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Diffusion Tensor Visualization with Glyph Packing

Gordon Kindlmann and Carl-Fredrik Westin

Abstract—A common goal of multivariate visualization is to enable data inspection at discrete points, while also illustrating larger-
scale continuous structures. In diffusion tensor visualization, glyphs are typically used to meet the first goal, and methods such as
texture synthesis or fiber tractography can address the second. We adapt particle systems originally developed for surface modeling
and anisotropic mesh generation to enhance the utility of glyph-based tensor visualizations. By carefully distributing glyphs throughout
the field (either on a slice, or in the volume) into a dense packing, using potential energy profiles shaped by the local tensor value,
we remove undue visual emphasis of the regular sampling grid of the data, and the underlying continuous features become more
apparent. The method is demonstrated on a DT-MRI scan of a patient with a brain tumor.

Index Terms—Diffusion tensor, glyphs, particle systems, anisotropic sampling, fiber tractography.

1 INTRODUCTION

A tensor field may be visualized with a variety of methods. One of the
simplest is tensor glyphs, which indicate at discrete locations the ten-
sor eigenvalues and eigenvectors by the shape and orientation of glyph
geometry [34]. Glyphs are only informative when unobscured, so they
must be seeded in the field and scaled judiciously. When glyphs are
placed on the sample points of a regular grid, the resulting visualiza-
tion may inadvertently emphasize the regular sampling pattern, rather
than the important patterns in the data.

Other tensor visualization methods excel at representing continuous
field structures. Texture-based visualization methods, such as Line In-
tegral Convolution (LIC) [11] are inherently continuous, because field
attributes are integrated into a dense image. Lacking discrete geome-
try, however, texture-based methods have difficulty conveying relative
scale or size information, and the textures are more challenging to vi-
sualize in three dimensions. Hyperstreamlines [12] numerically inte-
grate tensor eigenvectors and thus represent particular continuous field
features, but are only meaningful where eigenvectors are well-defined.

The goal of this work is to bridge the intrinsically discrete nature
of glyph-based visualization with the continuous character of texture
and hyperstreamline methods, by densely “packing” glyphs into the
field, irrespective of the original data sampling grid. The packing is
calculated with a particle system in which inter-particle interactions
are determined by a potential energy function derived from the ten-
sor field. Rather than emphasizing the regular sampling pattern of
the data points, the resulting visualization can highlight the underly-
ing continuous features of the tensor field. The effect is similar to
that achieved by reaction-diffusion texture-based visualization [22],
but with reduced computational cost.

Although theoretically applicable to other sources of symmetric
second-order positive-definite tensor fields, our work so far has tar-
geted diffusion tensor magnetic resonance imaging (DT-MRI). DT-
MRI is a popular and effective means of assessing white matter struc-
ture in the central nervous system, in which the coherent organiza-
tion of axons gives rise to anisotropy (directional variation in diffu-
sivity) [5]. By fitting a second-order tensor model to the diffusion-
weighted measurements, DT-MRI can quantify (at the coarse scale of
MRI acquisition) the shape and orientation of white matter [4]. To
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some extent, our visualization method is able to indicate the course
of white pathways, even though this task is normally considered the
domain of fiber tractography (based on hyperstreamlines) [29].

2 RELATED WORK

Our approach strives to mimic texture-based visualization methods,
and adapts systems developed for particle-based surface modeling and
anisotropic mesh generation. Tensor field interpolation generates ten-
sor values at the arbitrary locations of particles inside the domain. This
section considers these areas of previous work in turn.

Texture-based vector field visualization methods such as spot
noise [45] and Line Integral Convolution (LIC) [11] have the com-
pelling advantage of highlighting the flow pattern with a detailed,
dense, and continuous pattern. LIC has been generalized to tensor
visualization, either with a two-pass integration over primary and sec-
ondary eigenvectors by Hsu [19], or integration over a tensor-based
polygonal probe by Zheng and Pang [50]. Sigfridsson et al. perform
local frequency-space noise texture filtering according to tensor val-
ues [39]. Hotz et al. modulate the density, size, and blurring extent of
spot noise to visualize the tensor field in terms of a deformation of an
underlying physical texture domain [18].

Other previous work blends attributes of both texture and glyph
methods, by placing or rendering glyphs in a more data-driven way.
The stochastic streamline placement optimization of Turk and Banks
is also demonstrated for glyphs, resulting in a dense vector visualiza-
tion that maintains visual clarity in two dimensions [44]. Laidlaw et al.
generate multi-layered diffusion tensor visualizations including glyphs
stochastically placed so as to minimize overlap, which are addition-
ally textured to indicate their out-of-plane component [24]. Kirby et
al. use a similar placement strategy for glyphs representing vector
and tensor attributes of complex flow fields [23]. Hausner describes
optimized packing of rectangular patches to create decorative mosaics
that respect the orientation structure of the underlying image [16]. The
tensor splat method of Benger et al. converts tensor values into tuned
Gabor functions that are composited into 2-D and 3-D textures [7, 6].

Texture-based methods may also avoid noise entirely by leveraging
reaction-diffusion (RD) equations [41], used previously in computer
graphics [42, 48]. RD textures have been adapted to tensor visualiza-
tion by Kindlmann et al. [22], and to flow fields and flow uncertainty
by Sanderson et al. [35]. The effectiveness of RD textures lies in how
the simulation of chemical morphogens naturally gives rise to an orga-
nized pattern of spots reflecting the local orientation, anisotropy, and
scale of the tensor field. Figure 1 illustrates the natural packing of
RD spots, resembling a glyph packing. Indeed, Sanderson ez al. show
how the centroids of RD spots may be used to place glyphs [35]. The
utility of RD textures for visualization, however, is hampered by their
sensitivity to unintuitive parameter settings, and significant computa-
tion cost. In particular, each texture spot must be large compared to
the pixels or voxels composing the simulation grid, thus the quality of
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Fig. 1. Ellipsoid glyphs (left) and reaction-diffusion textures (right)
on synthetic (top) and measured DT-MRI data (bottom). Reproduced
from [22].

the visualization scales with only the square root or cube root of the
memory and processing time. We avoid this cost by representing the
glyph locations directly as particles, instead of indirectly as sampled
intensity patterns.

Point-based modeling in computer graphics implicitly represents
surfaces in a compact and flexible manner [2, 3]. One important
line of work uses dynamic particle systems to sample or redistribute
points within a surface [43, 40, 47, 17]. Meyer et al. refine the
method of Heckbert [17] with scale-invariant energy functions, reduc-
ing the number of necessary particle system parameters and facilitating
curvature-dependent surface sampling [26]. Glyph packing also ben-
efits from research in unstructured anisotropic mesh generation, using
a tensor formulation of the desired mesh anisotropy. The bubble pack-
ing methods of Shimada ef al. [37] and Yamakawa and Shimada [49]
use spring forces between tensor ellipsoids to equalize their spacing
along the edges, faces, and interiors of the mesh domain. Bossen
and Heckbert measure edge lengths according to local tensors to drive
anisotropic mesh refinement and smoothing [10]. Bossen also uses
particle systems to optimize the distribution of mesh vertices, based
on an anisotropic potential energy function [9].

Placing glyphs at arbitrary locations in the field requires some
method of interpolating tensor data, which is itself an ongoing area
of work. Besides the trilinear per-coefficient interpolation standard in
many hyperstreamline implementations [36], the various mathematical
approaches for reconstruction of tensor fields include Wiener amalgam
spaces [1], B-splines [31], NURBS [32], and PDEs [46]. More spe-
cialized approaches seek to preserve tensor invariants such as trace
and anisotropy, or positive-definiteness (a physical constraint on dif-
fusion), in the course of interpolation [14, 28].

3 METHODS

We generate glyph packings as the stable solution to the particle sys-
tem described in the following sections. A basic ingredient is the glyph
scaling o, which transforms from the units of the tensor value (in our
case diffusivity) to units of length in the image domain. In the inter-
ests of tractability, the packing computation assumes ellipsoidal glyph
geometry, described by aDS for tensor D, where S is the (dimension-
less) unit sphere [36]. However, the glyph scaling and geometry of the
packing computation need not restrict what is used in the subsequent
visualization: the glyph scaling for visualization can be smaller (to
better see between glyphs), and the glyph geometry can be different
(for example using superquadrics [21] instead of ellipsoids).

3.1 Tensor Interpolation

The purpose of tensor interpolation is to create from the sampled data
a continuous function D that returns the tensor value D(p) at location
p. In this work, we use a cubic spline to create a C2 field that interpo-
lates the estimated tensors [31]. This is implemented by numerically
pre-filtering the data so that subsequent convolution-based separable
reconstruction with the uniform cubic B-spline can be local (four sam-
ple support along each axis) as well as interpolating [27]. The inter-
polation does not, however, preserve or respect any tensor invariants
such as trace or anisotropy. Two points of consideration relative to our
application domain and visualization purpose suggest this may not be
a significant problem.

First, the MRI scanner has likely already interpolated the diffusion-
weighted images (DWIs) that are the basis of tensor estimation. Stan-
dard echo-planar MRI acquires DWIs on a regular grid in frequency
space [25]. The grid is usually “zero-filled” by the scanner to a larger
grid prior to the Fourier transform that creates the DWIs [8]. Zero-
filling is effectively the same as interpolating and upsampling the
DWIs in the spatial domain with the sinc function [15]. Notably, up-
sampling the DWIs does not preserve any scalar invariants of tensors
subsequently estimated from the DWIs. In our opinion, this lessens the
urgency to preserve invariants during interpolation for later computa-
tions (such as glyph packing). More specialized interpolation schemes
may be important for visualizing tensor fields in other application do-
mains.

Second, our purpose is more qualitative than quantitative: to create
a visual effect that indicates large-scale structures, rather than geo-
metrically modeling their course (as with tractography) or measuring
them (with tensor attributes). We have not found the slight numeric
differences between reconstruction methods to significantly affect the
result, so long as they are interpolating and smooth.

3.2 Tensor-based Potential Energy

The behavior of particles in our system is determined by the forces
acting upon them. The most important of these are the forces between
particles, which gives rise to the glyph packing. The inter-particle
forces are created by a potential energy field around each particle,
shaped by the local tensor value. The energy E,, at position p, due to
the potential energy field around a particle at p;, is the composition of
functions g, | - |, and ¢:
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Note that by construction, g inverts the transform that creates ellip-
soidal glyphs from spheres. Conceptually, g maps vectors y,;, in the
field of anisotropic tensors to vectors X, in an isotropic space, in
which particles have a rotationally symmetric potential energy pro-
file ¢. O’Donnell et al. also use the tensor inverse as a metric for
computing geodesics under diffusion tensor warping [30]. One way
to characterize the local tensor value D, is to sample the tensor field
at the midpoint between the two particles, which ensures symmetry
E.», = Ep,. In Equation 3, the factor of two in the denominator of g
allows mutually tangent glyphs to map to mutually tangent spheres of
radius 1/2, with unit distance between centers (relevant for the later
definition of ¢@).

The inter-particle force is determined by the derivative of energy
E,;, with respect to y,5, which (by the chain rule) is the product of the
derivatives of @, | - |, and g (here omitting the ab subscripts for clarity):
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The second term in the last factor of Equation 6 involves a third-order
tensor dD ! /dy: the change in the inverse of the (second-order) tensor
field with respect to y. The product of this with vector y is again a
second-order tensor. Index notation makes the details of third-order
tensor multiplication more explicit (here the ij subscripts index the
vector and tensor coefficients):

IE _ ¢'(x) v -1 S
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where Dl_ﬂl = 8Di;1 /dyi. Bossen mentions the theoretical role of the

tensor gradient in anisotropic meshing [9]. As in that work, our com-
putations avoid the complexity of the inverse tensor gradient by treat-
ing the tensor field as locally constant, without apparent impact on
the quality of the results. The stability of the particle system, even
within real-world varying tensor fields (where the tensor gradient is
non-zero), is possibly related to the smoothness imposed by our spline
interpolation, though this is a topic for future investigation.

With the assumption of local tensor constancy, the force f,;, on a
particle at p, from a particle at p, is (written as a column vector):
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where (D~1)7 = D! because diffusion tensors are symmetric. Note
that the force between two particles is not in general aligned with the
vector between them, which is an unusual property of our particle sys-
tem. This is analogous to how an object’s surface normals are trans-
formed by the inverse-transpose of the object transform, as is com-
monly used for instancing in ray-tracing [38].

The expense of computing D;bl for every pair of particles is sig-
nificant, due to the tensor inverse, and the convolution-based tensor
interpolation (as per Section 3.1) at the mid-points of all pairs of po-
tentially interacting particles. In the early iterations of the particle
system, a fast approximation to D;bl suffices:
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where D~! (p) is the convolution-based interpolation at p within a pre-
computed field of tensor inverses. The approximation also assumes
local linear variation in D(p) .

The remaining piece of Equation 8 is the underlying potential en-
ergy function ¢ and force function ¢’. In typical glyph-based ten-
sor visualizations, the density and location of glyphs is determined by
their placement at dataset nodes or sampling points, and the size of the
glyphs is then adjusted by the user to minimize glyph overlap and clut-
ter while maintaining visibility. In our approach, however, the scaling
parameter is primary: the user chooses ¢, and then the packing is cal-
culated around that particular scaling. Thus, it makes sense to employ
an energy function ¢ with an intrinsic scale, in contrast to previous
particle systems wherein the scale-invariance of ¢ was shown to be
beneficial [26]. Our potential energy is based on Hooke’s law spring
model [37, 49], though we take care to ensure that ¢’ is a C! function.
Specifically, the linear ramp of ¢’ is extended with a Hermite spline to
a tunable-width interval [1, 1 + ¥] of slight attractive force (Figure 2):
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3.3 Implementation Details

In addition to the inter-particle forces that generate the packing, other
forces and constraints assist the computation. For numeric stability, a
drag coefficient creates an additional force opposing the particle mo-
tion:
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Fig. 2. Modified spring potential (a), and resulting force function (b), as
a function of radius, with y=0.5.

Because diffusion tensor fields are the result of a model fitting (tensor
estimation) applied to the acquired DWIs [4], there are locations with
insufficient signal (in skull and air) for the tensor model to be estimated
meaningfully. Our tensor estimation generates an accompanying mask
image M to indicate where the DWI signal meets some confidence
threshold. The gradient of the confidence mask is used to generate an
additional force that pushes particles towards the mask interior:

f= CmaskVM(p) (12)
Finally, to generate results on two-dimensional slices through the field,
particle forces are computed in three-dimensions, but particle positions
are projected back onto the slice plane at every iteration.

The second-order ordinary differential equation governing the mo-
tion of the particle at position p, is an expression of f = ma in terms
of Equations 8 (summing over all particles), 11 and 12, with the sim-
plification that particles have unit mass:

dp d’p
Z fap — Cdragz + CmaskVM(p) = ﬁ

b#a

13)

We have found Euler integration to be sufficient for our purposes
(with a small enough time step), because the computational goal is
a minimum-energy set of particle locations, rather than the paths the
particles take through the field towards their resting positions.

Additional information about the tensor field is used for the initial-
ization and computation of the particle system. The dataset is traversed
to find the maximal determinant dety,,x and maximal eigenvalue Amax
of all tensors. Particles are then initialized at random locations, as
filtered by two rejection tests. Candidate locations outside the con-
fidence mask M are rejected. To approximate the correct density of
the final packing, and knowing that glyph volume is proportional to
tensor determinant, candidate location p is rejected with probability
det(D(p))/detmax.

Spatial binning is an important efficiency technique for speeding up
the evaluation of Equation 13, by avoiding the computation of forces
between particles too distant to interact [17]. Computationally, bins
are dynamically updated lists of particles that occupy a particular cell
within a grid overlaid on the field. Knowing the glyph scaling o and
the force function support [0, 1 + 7], the edge length of the spatial bin
is set to 2Amax(1 4+ 7). All points in a bin can then interact only
with points in the same bin, and points in the immediately neighbor-
ing bins. Spatial binning permits a 3-D particle system to be simu-
lated in roughly the same time as a 2-D system with the same num-
ber of particles, which is not true of reaction-diffusion textures. In
our multi-threaded implementation, the spatial binning takes the addi-
tional role of quantizing work between threads, by assigning bins to
worker threads on a first-come-first-served basis.

4 RESULTS

The glyph packing method can be evaluated with comparison to vi-
sualization of the same data using a regular grid of glyphs. Figure 3
demonstrates glyph packing on a simple synthetic dataset. On the reg-
ular grid (Figure 3(a)), some tensor orientations generate large areas of
consistent glyph alignment and overlap, creating the false impression
of a spatial field variation besides smooth orientation change. Glyph
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(a) Regular Grid

(b) Glyph Packing

Fig. 3. Comparison of standard glyphs and glyph packing on synthetic
data.

packing (Figure 3(b)) tends to consistently minimize the amount of
glyph overlap, creating a more uniform field appearance. The packing
can, however, also lead to a new ordered sampling grid, hexagonal in-
stead of rectangular, which potentially could be distracting. Although
this is an issue that warrants further investigation, our experience has
been that in real-world datasets the hexagonal grid appearance, when
it appears, is only a minor drawback.

Neurosurgeons are making increasing use of DT-MRI to plan tumor
resection brain surgeries, both to assess the extent of the tumor, and to
plan a minimally damaging approach through the brain [20, 13, 6].
Our neurosurgery collaborator related how all additional pieces of in-
formation about white matter structure in and around the tumor can
help decide a course of action, given the amount of risk and uncertainty
that accompanies invasive surgery. As a preliminary investigation of
the utility of glyph packing for neurosurgical applications, we gener-
ated glyphs packings in 2D and 3D in a DT-MRI scan of a patient with
a large anaplastic (malignant) oligodendroglioma near the left frontal
lobe of the brain. The patient signed a statement of informed consent,
and all imaging procedures followed institutional guidelines for pa-
tient safety. The diffusion tensor volume was estimated from 30 DWI
at b = 1000s/mm? with 1 non-diffusion-weighted T2 image, from a
3.0 T GE scanner with ASSET reconstruction (parallel factor 2.0), at a
resolution of 2 x 2 x 3mm, upsampled by the scanner to 1 x 1 X 3mm.

Figure 4 shows the results of glyph packing on a slice within a
healthy region (left posterior) of the brain. For this and other figures,
the RGB coloring on the glyphs is the standard mapping of the princi-
pal eigenvector, determined by the absolute values of the coefficients
of the principal eigenvector [33]. Note that because the glyphs were
constrained to lie on the slice plane, the two-dimensional forces act-
ing on the glyphs can not always produce a clean separation of the
three-dimensional glyphs viewed from above. Compared to glyphs on
a regular grid (Figure 4(a)), the glyph packing (Figure 4(b)) seems to
be more effective at visually indicating the curving paths of the ma-
jor white matter tracts, such as the corpus callosum, cingulum, and a
U-fiber, which are labeled for reference in tractography seeded in the
same region (Figure 4(c)). This 2-D glyph packing (as well as that in
Figure 5) ran for 2000 iterations (usable results appeared after 400),
requiring about 8 minutes of computation on a single processor 1.67
GHz PowerPC G4.

Figure 5 shows visualizations of a slice through the tumor area.
Our neurosurgery collaborator felt that the glyph packing results (Fig-
ure 5(b)) better helped her to develop an understanding of the “actual
tensor data” than those in Figure 5(a). The accumulation of water in
the areas of edema around the tumor increases diffusivity, leading to
larger glyphs that need to be spaced more sparsely than in the healthy
tissue, which is handled well by glyph packing (Figure 5(b)). If the
scaling was reduced so the glyphs did not overlap on the regular grid
(Figure 5(a)), they would be harder to see in regions of healthy tissue.
The behavior of the genu of the corpus callosum around the tumor is
better shown through glyph packing. The asymmetry of the corpus
callosum, in particular how the fibers are partially deflected by the

tumor, is more visible in the glyph packing, and is confirmed by trac-
tography (Figure 5(c)). As tractography can only analyze regions of
linear anisotropy, it offers no insight as to why the fibers stop near the
tumor; the glyph images show that while there is moderate anisotropy,
it is planar rather than linear). In fact, the pattern of planar anisotropy
surrounding the tumor is an interesting feature detected by the neuro-
surgeon in the glyph packing visualization.

Figure 4 gives one example of glyph packing in three-dimensions.
Glyphs were densely packed in the tensor volume, but only those meet-
ing an FA threshold (FA > 0.25) are shown. The brain region here is
the corpus callosum (red and orange) and a cingulum bundles (blue
and green) orthogonally oriented but adjacent to the corpus. The curv-
ing geometry of these and nearby white matter features is easier to ap-
preciate from the glyph packings. The 3-D glyph packing (Figure 6)
ran for 4000 iterations, requiring about 1.5 hours of computation on a
dual processor 2.0 GHz PowerPC GS5.

5 CONCLUSIONS

Glyph packing uses a particle system with anisotropic potential en-
ergy profiles to arrange glyphs into a dense pattern that displays some
of the visual continuity of texture-based visualizations, while main-
taining the ability to discern the full tensor information at each glyph.
Our neurosurgery collaborator felt that applied to DT-MRI, the glyph
packings were a more direct and informative expression of the tensor
data. Although a formal user study would be a fitting way to evaluate
our claims, we are still at the early stage of refining the method and
iterating with the surgeon to learn about what visualization strategies
are most successful. Perceptual studies could help determine how the
method can be best augmented or combined with other existing meth-
ods (such as colormaps or isosurfacing) to convey as much relevant
information as possible.

The computational bottleneck in our current implementation is the
convolution-based sampling (Section 3.1). Under consideration are
different means of accelerating this process, such as using a lower-
resolution tensor volume, or selectively re-using sampled tensors be-
tween iterations. We plan to extend the glyph packing method to sam-
ple implicit surfaces in the field, either isosurfaces of important tensor
attributes (such as anisotropy), or distance volumes around segmented
objects of interest (such as tumors). This will likely entail analyzing
the differential properties of the surface [26]. Such an analysis might
complement a further exploration of the inverse tensor gradient arising
in Equation 6, to determine the circumstances under which its handling
is required for stable solutions.

Information about our open-source implementation is available at
<http://lmi.bwh.harvard.edu/~gk/vis06>.
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(a) Regular Grid
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(c) Fiber Tractography

Fig. 4. Standard glyphs (a), glyph packing (b), and fiber tractography (c)  Fig. 5. Standard glyphs (a), glyph packing (b), and fiber tractography (c)
on a slice through a healthy region of the brain. CC = corpus callosum;  on a slice through the brain tumor. The region of edema surrounds the
CB = cingulum, UF = U-fiber tumor.
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Fig. 6. Comparison of glyphs on 3D grid and from Particle System



