);
165 return ret;
166 }
167
168 __constant float4 eye =
169 (float4)(-240.538f, 396.133f, 64.6804f, 1.0f);
170 __constant float4 orig =
171 (float4)(-47.5009f, 48.5999f, 71.5282f, 1.0f);
172 __constant float4 du =
173 (float4)(0.170942f, 0.146426f, -0.0851239f, 0.0f);
174 __constant float4 dv =
175 (float4)(0.049961f, 0.0720342f, 0.224239f, 0.0f);
176 __constant float raystep = 0.1f;
177 __constant float lenmax = 130;
178 __constant float valIso = 1440;
179 __constant float valTol = 150;
180 __constant float isoThick = 3;
181 __constant float3 light = (float3)(-0.4082f,0.8165f,-0.4082f);
182 __constant float3 gray = (float3)(0.7);
183
184 static inline float atxf (float vv, float gg) {
185 float av = fabs(vv - valIso);
186 return clamp(1 - av/(gg*isoThick), 0.0f, 1.0f);
187 }
188
189 __kernel void kern (global ushort * volData,
190 float16 w2iPos,
191 float16 i2wGrad,
192 global int * volSize,
193 int imgSizeU, int imgSizeV,
194 global float * out) {
195 int ui = get_global_id(0), vi = get_global_id(1);
196 int sx = volSize[0];
197 int sy = volSize[1];
198 int sz = volSize[2];
199
200 float4 pos0 = orig + ui*du + vi*dv;
201 float3 raydir = normalize(pos0 - eye).s012;
202 float gmsum = 0;
203
204 float transp = 1.0;
205 float3 rgb = (float3)(0.0f, 0.0f, 0.0f);
206 for (float rlen = 0; rlen < lenmax; rlen += raystep) {
207 float4 wpos = pos0 + rlen*raydir;
208 // Transform position from world to index
209 float4 ipos = (float4)(dot(wpos, w2iPos.s0123),
210 dot(wpos, w2iPos.s4567),
211 dot(wpos, w2iPos.s89ab),
212 dot(wpos, w2iPos.scdef));
213 if (!((ipos.x > 1) && (ipos.x < sx - 2)
214 && (ipos.y > 1) && (ipos.y < sy - 2)
215 && (ipos.z > 1) && (ipos.z < sz - 2)))
216 continue;
217 float val = probeVal(volData, sx, sy, ipos);
218 if (fabs(val - valIso) > valTol)
219 continue;
220 float3 grad = probeGrad(i2wGrad, volData, sx, sy, ipos);
221 float alpha = atxf(val, length(grad));
222 if (0 == alpha)
223 continue;
224 float3 norm = normalize(-grad);
225 float lit = (dot(norm,light) + 1)/2;
226 lit *= lit;
227 float16 hess = probeHess(i2wGrad, volData, sx, sy, ipos);
228 float sdd = dot(norm, (float3)(dot(norm, hess.s012),
229 dot(norm, hess.s456),
230 dot(norm, hess.s89a)))/600;

231 float3 col = ((sdd < 0)
232 ? mix(gray, (float3)(1.0, 0.0, 0.7), -sdd)
233 : mix(gray, (float3)(0.3, 1.0, 0.3), sdd));
234 rgb += transp*alpha*lit*col;
235 transp *= 1 - alpha;
236 }
237 global float *opix = out + 4*(ui + imgSizeU*vi);
238 float aa = 1 - transp;
239 if (aa > 0) {
240 opix[0] = rgb.s0/aa;
241 opix[1] = rgb.s1/aa;
242 opix[2] = rgb.s2/aa;
243 opix[3] = aa;
244 } else {
245 opix[0] = 0;
246 opix[1] = 0;
247 opix[2] = 0;
248 opix[3] = 0;
249 }
250 }

	Introduction
	Background and Related Work
	Language Design
	Elements of Diderot programs
	Design rationale
	Computing with tensors
	Reconstructing and computing with fields
	Bulk-Synchronous Parallel Strand Execution
	Programs as libraries

	Demonstrations and Results
	Volume rendering
	LIC and Streamlines

	Implementation
	Strand communication and global reduction
	EIN Intermediate Representation

	Performance evaluation
	Discussion and Ongoing Work
	The Diderot Language
	Types
	Top-level definitions
	Global variables
	Functions
	Strand definitions
	Global update block
	Global initially block
	Statements
	Expressions
	Operators and built-in functions
	Overloaded operators and functions
	Other operators and functions

	Embedding Diderot into an Application
	Comparison with hand-coded OpenCL

