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Abstract
With the development of magnetic resonance imaging techniques
for acquiring diffusion tensor data from biological tissue, visualiza-
tion of tensor data has become a new research focus. The diffusion
tensor describes the directional dependence of water molecules’
diffusion and can be represented by a three-by-three symmetric
matrix. Visualization of second-order tensor fields is difficult be-
cause the data values have many degrees of freedom. Existing vi-
sualization techniques are best at portraying the tensor’s proper-
ties over a two-dimensional field, or over a small subset of loca-
tions within a three-dimensional field. A means of visualizing the
global structure in measured diffusion tensor data is needed. We
propose the use of direct volume rendering, with novel approaches
for the tensors’ coloring, lighting, and opacity assignment. Hue-
balls use a two-dimensional colormap on the unit sphere to illus-
trate the tensor’s action as a linear operator. Lit-tensors provide
a lighting model for tensors which includes as special cases both
lit-lines (from streamline vector visualization) and standard Phong
surface lighting. Together with an opacity assignment based on a
novel two-dimensional barycentric space of anisotropy, these meth-
ods are shown to produce informative renderings of measured dif-
fusion tensor data from the human brain.

1 Introduction
A fundamental property of biological tissue is the ability of wa-
ter molecules to move within it by the action of Brownian motion.
Rather than being one fixed velocity, this movement, called diffu-
sion, is often anisotropic – happening faster in some directions than
others. We use the term anisotropy to describe how different the
rates of diffusion can be. Anisotropy is high when the rate can vary
greatly as a function of direction. It is low when the rate is the
same, regardless of direction. A complete description of the dif-
fusion rate’s directional dependence is afforded by a second-order
tensor, representable as a three-by-three real-valued symmetric ma-
trix.
To provide a feel for measured tensor data, a slice of a human

brain diffusion tensor dataset is portrayed in Figure 1. Each sub-
image in the matrix of images is a gray-scale representation of the
corresponding component of the tensor matrix, with medium gray
representing zero. In the brain interior, the on-diagonal components
of the tensor matrix are positive, while the off-diagonal components
can be either positive or negative. This method of portraying the
raw tensor data is not novel, nor is it a very intuitive way to display
the orientation and shape of the diffusion tensors.
All three-by-three real-valued symmetric matrices have three

real eigenvalues and three real-valued orthogonal eigenvectors [17].
The diffusion tensor matrix enjoys the additional constraint of hav-
ing non-negative eigenvalues, implying it can be unambiguously
represented as an ellipsoid. The ellipsoid’s major, medium, and mi-
nor axes are along the tensor’s eigenvectors, with the scalings along

Figure 1: Matrix of images showing the individual tensor compo-
nents within one dataset slice

the axes being the eigenvalues. Such an ellipsoid is the image of the
unit sphere under the linear transform induced by the tensor’s ma-
trix representation1. More intuitively, if one were to put a drop of
ink into a diffusive material, the ink might be drawn in some direc-
tions faster that others, and the resulting shape would approximate
the ellipsoid described.
The ellipsoid provides an elegant and powerful way to visualize

the tensor because it has a simple shape, and yet it has just as many
degrees of freedom as the diffusion tensor. Indeed, previous work in
diffusion tensor visualization has used arrays of ellipsoids to depict
the tensor field within a two dimensional region. Another tensor
visualization method, hyperstreamlines, succeeds in faithfully de-
picting the tensor along one-dimensional paths in a volume dataset.
These methods, and other previous approaches to this problem, are
useful because they produce a means of visually decoding all the
tensor’s degrees of freedom at some set of locations in the field.
In some cases, however, it may be desirable to create render-

ings of tensor datasets by displaying only some of the information,
but everywhere within a volume. The application motivating this
research is to create an understanding of the fibrous structure of
white matter throughout the brain. Because the white matter fiber
tracts connect major regions of the brain, a detailed understanding

1This is not the only unambiguous ellipsoidal representation. One could
also represent the tensor with the unit sphere’s pre-image, or, for a tensorM
one could also use the set of points x such that xTMx = 1, as is done by
Strang [17].



of their structure could foster advances in surgical planning, neu-
rophysiology, and cognitive science [12, 15]. Fortunately, devel-
opments in magnetic resonance imaging have made it possible to
accurately measure the water diffusion tensor within living brain
tissue [2]. The white matter fiber tracts can be distinguished from
their surroundings based on properties of the measured diffusion
tensor, such as its anisotropy. Visualizing the intricate structure of
the fiber tracts is inherently a three-dimensional problem. A tech-
nique that makes the large scale patterns within the diffusion tensor
field visually apparent would be ideal.
Since this has historically been the goal of direct volume ren-

dering for scalar data, we have explored the use of direct volume
rendering for diffusion tensor visualization. To make this possible,
the various ingredients of the direct volume rendering algorithm
need to be supplied from the tensor data. We propose methods for
assigning color and opacity to each location within the dataset, as
well as a way to illuminate the tensors in a way that can be inte-
grated into a direct volume rendering algorithm such as raycasting.
Hue-balls permit coloring of the diffusion tensor based on the lin-
ear transform of the tensor’s matrix form. A user-specified unit
vector is mapped by the tensor to an output vector, whose direction
is then visualized by a two-dimensional colormap on the sphere.
For the opacity assignment, we use a two-dimensional barycentric
space of anisotropy (based on three existing anisotropy measures)
as the domain of an opacity function. Finally, lit-tensors provide
a way of illuminating a tensor according to the type and orienta-
tion of anisotropy which it exhibits. Lit-tensors provide a shading
model for the one-parameter family of anisotropy between linear
anisotropy (where the shading model coincides with illuminated
streamlines), to planar anisotropy (where it coincides with tradi-
tional surface illumination).

2 Related Work
Much previous work in tensor visualization has started by simpli-
fying the data to a scalar or vector field, to which established visu-
alization techniques can be applied. That is, the tensor is viewed
only in terms of some salient scalar or vector characteristic. For
example, tensor field lines allow one to see the patterns in the vec-
tor fields composed of the eigenvectors of a tensor matrix [7]. In
the medical community there is much interest in visualizing two-
dimensional slices of MR diffusion tensor data by colormapping
the direction of the principal eigenvector (the eigenvector associ-
ated with the largest eigenvalue) [4, 9, 14].
When the tensor visualization isn’t accomplished by showing

only some of the information at all locations, it is often done by
showing all the tensor information in a restricted subset of loca-
tions. A natural choice has been the ellipsoid representation of
the tensor [10, 13, 16, 18], though rectangular prisms (with ge-
ometry determined by the eigensystem) also work very well [21].
A recent advance along these lines was inspired by artists who
vary the characteristics of discrete brush strokes to convey infor-
mation [11]. Through a carefully designed mapping from tensor at-
tributes to brush stroke qualities, a two-dimensional MR diffusion
tensor dataset can be rendered as an image with rich information
content. Furthermore, the image can be understood at a range of
scales, showing both the overall shape of the anisotropic regions,
as well as the degree and direction of anisotropy at one particular
location.
Another method of tensor visualization by explicit representa-

tion is hyperstreamlines [5, 6]. Streamlines are advected through a
vector field of one of the eigenvectors, but instead of simply draw-
ing a line to indicate a path, a surface is formed whose cross-section
indicates the orientation of the other two eigenvectors and their as-
sociated eigenvalues. As with the ellipsoids, this type of represen-
tation must be unobstructed to be interpreted, and so the density of

hyperstreamlines in the volume must be low in order to avoid visual
cluttering. Also, as with any scheme in which high-dimensional in-
formation is carefully packed into a single image, it can take some
time to learn how to “read” these visualizations.
One could argue that density of visual information is what limits

the number of hyperstreamlines that can go into a single visualiza-
tion, or prevents a stack of ellipsoid-based two-dimensional visual-
izations from being readily composited to form a volume rendering.
However, volume rendering is precisely what is needed for our ap-
plication. Three-dimensional rendering of tensor fields will almost
certainly require the elision of some of the tensor information; the
challenge is to choose which tensor characteristics to display and
how to do so.

3 Methods
3.1 Hue-balls
The first part of our method uses color to visually distinguish re-
gions exhibiting different diffusion tensors. It is based on a simple
way to visualize unit-length vectors: a colormap on the sphere that
gives a continuous mapping from direction to color. A closely anal-
ogous approach in vector visualization used a two dimensional hue-
saturation colormap on the sphere to visualize perturbation velocity
in an application of direct volume rendering to computational fluid
dynamics [19]. What turns this into a tensor visualization technique
is the application of the tensor matrix as a linear transform. At all
locations in the tensor field, a single user-specified input vector is
multiplied by the diffusion tensor matrix to create an output vector.
The tensor is assigned color by using the direction of the output
vector as the lookup into the spherical colormap. We use the term
hue-ball to describe a spherical colormap used in this way. One
motivation for the hue-ball is that throughout a region of the ten-
sor field with high spatial coherence, multiplying by the tensor will
tend to give the same result, and the assigned color will be nearly
uniform. Discerning coherent structures in the tensor field becomes
a task of visually detecting color coherence in the rendered image.
The properties of the tensor’s matrix representation are impor-

tant for understanding how the hue-ball functions. It is useful to
consider the input vector in the basis formed by the eigenvectors.
Given a tensor matrixM with unit-length eigenvectors e1, e2, and
e3, an input vector v can be expressed as

v = (v ·e1)e1 + (v ·e2)e2 + (v ·e3)e3
= (v ·e1,v ·e2,v ·e3) (1)

Then the output vectorMv can be expressed as

Mv = M(v ·e1)e1 +M(v ·e2)e2 +M(v ·e3)e3
= λ1(v ·e1)e1 + λ2(v ·e2)e2 + λ3(v ·e3)e3
= (λ1v ·e1,λ2v ·e2,λ3v ·e3) (2)

where λi is the eigenvalue corresponding to eigenvector ei. The co-
ordinates of the output vector in the eigenvector basis are the input
vector’s coordinates, scaled by the corresponding eigenvalues. We
term the change in direction between the input and output vectors
the deflection caused by the tensor.
Equation 2 indicates that the vector is always deflected towards

the principal eigenvector, since the coordinate of the input vector in
the principal eigenvector direction will by definition grow propor-
tionally larger than the components along the other eigenvectors.
There is also a relationship between the amount of deflection and
the tensor’s anisotropy. Because the anisotropy of a tensor is in gen-
eral related to the disparity among its three eigenvalues, multiplying
a vector by a tensor with high anisotropy will cause a greater rela-
tive change among its coordinates, and hence a greater deflection.



Figure 2: The diffusion tensor deflects the input vector by an
amount related to its orientation and anisotropy

(a) Deflection (b) Anisotropy

Figure 3: Comparison within one dataset slice of the amount
of deflection (a) from multiplication by the tensor matrix, with
anisotropy (b) calculated from eigenvalues.

But there is a limit to how much the vector can be deflected. Since
the diffusion tensor matrix has non-negative eigenvalues, multiply-
ing by it can not change the sign of any of the vector’s coordinates.
Both the input and output vectors will be in the same octant of the
eigenvector basis, so the angle between input and output vectors
cannot exceed 90 degrees.
Figure 2 illustrates this deflection with two sequences of ten-

sors, represented with their ellipsoidal form. Within each row, the
anisotropy of the tensor is fixed, but the orientation is changing
gradually. The upper row exhibits more anisotropy than the lower,
but the orientations are matched between the two rows. The input
vector is always pointing straight downward, above the ellipsoid,
and the output vector is below the ellipsoid, pointing away from
it. The deflection is always towards the principal eigenvector, but
there is less deflection in the less anisotropic case. This illustrates
the hue-ball’s ability to de-emphasize isotropic regions (having low
anisotropy). If the input vector points to a darker or more neutral
color than the rest of the hue-ball, then isotropic regions will be in-
conspicuous, since in these regions there is little deflection of the
input vector. Where the tensor field is more anisotropic, multiply-
ing by the tensor has the potential to deflect the vector more, and
the hue-ball can make these regions more noticeable.
Figure 3 shows how well the amount of deflection can corre-

spond to anisotropy in real data. Figure 3(a) was generated with
a gray-scale hue-ball which was black at one pole, with brightness
increasing linearly with angular deviation from the pole. The in-
put vector points into the page, towards the black pole. Figure 3(b)
shows the result of evaluating a specific anisotropy measure (called
the “anisotropy index”) everywhere in the same slice of data. While
the details of the anisotropy calculation are given in Section 3.2, the
relevant point is that the anisotropy is calculated from the eigenval-
ues of the tensor at each point in the field. This requires finding
the roots of the tensor’s cubic characteristic polynomial, demand-
ing much more computation than is needed to do the simple matrix
multiplication used for the hue-ball. Yet, the results are compara-

ble. Both have a large bright “X” shape in the center, indicating the
corpus collosum (connecting the two sides of the brain), and other
finer structures also appear in both images.
One important difference, however, is the dark seam which ex-

tends down the middle of the corpus collosum in Figure 3(a). This
occurs when the input vector is perpendicular to the tensor’s princi-
pal eigenvector, becoming aligned with either of the tensor’s minor
eigenvectors. In this configuration, there is no deflection towards
the principal eigenvector. Using a different input vector can move
the problem to another region of the dataset, but does not eliminate
it. Also, if the tensor’s major eigenvector is aligned with the input
vector, here again there will be little deflection. These are basic
limits on how well the deflection of the hue-ball’s input vector can
approximate the anisotropy.
The free parameters in the hue-ball method of tensor visualiza-

tion are the color assignment on the sphere, and the input vector
to use for multiplication with the diffusion matrix. For the sake of
simplicity we have used only the hue-ball mapping shown in Fig-
ure 8(a) (colorplate). The sphere has a band of saturated colors
around its equator, with saturation decreasing to the top and bot-
tom poles, which are a medium gray. All the colors have the same
“lightness” in the HSL color space [8], since for the sake of color-
ing a tensor field, it is visually less confusing if the hue-ball varies
only color, letting the shading model control intensity2. All the hues
appear twice on the hue-ball so as to create 180 degree rotational
symmetry. As seen in Figure 2, the input vector can be deflected
towards either end of the ellipsoid, depending on its orientation.
The rotational symmetry insures that in either case the same hue is
assigned.
In the same way that lights illuminating a scene can either be

fixed in world or view coordinates, the hue-ball input vector can ei-
ther be fixed relative to the dataset or relative to the viewpoint. If it
is fixed relative to the dataset, changing the viewpoint allows one to
inspect a single hue-ball mapping from different angles. When the
hue-ball input vector is fixed in view space, the element of interac-
tivity or motion can provide additional cues about the directionally
dependent nature of the diffusion tensor. Image interpretation can
be simplified by consistently orienting the hue-ball so that the in-
put vector points to its neutral pole, and so that some hue is always
aligned with an “up” direction. Regions in the volume which didn’t
significantly deflect the input vector will stay a neutral color, and a
consistent mapping between color and deflection direction is main-
tained.
To illustrate how the hue-ball colors measured tensor data, the

same dataset slice which was shown in Figures 1 and 3 has been
mapped by the HSL hue-ball described above and is shown in Fig-
ure 8(b) (colorplate). Some previous techniques for colormapping
diffusion tensor data assign color based on the direction of the prin-
ciple eigenvector, and then modulate the color by the anisotropy,
so that isotropic regions do not stand out. Using an appropriately
chosen hue-ball mapping, with the input vector pointing to a neu-
tral color, this happens automatically, so no anisotropy calculation
is needed.

3.2 Barycentric Opacity Mapping
Another basic ingredient in direct volume rendering is an opacity
assignment that makes uninteresting regions transparent so they do
not occlude important structures. We term such a mapping from a
diffusion tensor to opacity an opacity function. In our application,
the objects of interest (white matter fiber tracts) are by definition
very anisotropic, so high opacity should be assigned to them.
Conversely, low or no opacity should be assigned to the gray matter
on the exterior of the brain. The literature provides various metrics

2If one is seeking a truly constant luminance colormap, HSL colorspace
is too simplistic.



for anisotropy based on the tensor matrix’s three sorted eigenvalues
λ1 ≥ λ2 ≥ λ3 [13, 20]. We have chosen to use the ones
by Westin et al. [20] due to the simple geometric motivation be-
hind them. Metrics for three different kinds of anisotropy are given:

cl =
λ1 − λ2

λ1 + λ2 + λ3
(3)

cp =
2(λ2 − λ3)
λ1 + λ2 + λ3

(4)

cs =
3λ3

λ1 + λ2 + λ3
(5)

It can be shown that all the metrics fall in the range [0, 1], and that
they sum to unity: cl + cp + cs = 1. The ellipsoids drawn next
to the anisotropy metrics indicate the shape of diffusion tensor for
which that metric will be high; it will be near zero for the other
two shapes. Where only cl is high, the tensor field is said to be lin-
early anisotropic, where only cp is high, the tensor field is planarly
anisotropic. The last metric, cs is actually for isotropy; cs = 1 only
when all the eigenvalues are equal. Therefore, a single anisotropy
metric called the “anisotropy index” is defined as:

ca = 1− cs = cl + cp =
λ1 + λ2 − 2λ3
λ1 + λ2 + λ3

(6)

(a) cl (b) cp (c) ca

Figure 4: Different anisotropies measured on slice.

To see how the anisotropy can vary in measured data, Figure 4
shows the metrics cl, cp, and ca evaluated over the same dataset
slice seen in previous figures, with brighter areas indicating higher
anisotropy.
These anisotropy measures provide a simple way of assigning

opacity to diffusion tensors for direct volume rendering. A function
whose domain and range are both [0, 1] can map the values from
an anisotropy measure (such as cl) to opacity, assuming that the
chosen anisotropy measure is high exactly in those regions that are
deemed important for visualization.
A more flexible approach uses multiple anisotropy measures to

facilitate more complex opacity functions. In light of the normal-
ization built into cl, cp, and cs, we propose the use of barycentric
coordinates to depict the space of possible anisotropies, as shown
in Figure 5. For every point in the triangle, there is a corresponding
ellipsoid for which the anisotropy measures (cl, cp, and cs) eval-
uate to the point’s barycentric coordinates. In the figure, the three
ellipsoids accompanying the corners of the triangle are representa-
tive of the ellipsoids which correspond to those corners. At each
vertex of the triangle, one of the anisotropy measures is one, while
the two others are both zero. Along the sides of the triangle, one of
the anisotropy measures is zero, and the other two measures sum to
one.
The same two-dimensional barycentric space of anisotropies can

serve as the domain of an opacity function for direct volume render-

cs = 1

cl = 1 cp = 1

cs = 0, ca = 1

cl = 0cp = 0

Figure 5: Barycentric space of anisotropies

ing a diffusion tensor field. This class of opacity functions can ac-
centuate the range of anisotropy types in a very flexible way, while
including the previously described opacity functions (which depend
on a single anisotropy metric) as special cases. Though space does
not permit an exploration of the idea, we also note here that the
barycentric space can also serve as the domain of a color mapping
(“transfer function”) applied to the tensor field, allowed different
anisotropies to be discerned by varying their color.
Figure 6 demonstrates some barycentric opacity maps. Each

opacity map is depicted by gray-scale representation: brighter re-
gions in the triangle correspond to higher opacity assignment. For
the purposes of this figure, the effect of the opacity map is demon-
strated by applying the map to the the tensor dataset, resulting in a
scalar volume of opacity values. This new scalar volume is visu-
alized with a linear opacity function, and shaded according to the
gradient of opacity values. A single white light is coming from the
upper right. One can see that analogous to Figure 4, appropriately
chosen opacity functions allow one to see the form of structures in
the dataset which have one predominant type of anisotropy. It is
these structures which will be colored by the action of the hue-ball,
and illuminated according to lit-tensors.

3.3 Lit-Tensors
Streamlines used in vector visualization are sometimes hard to in-
terpret because they lack the shading cues which we are accus-
tomed to seeing on surfaces. However, illuminated streamlines
(“lit-lines”) have shading and highlights that give information about
their direction and curvature, creating the appearance of shiny fil-
aments [22]. In the case of diffusion tensor visualization, we have
made tensors opaque based on their anisotropy, but no other infor-
mation about the tensor is indicated. We aim to show that a means
of illuminating diffusion tensors, called lit-tensors, can help disam-
biguate the type and orientation of anisotropy. The constraints we
followed for designing such a scheme are:

1. In regions of complete linear anisotropy, the lighting model
should be identical to that of illuminated streamlines. Com-
plete linear anisotropy means movement by diffusion is con-
strained to one dimension, so it is sensible for the light-
ing model to degenerate to one already developed for vector
fields.

2. In regions of complete planar anisotropy, the lighting model
should be the same as with traditional surface rendering.
The obvious choice for the “surface normal” for a planar
anisotropic tensor is the third eigenvector, perpendicular to
the plane formed by the span of the first two eigenvectors (as-
sociated with the largest two eigenvalues).



cl cp

cs

cl cp

cs

cl cp

cs

cl cp

cs

Figure 6: Examples of barycentric opacity maps and resulting vol-
umes

3. There has to be a smooth interpolation between these two
extremes. Since tensor data can exhibit a wide variety of
anisotropies, allowing small variations in anisotropy to lead
to large changes in shading will probably create a more con-
fusing image.

This can be seen as a problem of how to interpolate illumination
between different codimensions. The codimension of the diffusion
tensor’s representative ellipsoid is two in the linear anisotropy case,
and one with planar anisotropy. Previous work [1] has rigorously
developed illumination methods for general manifold dimension
and codimension, but did not cover cases part-way between differ-
ent codimensions. Unlike that work, no claim to physical accuracy
or plausibility is made for the model presented here; it is just one
simple way of satisfying the constraints above.
We take as our starting point the Blinn-Phong lighting model [3]:

I = Iambient + Idiffuse + Ispecular
= kaAλOλ + Iλ(kdOλL ·N+ ks(H ·N)n) (7)

ka, kd, and ks control the contributions of ambient, diffuse, and
specular reflection to the final image. Following Foley et al. [8], we
add the subscript λ to those variables which vary according to color.
For example, there are separate values Ir, Ig, Ib, for the red, green,
and blue components of the directional light source. The ambient
light color is Aλ. Instead of representing the intrinsic object color
with different ka and kd for red, green, and blue, we use Oλ for
object color and keep ka and kd as separate controls. In our case,
the intrinsic object color is determined by the output of the hue-
ball. L is the vector pointing towards the directional light source,
V points towards the eye, and N is the surface normal. Note that
instead of using (V ·R)n for the specular component, whereR is
the reflection of L acrossN, we are using the “half-way” vectorH
in (H ·N)n. H is the normalized average of L andV, and n is the
shininess exponent.
Because a streamline is one-dimensional, at any given point

along it there is an infinite set of normals, all perpendicular to the
tangent direction T, radiating outwards in a circle. If naively us-
ing Equation 7 to illuminate a streamline, one must find the normal
which is in the plane spanned by L and T to evaluate L ·N. Simi-
larly, another specific normal must be found to evaluateH ·N. The
insight which makes lit-lines simple is that one does not need to ac-
tually find a specific normal in order to evaluate a dot product with
it. With Pythagoras’s theorem, the dot product can be expressed in
terms of the tangent T:

U ·N =
√
1− (U ·T)2 (8)

where U is either L or H, for the diffuse and specular terms, re-
spectively.
The relevant property of Equation 8 is that the lighting calcu-

lation depends on a vector (the tangent) which gives the object’s
direction, instead of a depending on a normal. The direction and
orientation of a diffusion tensor is determined by not one, but two
vectors: the first and second eigenvectors3. Both of these could be
interpreted as tangents, but their relative importance is determined
by the magnitudes of the corresponding eigenvalues. To character-
ize the relative importance of the first two eigenvectors in determin-
ing the tensor’s orientation, we introduce a parameter cθ. Assuming
that the eigenvalues are ordered λ1 ≥ λ2 ≥ λ3, we define

cθ =
π

2
cp
ca
=
π(λ2 − λ3)
λ1 + λ2 − 2λ3

(9)

As anisotropy varies from completely linear (cl = 1; cp = 0) to
completely planar (cl = 0; cp = 1), cθ varies from 0 to π2 . The
role of cθ is to control how much the second eigenvector contributes
to the lighting of the diffusion tensor. In the linear case, only the
first eigenvector determines the tensor orientation, and in the planar
case, both the first and second eigenvectors matter equally.
The expression to be used in lieu of dot products withN is:

“U ·N” =
√
1− (U · e1)2 − (U · e2 sin(cθ))2 (10)

Note that in the case of linear anisotropy, sin(cθ) = sin(0) = 0,
so the contribution from e2 vanishes, and the expression reduces to
the formula for lit-lines (Equation 8), with the principal eigenvector
e1 taking the role of the tangent T. This is appropriate, since in
linear anisotropy, the principal eigenvector points in the direction
of movement, as does a streamline’s tangent vector.
In planar anisotropy, sin(cθ) = sin(π2 ) = 1, and the contribu-

tions of the two dot products are equal. This means that for any
other vectorW such that

(W · e1)2 + (W · e2)2 = (U · e1)2 + (U · e2)2 (11)
3Because the eigenvectors always form an orthogonal basis, and because

we are adopting two-sided lighting, the third eigenvector does not contribute
any additional information.



Equation 10 will have the same value. Therefore, in planar
anisotropy the lighting model is rotationally symmetric around e3.
Rotational symmetry in this case is actually an important feature
of the lighting model. In planar anisotropy, the diffusion tensor el-
lipsoid degenerates to a disc, and any vector in the plane spanned
by the disc is an eigenvector. Because of this numerical instability,
the calculated directions of the first and second eigenvectors will
be essentially random. The illumination should not be sensitive to
this arbitrary orientation, and should only be a function of the third
eigenvector. In fact, one can use Pythagoras’s theorem to show that
if cθ = π

2 , Equation 10 gives an exact formula forU ·e3. Interpret-
ing both e1 and e2 as surface tangents, then the surface normal N
is aligned along e3. Therefore the model contains standard surface
shading as a special case.

Figure 7: Sequence of volumes of differing anisotropy, rendered
with lit-tensors. Anisotropy varies gradually between the nine vol-
umes, going in scanline order.

To demonstrate lit-tensors, Figure 7 shows nine different syn-
thetic diffusion tensor datasets which were direct volume rendered
with a fixed viewpoint and light. The anisotropy index ca of the
sphere is also constant in every case, but cθ is changing. The dataset
in the upper left has complete linear anisotropy in a concentric cir-
cular pattern (along lines of latitude). The dataset in the middle has
complete planar anisotropy (and hence looks just like a standard
surface rendering). The dataset in the lower left has complete linear
anisotropy along lines of longitude, going from pole to pole. The
images provide a convincing sense of surface anisotropy, which is
not a typical trait in direct volume renderings. Figure 8(c) on the
colorplate shows the same sequence of volumes colored with a hue-
ball.

4 Results
Figure 8 (colorplate) illustrates the action of hue-balls. Figure 9
shows all the components of diffusion tensor volume rendering that
have been described so far. The diffusion tensor dataset being ren-
dered (the same as in Figure 6) is a 128 by 128 by 60 voxel scan of
a live brain. Our volume renderer is a simple ray-caster which uses
one ray per pixel. When rendering a tensor volume, it calculates the
eigensystem at each point along the ray, then uses the eigenvalues

to determine opacity (according to the anisotropy opacity map), and
the eigenvectors to determine lighting (according to lit-tensors).
Figure 9(a) is a rendering of a scalar dataset which was gener-

ating by mapping the tensor dataset through an anisotropy opacity
map similar to the third map in Figure 6. The general structure
of the anisotropic region as a whole is clear, but the distinct white
matter fiber tracts are not easily distinguishable. This is remedied
in Figure 9(b), where the volume is colored by the hue-ball, but the
surface shading is the same as before (using only one white light).
Now the regions with distinct anisotropy directions attain distinct
colors. For example, the cingulum bundle (blue) is now clearly vis-
ible as a distinct tract from the corpus collosum (orange) below it.
Some other major features are labeled. Figure 9(c) shows the re-
sult of using lit-tensors without a hue-ball. The light positions and
colors are the same as in 9(a). The dark regions are mainly pla-
narly anisotropic; they need to be correctly aligned to reflect light,
whereas linearly anisotropic regions are inherently more reflective.
Figure 9(d) shows the use of a hue-ball with lit-tensors. With one
fixed rendering, the effect of lit-tensor highlights is not as clear as in
the accompanying video, in which the highlights are seen to travel
across the features with viewpoint motion.

5 Discussion
Applying direct volume rendering to diffusion tensor visualization
is challenging because the complexity of the underlying data val-
ues prohibits “direct” mapping from the data to color and opacity.
Counter to the appealing simplicity of typical scalar direct volume
rendering, we do have to perform significant intermediate geomet-
ric processing in order to arrive at color and opacity values for each
location in the field. The main contribution of this paper is a set of
tensor analysis methods (hue-balls, barycentric opacity maps, and
lit-tensors) which bridge the inherent complexity of the raw ten-
sor data with the simplicity of direct volume rendering. Because
anisotropy is a fundamental structural characteristic of the tensor
field, the methods presented all portray information related to the
tensor’s anisotropy. Hue-balls strive to color only those regions
which are anisotropic in a way that indicates the direction and orien-
tation of the anisotropy. The barycentric opacity maps allow precise
selection of structures within the dataset according to the type of
anisotropy within them. Finally, lit-tensors accentuate large-scale
patterns of anisotropy type and orientation across the volume.
One of the strategies of this work was to avoid explicit reliance

on the principal eigenvector, since in a majority of positions within
our data, the type of anisotropy (planar or spherical) means that the
calculated direction of the principal eigenvector will be unreliable.
The hue-ball embodies this intent. While it indicates information
about the orientation of anisotropy without calculating the eigen-
system, it is at the cost of requiring user interaction, since the hue-
ball depends on a user-specified input-vector. Lit-tensors do depend
on the calculated orientation of the principal eigenvector, but by de-
sign, the lighting model is insensitive to the direction of the prin-
cipal eigenvector precisely in those situations (planar anisotropy)
where its calculated direction is unreliable.
There is a subtle issue in the rendering process which strikes us

as an interesting problem for future work. In scalar volume render-
ing, the usual technique is to resample data values by interpolation,
and then map them through the transfer function. One could also re-
sample vectors by interpolating the vector data component-wise. It
is not clear to us, however, how best to interpolate diffusion tensor
data for direct volume rendering. One could interpolate the matrix
representation component-wise at each point along the ray, but then
the entire eigensystem has to be recalculated at each step. In the
interests of simplicity, this is the approach we are currently using.
We resort to this method because interpolating pre-computed

eigenvectors or eigenvalues is complicated by a correspondence



problem. Given a set of three eigenvectors at one sample point
x1, and another three eigenvectors at a second sample point x2, we
do not immediately know the correspondence between the two sets
of eigenvectors. Knowing the continuous tensor field from which
the discrete dataset is sampled, one could learn if, for example, the
principal eigenvector at x1 is continuous with the principal eigen-
vector at x2; this need not be the case in general. Even if the two
sets of eigenvectors have identical orientations, it isn’t necessarily
the case that pairs of eigenvectors with the same orientation actu-
ally correspond to each other. A similar correspondence problem
complicates eigenvalue interpolation. Further research on efficient
and accurate strategies for diffusion tensor interpolation is required.
The current problems in the methods presented point to various

possibilities for further work. The biggest draw-back to the current
techniques is the lack of interactivity. However, Figure 3 hints that
to a coarse approximation, the hue-ball could be used to measure
anisotropy and hence form the basis of a very fast opacity func-
tion. If one foregoes directional lighting, this raises the possibility
of interactive diffusion tensor visualization, which certainly war-
rants further investigation. An unfortunate draw-back of lit-tensors
is the difficulty in discerning the edges of structures that have been
illuminated by them. In the renderings of scalar volumes shown in
Figure 6, the surface normal gave helpful cues to the shape of the
object which was selected by the opacity map. While lit-tensors
do succeed in indicating the direction of anisotropy relative to the
lights and viewpoint, they do not give sufficient information about
the shape of anisotropic structures to allow disambiguation of con-
figurations such as partial self-occlusion. Also, the colormap used
with the hue-ball could have been more carefully designed. A map-
ping from a perceptually uniform colorspace may permit a more
precise representation of direction.
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(a) Sample hue-ball. The spheri-
cal colormap has mirror symme-
try across its equator.

(b) Result of applying hue-ball
shown in (a) to a dataset slice,
with input vector pointing into the
page, towards gray. Inset hue-ball
projection indicates hue-ball ori-
entation

(c) Same sequence of volumes seen in Figure 7, now colored
with a hue-ball. The hue-ball configuration is the same as in
(b). When anisotropy is entirely linear (upper right and lower
left), color is entirely determined by orientation of anisotropy.
At planar anisotropy (middle), color indicates surface normal
orientation relative to the viewpoint.

Figure 8: Hue-balls and their use in diffusion tensor volume rendering

(a) Scalar volume, colored lights (b) Scalar volume, hue-ball coloring

(c) Tensor volume, colored lights (d) Tensor volume, hue-ball coloring

Figure 9: Demonstration of various diffusion tensor volume rendering techniques. See text for description.


