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ABSTRACT

Most systems used for creating and displaying colormap-based vi-
sualizationsare not photometrically calibrated. That is, therelation-
ship between RGB input levels and perceived luminance is usually
not known, due to variations in the monitor, hardware configura-
tion, and the viewing environment. However, the luminance com-
ponent of perceptually based colormaps should be controlled, due
to the centra role that luminance plays in our visual processing.
We address this problem with a simple and effective method for
performing luminance matching on an uncalibrated monitor. The
method is akin to the minimally distinct border technique (a pre-
vious method of luminance matching used for measuring luminous
efficiency), but our method relies on the brain's highly developed
ability to distinguish human faces. We present a user study show-
ing that our method produces equivalent results to the minimally
distinct border technique, but with significantly improved precision.
We demonstrate how results from our luminance matching method
can be directly applied to create new univariate colormaps.
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1 INTRODUCTION

Visualization tasks routinely involve the mapping of some aspect
of the data to a color scale or colormap. In most cases, the lumi-
nance of the colormap should be properly controlled. Luminance
is an important quantity in visualization because it plays a cen-
tral role our perception of image structure and surface shape [16].
When applying univariate colormaps to visualize data on aflat two-
dimensional domain, luminance can be used to enhance display of
large-scale structural composition and variation. Or, luminance can
be held constant so asto minimize interpretive errors caused by per-
ceptual effects such as simultaneous contrast [25]. In the context
of bivariate colormaps using separate axes for color and “bright-
ness’, carefully controlling luminance can help maintain orthogo-
nality between the visual representations of different data compo-
nents [21]. A similar constraint applies when using univariate col-
ormaps in combination with surface shading, since (with the excep-
tion of specular highlights, and assuming white lights) variationsin
reflected light due to changes in surface orientation are not varia-
tions in color, but only overall intensity [10]. Misleading cues of
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surface shape could come from luminance variationsin the univari-
ate colormap itself.

Exerting control of luminance in colormap-based visualizations
is an interesting problem, due to at least three confounding is-
sues. Most importantly, the display device tends to be uncali-
brated (proper calibration would require an external measurement
device [7]). The chromaticities, intensities, and response functions
of the primary colors are often not known, and can vary signifi-
cantly between display devices [13]. Also, the lighting conditions
and configuration of the room are often unknown (or uncontrolled),
contributing to factors such as light reflecting off the display de-
vice surface, and differences in brightness and color perception
caused by variations between foveal and periphera luminous sen-
sitivity [26]. Finaly, yellow pigments in the ocular media such as
the lens and the macular area of the retina, can cause non-trivial
differences between individualsin spectral sensitivity [26]. Our ex-
perience has been that there is so much variation between monitors
that it is not sensible to simply assume a “standard” monitor and
then work in a CIE colorimetric space such as XY Z, or the approx-
imately perceptually uniform spaces CIELAB and CIELUV.

We address the general problem of colormap luminance control
by proposing a novel technique for luminance matching. Given a
fixed reference color, and a test color with lightness varied by a
user interface, our technique facilitates matching the luminance of
the two colors. The techniqueis based on the brain’s special capac-
ity to recognize images of human faces. By picking a fixed gray
level, we can adjust the intensity of control points in a univariate
colormap to equalize their luminance, thereby creating an isolumi-
nant colormap. It isaso simple to create univariate colormaps with
other patterns of luminance variation, such as monotonically in-
creasing. Our approach works on any display device with additive
color that obeys a power-law response function, such as a CRT.

The remainder of the paper is as follows. After areview of pre-
vious work, the rationale for our luminance matching technique is
explained in Section 3, in relation to a previous method called “min-
imally distinct boundary”. Section 4 presents the interface and us-
age of the new method, as well as a demonstration. To validate
our method against minimally distinct boundary (that is, to show
that we measure the same quantity, but do so more precisely), we
conducted a user study, described in Section 5. Given the abil-
ity to match luminance for individual colors, we describe in Sec-
tion 6 how to interpolate between colormap control points while
controlling luminance, so as to produce colormaps with constant or
monotonically increasing luminance. Conclusions, discussion, and
directions for future work are given in Section 7.

2 PREVIOUS WORK

There is extensive literature on the generation and application of
perceptual colormaps, especially concerning the relationship be-
tween axes of color perception and the representation of the under-
lying data [3, 18-20, 25]. In general, a controlled or standardized
system for visualization display is assumed, i.e., calibrated moni-
tors, standard observers, and/or controlled viewing environments.
Our work aims to relax these constraints without invalidating cur-



rent practice. The ability to make accurate comparisons of lumi-
nanceis useful for correctly implementing any perceptual colormap
in an uncalibrated environment.

Using humans' highly developed skills in recognizing faces for
specific tasksin visualization isarelatively new concept. The work
closest to ours is called the “Which Blair Project” [22]. Here, the
user evaluates the monotonicity of a given colormap’s luminance
by applying the colormap to a continuous grayscale image of a
face. By doing this a number of times, using a sequence of small
segments from the colormap domain, a sequence of colormapped
images is created. If in all the images a positive face is seen, the
colormap is said to be monotonically increasing in luminance. If
some of the images are viewed as positive and some as negative,
the luminance of the colormap is not monotonically increasing, but
contains reversals. This method of colormap evaluation is useful in
part because it does not require any display calibration.

Based on the success of this method, we believe that face recog-
nition can be used not only for identifying monotonically increas-
ing colormaps, but also for constructing colormaps with predeter-
mined luminance variation. Specifically, we use a face image to
indicate the luminance equality of two colors, instead of the lumi-
nance monotonicity of a colormap.

3 BACKGROUND

Our approach to controlling the pattern of luminance variation
within a colormap is derived from earlier approaches to solving a
basic problem of color vision, namely, measuring the the luminous
efficiency function V(X), which describes the sensitivity of the eye
to light at different wavelengths [26]. Given V' (\), luminance L is
defined as:

L= Km/ALeAV(/\)d/\ @

where L., is the spectral concentration of radiance, and K, is
a constant fixed at 683 Im/W. Often, the CIE 1924 standard pho-
topic luminous efficiency functionisused for V (), but it should be
noted that this function can vary somewhat acrossindividuals[1, 2].
Luminance is a photometric quantity dependent on the amount of
radiance reaching the eye, and the eye’s sensitivity to each wave-
length.

Many of the techniques traditionally used to measure the lumi-
nous efficiency function are based on matching paradigms. That
is, the measurement consists of having participants vary the inten-
sity of a given color until some subjective impression of that color
(depending on the specific method) isjudged to match afixed, refer-
ence white. Repeated many times throughout the visible spectrum,
amode of spectral sensitivity is acquired. Conversely, in the con-
text of visualization, we would like to produce for the observer a
predetermined pattern of luminance variation, using the colorsin a
given colormap, and as displayed on agiven monitor, by taking into
account the observer's pattern of color sensitivity. Measuring sen-
sitivity to colors produced by CRTsfor colormap generation issim-
pler than measuring spectral sensitivity to monochromatic sources,
but we feel our approach can be informed by the characteristics of
previous methods in photometry.

Existing psychophysical measurements tend to exploit either
spatial aspects of the human visual system (direct heterochromatic
brightness matching, minimally distinct border) or exploit the dif-
ferent temporal resolutions of the human visual system’s chromatic
and achromatic channels (flicker photometry, critical flicker fre-
quency) [5,24,26]. The latter category tends to produce reliable
and accurate results, but requires flicker frequencies of around 15
to 20 Hz, which are not easy to accurately produce on an aver-
age monitor. Moreover, flickering at these frequencies is somewhat

annoying to observe for extended periods, and can induce photo-
sensitive epileptic seizures in some individuals, raising important
safety issues[14].

For practical purposes, a brightness matching task of some sort
is more attractive, where brightness is defined as the dimension of
subjective visua experience that correlates most closely with the
physical intensity of light [5]. In direct heterochromatic photom-
etry, a bipartite field is presented to an observer, where both sides
are chromatic, but of different wavelengths. The observer is then
asked to adjust the intensity of one side of the field until it matches
the other side in brightness. Thistask turns out to be rather difficult
and inaccurate results of this method are reported. However, the
most fundamental flaw isthat of additivity failure[5].

Additivity failure can be described as follows. Suppose that in
two separate experiments two chromatic fields of saturated color
are matched to an identical white field by varying the brightness
of the chromatic fields. Then, in a third experiment, the two chro-
matic fields are optically superposed and the white field is dou-
bled in intensity. If the user had been performing an accurate lu-
minance match, then Equation 1 implies that the combined colors
would equal the brighter whitein luminance, and therefore the user
would find that indeed they visualy match. However, the com-
bined chromatic field will generally appear dimmer than the dou-
bled white field. Saturated colors appear to “glow” with a bright-
ness out of proportion to their actual luminance; this is known as
the Helmholtz-Kohlrausch effect [9, 26]. In general, the strength of
this effect increases with the saturation of the color.

Related to direct heterochromatic brightness matching is a
method known as minimally distinct border. Again, two fields are
compared as above, but now the fields are precisely juxtaposed and
one sideis adjusted until the border between the two fields is mini-
mally distinct according to the observer. The results of this method
tend to be close to those obtained with heterochromatic flicker pho-
tometry. Moreover, this method does not suffer from additivity fail-
ure [5,26]. Thus, while the minimally distinct border method may
be generically known as a“ brightness matching” method, its utility
isderived from its apparent immunity to the Helmholtz-Kohlrausch
effect, in that it produces measurements which do obey additivity.
In this sense, we can consider minimally distinct border to be alu-
minance matching method. However, the method still relies upon
observers matching patches with potentially widely differing chro-
maticities, between which there is always a boundary with some
distinctness, even when luminances do match. Thus, minimaly
distinct boundary is achallenging task, so we expect this method to
yield somewhat imprecise results.

Our goal isto create atask that issimilar to theminimally distinct
border method, inthat it isrobust against the Helmholtz-Kohlrausch
effect, but that is easier and more intuitive for users to carry out.
This would simultaneously make the task more practical and may
improve the precision of the result. We propose aluminance match-
ing technique based on a thresholded image of a human face. The
reason for this suggestion is that humans appear to be very good
at recognizing thresholded face images as long as there is an ap-
propriate luminance difference between the representation of shad-
owed and illuminated surfaces [6]. Section 4 describes our method
in detail, and Section 5 describes our validation study.

4 METHOD

Our method starts with a black-and-white thresholded image of
a human face. After thresholding, the resulting binary image is
black where shadows were cast and white where the face waslit di-
rectly. For thethresholded face to look natural, it is best to make the
amount of ambient lighting very small, with the direct lighting com-
ing from a single source, as with strong sunlight, or a bright lamp
in an otherwise dark room. The test pattern used for our method



Figure 1: Double face image

is simply two copies of this image, placed side-by-side, with one
reversed in black and white (Figure 1).

Next we replace black with a shade of gray, and white with a
color. Depending on the luminance of the colored region in compar-
ison to the luminance of the chosen gray, either the left or the right
face will appear “positive” and the other face will be perceived as
“negative” (the left face in Figure 1 is positive). Having two copies
of the face image is important: as long as the luminances are un-
equal, one of the faces will be positive, and it will always “stand
out” more than the negative. When the observer adjusts the inten-
sity of either the gray or the color, it is easy to see when the contrast
polarity between the gray and color changes, because it issignaled
by a change in location of the positive face. In order to perform
luminance matching, the intensity of either the gray or color is ad-
justed to be in the midst of the transition region in which neither
face appears positive nor negative. The precision of this method,
evaluated in Section 5, depends on the transition region being rela-
tively small.

The rationale behind using face images is that humans are natu-
rally good at recognizing faces, arguably because humans possess
dedicated brain circuitry to process faces [4,8,11]. Thisis espe-
cially true under the assumption that light comes more from above
than from below [17]. Previous work in psychology has shown that
luminance is the most important determinant in perceiving thresh-
olded images of faces [6]. Also, sensitivity to incorrect luminance
levels within lit and shadowed regions of an image is stronger with
faces than with other objects [23]. fMRI studies have localized the
region in the brain which responds more strongly to positive faces
than negative ones [12].

Changing the luminance of a color can be achieved by varying
the lightness coordinate in HL'S color space, the double hex-cone
of hue, lightness, and saturation [10]. Thisis equivalent to linearly
blending the color with varying amounts of either black or white
in RGB space. This approach was chosen because due to device
limitations, it is not possible to indefinitely increase a color’s lumi-
nance without also decreasing its saturation, an immediate result of
blending with white. Because we are using HL'S space, in this pa-
per we use “lightness” to refer to the L axisin HLS space, instead
of the usual connotation of perceived whiteness or blackness of an
opague surface [26].

An illustration of our approach is given in Figure 2. Three dif-
ferent colors are varied in luminance from top to bottom by varying
their HLS lightness, while the gray is fixed at RGB (0.5,0.5,0.5).

Positive faces are seen on the right in the top images, and on the
left in the bottom images; the transition zone occurs somewhere
in the middle. The precise location of the transition varies with the
brightness of the color. On aprinted page, the transition depends on
the illumination spectrum, but this specific effect does not pertain
to additive colors on a monitor.

5 USER STUDY

To show the effectiveness of the double face luminance matching
method, a user study was conducted to compare this method with
avariation of the minimally distinct boundary task. The minimally
distinct boundary (MDB) method was chosen for the reasons out-
lined in Section 3. The MDB method was adapted to be used with a
CRT display. A pilot study using the test pattern shown in Figure 3
confirmed that observers were less precise with this method than
with the face method.

It could be argued that the reason for this imprecision is due to
the difference in border length between the two fields. To elimi-
nate this possibility, instead of using a test pattern with only four
squares, we created a hew test pattern by flipping the double face
image upside down and rearranging connected regions, resulting in
the minimally distinct boundary stimulus shown in Figure 4. This
leaves unaffected both the border length between gray and color
fields, as well as the amplitude spectrum of the resulting image.
The main difference between the two test patterns is that one is
readily recognized as a face whereas the other is not.

We conducted a user study to test our hypotheses that (1) the
face-based luminance matching will produce the same result as
the minimally distinct border method, and (2) that the face-based
method will have higher precision. Thetest environment, including
the CRT monitor, was kept constant across participants, but was not
specifically controlled or calibrated across observers, except to ver-
ify that the monitor’s black level (“brightness’) was set correctly.
The study was conducted using 12 participants, four females and
eight males, ranging in age from 13 to 40 years, all with normal or
corrected-to-normal vision.

Half the observers were presented first with a set of 36 face stim-
uli, followed by the same number of MDB stimuli. The order of
tasks was reversed for the other half. Within each of the two tasks,
6 maximally saturated colors (red, yellow, green, cyan, blue and
magenta) were presented 6 times in random order. For each color
the initial lightness was set randomly to either black or white to
avoid a bias due to starting position. The reference gray was set to
RGB (0.5,0.5,0.5). Because the colors' lightnesses were varied to
match the fixed gray, the work performed in the user study is simi-
lar to thefirst step in creating an isoluminant version of the rainbow
colormap.

Before the experiment started, each observer was allowed a prac-
tice session to familiarize him/herself with the software, which con-
sisted of adisplay of the square test stimuluswhich measured 14 cm
on aside. Observers were positioned at a normal viewing distance
from the monitor (roughly 40 cm). Changing the lightness of the
color isachieved by clicking on the display and dragging the mouse
left or right to increase or reduce the color’s lightness. Moving the
mouse al the way to the right will make the face on the right be-
come positive, and vice versa. During this operation, the cursor on
the display becomes invisible, to avoid giving the participant any
cues of where they are on the lightness scale.

During each task (face and MDB), participants were allowed two
one-minute breaks. The overall time needed to complete both tasks
was between 30 and 40 minutes. Theinstructionsfor each task were
presented in writing. For the double face task, the main instructions
were:

Depending on whether the gray shade or the color is



Figure 2: Double face stimuli examples to match cyan, magenta,
and yellow to afixed gray. The colorsin each row have a common
lightnessin HL S color space, going evenly (top to bottom) from 0.1
t00.9. Thegray isat lightness 0.5. The brightnessis matched when
the face switches from the right to the left side.

Figure 3: Initial test pattern for minimally distinct boundary.

Figure 4: Test pattern used for minimally distinct boundary. Length
of boundary between two colors is same as double face test image.

brighter, the face will appear either on one side or the
other. Make sure to explore the range of brightness
enough to see the face on both sides. Then, try to find
the point in the middle, where the over-al impression
of the two faces are equally distinguishable or equally
indistinguishable.

The main MDB task instructions were:

Your god is to make the brightness of the color and
the brightness of the gray equal. If the color is much
brighter or much darker than the gray, the boundary be-
tween them will be very distinct. Find the brightnessin
between so that the boundary is minimally distinct.

The data from the user study is summarized in Figure 5, which
shows that two methods measured the same quantity, but the double
face method had more precision. We performed statistical analysis
to compare the two tasks, MDB and double face. In this context,
“trial” refersto one luminance match performed by a participant in
the study. The value produced by each tria is the HLS lightness
at which the color was found to match the reference gray. We cal-
culated the mean and standard deviation (SD) in lightness for each
color (acrossal participants, all trials, and both tasks) to detect out-
liers. Four trials were removed because their lightness was above
or below 3 SDs of the mean lightness.
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Figure5: Mean (a) and SD (b) of lightness values measured in user
study. The mean values show the HL S lightness that the color had
to be set to, in order to match gray 0.5.

The remainder of our analysis is based on the lightness means
and SDs across six trials (or five trids, in the presence of an out-
lier), calculated for each color and each participant, for both the
MDB and double face tasks. We analyzed the means to assess the
similarity in measurement between the MDB and double face tasks.
We then analyzed the standard deviations to assess the precision, or
consistency, of responses.

A 2(task) x 6(color) repeated-measures analysis of variance
(ANOVA) was performed on the mean lightness values. The anal-
ysis indicated no effect of task (p = 0.29), that is, there was no
significant difference in mean lightness measured with the MDB
versus the double face methods. Individual paired t-tests for each
color (across trials and participants) also confirmed that there was
no significant difference between the measurement results of the
MDB and double face tasks (red: p > .10; green: p > .25: al other
colors: p > .5).

We found that the double face task was superior to the MDB task
in the precision of responses as assessed through the standard de-
viation calculated over the six trials, for each color and participant.
In other words, participants were more consistent in the lightness
values they chose with the face method than the MDB method, as
can be seen in Figure 5(b). A 2(task) x 6(color) repeated-measures
ANOVA was performed on the SD values for each color. The anal-

ysisindicated a significant effect of task, F(1,11) = 20.27, p < .001
and color, F(5,55) = 8.85, p < .001. Individual paired t-tests for
each color confirmed a significant task difference for each color
(red: t(11) = 3.29, p < .01; yelow: t(11) = 6.13, p < .001;
green: t(11) = 5.48, p < .001; cyan: t(11) = 3.89, p < .01; blue:
t(11) = 2.29, p < .05; magenta: t(11) = 4.38, p < .001).

In order to get arough sense of how long it takes to perform the
MDB and double face tasks, the response time was recorded for
each trial. This was measured from the first mouse click (to start
adjusting the color lightness) until the “Next” button was clicked
(to start the next trial). The mean response time was 19.9 seconds
for the MDB task and 18.5 seconds for the double face task. Thein-
creased precision of the double face method does not seem to come
at any cost in increased response time. However, we feel further
statistical analysis on response times is not warranted because par-
ticipants were not given explicit instructions concerning their speed
of performance.

The analysis above confirms that the double face task and the
MDB task are equivalent in measured output. Although the liter-
ature supports the claim that MDB does not suffer additivity fail-
ure, it would be reassuring if there was away of directly verifying
whether the lightness levels determined with the double face task
were in fact additive, for the reasons discussed in Section 3. Prop-
erly testing this would involve a new user study. We have devised
atest of additivity, and we have performed an informal study. The
additivity test described hereis entirely self-contained, in that it re-
quires no knowledge of the monitor’'s chromaticities or gamma. It
uses a version of the face image (Figure 1) in which the shadow
color is formed by alternating black and gray lines; call the light-
nessof thegray A. Our additivity testiscomprised of six luminance
matches:

1. Find A such that the aternating line pattern matches pure
RGB blue (0,0,1). Blue isthe darkest of the primaries.

2. Find the shade of pure red that matches the aternating line
pattern with gray A. Cal this (L.,0,0).

3. Find the shade of pure green that matches the alternating line
pattern with gray A. Call this (0,L,0).

4. Find solid grays A,g, Ags, Arp that match (L.,Lg4,0),
(0,Lg,1), and (L,0,1), respectively.

Sincethe gray formed by alternate gray A and black lines should
have half the luminance of solid gray (A4,A,A) (this being the stan-
dard mechanism of visual gamma measurement [15]), the pure blue
(0,0,1), the red shade (L.,0,0), and the green shade (0, L,,0) should
al have haf the luminance of (A,A,A), from the matches per-
formed in the first three steps. If we assume that the luminances
of independent primaries add linearly, then (Z..,0,1), (0,L4,1), and
(Lr,Lg4,0) should al have the same luminance as (A,A,4), so A,
Arg, Agy, and A, should be egual. For five participants we show
thesevaluesin Table 1. The values deviate from equality by at most
5%. Considering that all colorsformed on amonitor are the additive
result of these RGB primaries, we believe the three pair-wise tests
of step 4 above should ensure additivity between any two colors
created on a CRT. In addition, because the primaries are the most
saturated colors possible on a CRT, we believe thisis a useful test
of robustness against additivity failure induced by the Helmholtz-
Kohlrausch effect.

6 COLORMAP GENERATION
The task described in Section 5 is only the first step in making an

isoluminant colormap. The six principal hues in RGB space were
matched with a fixed gray, but we want to produce the continuous



A Ar g A gb Arb
0552 0.557 0557 0551
0593 0.611 0586 0.614
0.598 0.605 0.600 0.600
0599 0.606 0587 0.593
0613 0.622 0.600 0.604

Table 1: Datafrominformal additivity test on five participants.

Figure 6: Double face image for gamma measurement

range of hues in between, by interpolation. If we had the luxury
of matching a great many control points along the colormap, then
the choice of colorspace in which to do color interpolation would
not significantly matter. However, the trade-off we encounter, if we
aim to perform as few matches as possible, is that we must know
the gamma of the display device.

Luminance matching based on the image of the double face can
be employed to measure the gamma of the monitor. Specificaly,
the black in Figure 1 isreplaced by a constant gray value which can
be adjusted, and white is replaced by aternating black and white
scanlines, as seen in Figure 6. This relies on the same principle
used in existing gamma measurement images and applets, namely
that a gray value created by aternating black and white lines has
intensity half that of white, regardless of gamma[15].

Knowing the monitor gamma -y, we can perform interpolation in
what is essentially gamma-corrected RGB space. Suppose we have
two RGB colors ¢o = (r0,90,bo) and ¢1 = (r1,g1,b1) which
have been determined to have equal luminance. These could be, for
instance, two of the colors determined as part of our user study. The
interpol ation between them can be parameterized by f € [0.0, 1.0],
and is calculated by:

(1= fyreY + fra7)/
cr=| (1= fgo” + fg")/" @)
(1= £)bo” + fbi )/

This has the effect of converting RGB component levels to inten-
sity, linearly interpolating, and converting back to RGB component
levels.

If we use the data generated by our user study, we can average
over al participants and al trials to produce six points along an
isoluminant rainbow colormap. These values, and the resulting col-
ormap, are shown in Figure 7.

The methods described thus far can also be applied to the

(a) Isoluminant colormap created by user study

red: (0.847,0.057,0.057)  yellow: (0.527,0.527,0.000)
green:  (0.000,0.592,0.000) cyan:  (0.000,0.559,0.559)
blue (0.316,0.316,0.991) magenta  (0.718,0.000,0.718)

(b) Isoluminant RGB triples

Figure 7: Isoluminant colormap (a) generated by averaging double
face luminance matching data across participants (b), using evenly
spaced control points, starting and ending with red. The gamma
used for interpolation (2.7) was estimated using the image in Fig-
ure 6.

problem of generating colormaps which monotonically increase
in luminance, while also varying in hue. Such a colormap com-
bines perceptual benefits from both grayscale and isoluminant col-
ormaps [25]. Instead of adjusting colors (in HLS space) to match
luminance with afixed gray, we can specify a different gray level
for each colormap control point. Equation 2 is again used to in-
terpolate in a way that controls luminance, but now luminance is
linearly increasing between control points. The sequence of lumi-
nances chosen for the control points can increase linearly, or ac-
cording to apower law that accounts for the non-linearity of bright-
ness perception [26]. Figure 8 shows a colormap produced by one
of the authors, by sampling the standard rainbow colors (going from
magentathrough blue and green to red), and matching against light-
nessincreasing linearly from 0.0 to 1.0.

Figure 8: Monotonically increasing luminance colormap.

The properties of these colormaps can be demonstrated with the
help of the Craik-O’Brian-Cornsweet illusion, shown in Figure 9.
The gray region in the center of the circle should appear brighter
than the gray at the outer edge of the circle, because of how local
edge brightness contrast tends to propagate over neighboring re-
gions [16]. The effect is somewhat weaker with the monotonically
increasing colormap, but is eliminated with the isoluminant col-
ormap. Although the strength of these effects vary with the method
of printing or display, and with the observer, this is an example of
how isoluminant colormaps can be preferable for interpreting im-
age values.

7 DISCUSSION AND FUTURE WORK

We have shown that a simple perceptual test, observing the dou-
ble face image, allows a user to quickly create a luminance match
between two colors. As compared to luminance matching using
the minimally distinct border technique, the double face method
is equivalent in measured result, but more precise, and no slower.
Given that the monitors we generally use for creating and display-
ing visualizations are not calibrated, this test provides a convenient
means of creating colormaps with any pre-determined pattern of lu-
minance variation (such as constant, or increasing). We believe the
success of our method is due to the brain’s specia ability to detect
and interpret images of human faces. Because of the simplicity of
the method, we fedl these results should be simple to reproduce.
Also, since each color match takes about 20 seconds, a color map



Figure 9: Craik-O’ Brian-Cornsweet pattern, displayed (from top to
bottom) in grayscale, with the monotonically increasing luminance
colormap of Figure 8, and with the isoluminant colormap of Fig-
ure 7(a). The standard illusion (at top, in gray), may be stronger
when viewed on a monitor.

with 8 control points can be created in under ten minutes (using two
matches per point).

The participants were asked afew questions after completing the
experiment, and their answers may help explain the difference in
precision between the two tasks. When asked which task was “ eas-
ier”, al but one participant identified the double face task. Answers
about why it was easier generaly related to face perception: “It
was easy to tell when it didn’t look like aface”, “I could watch the
eyes’, “| waslooking at her teeth”, “I could just see the transition—
one face pops out”. Also, two participants mentioned that they ap-
preciated how the side on which the positive face appears deter-
mines the direction in which to move the mouse to better match the
luminance. This element of directional guidance, made possible
by having two copies of the face image, is not present in the MDB
task, since boundary distinctnessincreases with both increasing and
decreasing color luminance relative to the fixed gray.

One interesting result of the user study is a demonstration of
the variations in individua’s color vision, even though al of the
participants believed they were normal trichromats. For instance,
generating “isoluminant” colormaps from the levels determined by
participant #9 and participant #10 (based on the double face data),
results in the two colormaps seen in Figure 10

Figure 10: “Isoluminant” colormaps generated from the doubleface

luminance matching data from participants #9 (top) and #10 (bot-
tom).

HLS Lightness
o
T

red yellow green cyan blue magenta
Color

Figure 11: Plots of lightness of 18 colors aong rainbow colormap,
as measured by seven different participants.

Another way to see the variation in individual’s color vision is
to perform the converse of the experiment in the user study, vary-
ing the gray level in order to match the luminance of a fixed and
fully saturated color. Using the double face image, seven partici-
pants did this luminance matching on 18 evenly spaced colors on
the standard RGB rainbow colormap. Besides illustrating just how
non-isoluminant the rainbow colormap is, the results plotted in Fig-



ure 11 show that the most variation tends to occur in reds and blues.
Considering that perceptual issues do play a significant rolein col-
ormap creation, we believe this raises the interesting possibility of
user-specific colormaps.

As seen in Figure 5(a), the color red produced by far the largest
difference between the M DB and double face methods, though not a
statistically significant one. It may be that the difference was high-
est in red because red was the most saturated at the HL S lightness
matching gray 0.5. Therefore, we would like to test our main hy-
potheses with a second experiment in which the lightness of gray is
varied, instead of the color, so that al colors stay maximally sat-
urated. A basic problem in perceptual colormaps not addressed
in this paper, but which we are planning to pursue, is making the
colormaps perceptually uniform, that is, making equal changes in
the position along the colormap domain correspond to equal per-
ceptua differences in the associated colors. While the CIELAB or
CIELUV colorimetric spaces were intended to address this prob-
lem, they are only approximately uniform, in that the ability to
discriminate between neighboring colors can vary significantly, de-
pending on the position and direction within the color space [26].
In any case, these color spaces are not available on an uncalibrated
monitor, and we have shown that it is possible to make perceptual
measurements in an entirely device-dependent color space such as
RGB.
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