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Abstract Recent work has outlined a framework for analyzing diffusion tensor gra-

dient and covariance tensors in terms of invariant gradient and rotation tangents,

which span local variations in tensor shape and orientation, respectively. This chap-

ter hopes to increase the adoption of this framework by giving it a more intuitive

conceptual description, as well as providing practical advice for its numeric imple-

mentation. Example applications are described, with an emphasis on decomposing

the third-order gradient of a diffusion tensor field.

1 Introduction

Diffusion tensor imaging (DTI) analysis aims to describe the complex and subtle

architecture of white matter in the central nervous system based on multi-variate

MRI measurements [3]. One of the challenges in tensor-valued image processing is

determining how to handle the multiple degrees of freedom in each tensor sample.

Many algorithms treat the coefficients of the tensor (as measured in the laboratory

coordinate frame of the scanner) as channels in a multi-scalar image, similar to the

independent color channels of an RGB image. The mathematics of tensor analysis,

however, provide ingredients for designing tensor processing algorithms in a way

that respects the biologically meaningful shape and orientation properties associated

with the diffusion tensor.

The basic idea of this approach is to treat diffusion tensors as elements of a six-

dimensional vector space, and to build at each tensor value D a coordinate system

with three basis tensors (the invariant gradients) that span local variations in ten-

sor shape, and three basis tensors (the rotation tangents) that span local variations

in tensor orientation. This allows, for example, an edge detector to be sensitive to

changes in anisotropy (part of tensor shape) but not fiber direction. Recent work [22]
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gives a detailed account of invariant gradients and rotation tangents, and the current

chapter will not reproduce all the derivations. Rather, we hope here to give a better

intuitive description of the method, to give more concrete information about how

to implement it, and to provide an additional demonstration of its value for edge

detection in tensor fields.

2 Mathematical Background

Describing our framework is easier with coordinate-free tensor expression. While it

is always more concrete to represent tensors with their 3×3 matrix of coefficients,

coordinate-free expressions can permit more concise derivations, and can also build

on existing intuition about vector spaces and their bases. The notation reviewed here

respects the difference between coordinate-free and coordinate-based expressions.

Our notation is summarized in Table 1, much of which is based on conventions of

tensor analysis [10, 19]. A coordinate-free vector v has a representation in basis B
as three coefficients [v1 v2 v3]t = v = [v]B or just [v] where B is assumed. Each of the

vi coefficients is determined by vi = v ·bi. We use Einstein notation: a repeated index

within a term implies summation over that index, e.g., [Dv]i = Di jv j = ∑3
j=1 Di jv j;

and D = Di jbi⊗b j = ∑3
i=1 ∑3

j=1 Di jbi⊗b j.

This work starts with the recognition that tensors are linear transforms, and that

linear transforms constitute a vector space. We stress these points because they ap-

pear infrequently in the tensor analysis commonly used for DTI. The tensor product

u⊗ v is a linear transform defined by (u⊗ v)w = u(v ·w) for all vectors w [19].

Any linear transform T can be expressed as a linear combination of tensor prod-

ucts of orthonormal basis vectors bi, according to T = Ti jbi⊗b j and Ti j = bi ·Tb j.

Tensor contraction A :::B is an inner product on tensors. A principal frame E = {ei}
is an orthonormal basis of eigenvectors of D, which diagonalizes the matrix rep-

resentation [D]E = diag(λ1,λ2,λ3). The spectral decomposition D = λiei⊗ ei is a

coordinate-free expression of a tensor D in terms of its eigensystem.

While it is common to think of D as the covariance matrix of molecular displace-

ments due to diffusion, it also revealing to recognize that a diffusion tensor D is a

symmetric linear transform that maps (by Fick’s first law) from concentration gra-

dient vector ∇c to diffusive flux vector j = −D∇c [12]. This fundamental property

was pointed out by Basser in his original DTI work [3]. Diffusion tensors are also

positive-definite [3], the significance of which for diffusion tensor image processing

is discussed in Section 8.

Sym3 is a six-dimensional vector space, as seen by forming an orthonormal basis

BBB = {Biii}iii=111..666 for Sym3 from an orthonormal basis B = {bi}i=1,2,3 for W .
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Table 1 Mathematical Conventions and Notation

W three-dimensional space

W ⊗W three-dimensional second-order tensors

Sym3 symmetric tensors in W ⊗W

SO3 three-dimensional rotations

B = {bi}i=1,2,3 orthonormal basis for W

δi j δi j = 1 if i = j, 0 otherwise

v vector in W

v = [v]B matrix representation of v in B; vi = v ·bi

D second-order tensor in Sym3

D = [D]B matrix representation of D in B; Di j = bi ·Db j

I identity tensor

u⊗v ∈W ⊗W , tensor product of u and v; [u⊗v]i j = uiv j

A :::B = tr(ABt) = Ai jBi j ∈ R; contraction of A and B
|A| =

√
A :::A, tensor norm of A, the Frobenius norm of matrix [A]

A = tr(A)I/3, isotropic part of A
Ã = A−A, deviatoric part of A

{λi},{ei} eigenvalues, eigenvectors of D = λiei⊗ ei ; λ1 ≥ λ2 ≥ λ3

{Ki},{Ri} orthogonal invariant sets; K1 = trace; R2 = FA; K3 = R3 = mode

{∇̂∇∇DKi(D)} cylindrical invariant gradients, basis for shape variation around D
{∇̂∇∇DRi(D)} spherical invariant gradients, basis for shape variation around D
{Φ̂ΦΦ i(D)} rotation tangents, basis for orientation variation around D

GGG third-order tensor in Sym3⊗W ; matrix representation G = [GGG ]

F(x) tensor field; the DTI volume

D :::GGG = Di jGi jkbk ∈W contraction of GGG with D
∇J = ∇∇∇DJ :::∇F, spatial gradient of J in F
∇Ĵ = ∇̂∇∇DJ :::∇F, projected gradient of J

∇φ̂i = Φ̂ΦΦ i :::∇F, spatial “gradient” of ei rotation

B111 = b1⊗b1

B222 = (b1⊗b2 +b2⊗b1)/
√

2

B333 = (b1⊗b3 +b3⊗b1)/
√

2

B444 = b2⊗b2

B555 = (b2⊗b3 +b3⊗b2)/
√

2

B666 = b3⊗b3

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)

Tensors in Sym3 can be decomposed into vector components by

D = DiiiBiii = (D :::Biii)Biii. (2)

We use bold subscripts iii to index components of Sym3 considered as vectors rather

than tensors. In addition to the coordinate-free description by (1), the treatment of
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symmetric tensors as vectors can also be shown with matrix representations:

[D]BBB =

⎡⎢⎢⎢⎢⎢⎢⎣
D111

D222

D333

D444

D555

D666

⎤⎥⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎣

D11√
2D12√
2D13

D22√
2D23

D33

⎤⎥⎥⎥⎥⎥⎥⎦ (3)

[D]B =

⎡⎣D11 D12 D13

D22 D12

sym D33

⎤⎦=

⎡⎣ D111 D222/
√

2 D333/
√

2

D444 D555/
√

2

sym D666

⎤⎦ . (4)

3 Conceptual Overview

As described in [22], a tensor D is rotated by R in SO3 by

ψ(R,D) = RDRt (5)

which changes the eigenvectors but not the eigenvalues (and hence not the shape)

of D. The orbit SO3(D) of D is the set of all possible values of ψ(R,D), that is, all

reorientations of D. Two tensors have the same shape if and only if they are on the

same orbit. An invariant J is a scalar-valued function of tensors that is constant on

orbits: ψ: SO3(D0) = SO3(D1)⇒ J(D0) = J(D1). Trace tr() and determinant det()
are invariants, as are the eigenvalues, and any function of the eigenvalues.

We create at each tensor D a local orthonormal Sym3 basis, with basis vectors (or

“basis tensors”) aligned with biologically meaningful degrees of freedom, namely

shape and orientation. The tensor-valued invariant gradients are perpendicular to

the orbits, and thus span local variations in tensor shape. The tangents to orbits,

which we term rotation tangents, span local variations in tensor orientation, see

Figure 1. In the following we develop expressions for the invariant gradients and

Fig. 1 Schematic view of
degrees of freedom of shape
and orientation variation
around a given tensor D.
The tangents to the orbit
SO3(D) (the rotation tangents,

notated Φ̂ΦΦ i) span variation
in orientation around D.
The gradients of invariants

(notated either ∇̂∇∇DKi or ∇̂∇∇DRi
depending on the invariant
set chosen) span variations in
shape around D.

D

SO
3(D)

invariant gradients 
(shape variation)

rotation tangents
(orientation variation)

Φ̂1

Φ̂2
Φ̂3

∇̂DK1

∇̂DK2
∇̂DK3
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rotation tangents that can be applied for practical operations. The full explanation

for these derivations can be found in [22].

4 Invariant Gradients

Just as a scalar function defined over three-dimensional space has a vector-valued

gradient that points in the direction of greatest increase, the gradient of a tensor

invariant is a tensor-valued direction of fastest increase in the invariant. In terms of

a first-order Taylor expansion [19],

J(D0 +dD) = J(D0)+
∂J
∂D

(D0) :::dD+O(dD2) (6)

∇∇∇DJ =
∂J
∂D

. (7)

We use ∇∇∇D to denote the gradient of a function with respect to its tensor-valued

argument (while gradients with respect to position in W are denoted by the usual

∇). Two invariants J1 and J2 are orthogonal if ∇∇∇DJ1(D) ::: ∇∇∇DJ2(D) = 0 for all D,

which intuitively means their level-sets are everywhere perpendicular.

Previous work has advocated two particular sets of three orthogonal invariants,

notated Ki and Ri [15]

K1(D) = tr(D) R1(D) = |D|
K2(D) = |D̃| R2(D) = FA(D)

K3(D) = R3(D) = mode(D) .

(8)

The mode invariant is [13]

mode(D) = 3
√

6det(D̃/|D̃|). (9)

The Ki and Ri invariant sets can be understood as cylindrical (Ki) or spherical (Ri)

coordinate systems on the three-dimensional space of diagonal matrices (D12 =
D13 = D23 = 0), centered on a central axis where D11 = D22 = D33 [15]. We adopt

these invariant sets because they naturally isolate biologically significant tensor at-

tributes of size (tensor trace K1 [28, 34] or norm R1), amount of anisotropy (eigen-

value standard deviation K2 or fractional anisotropy FA = R2 [5, 24, 25, 33, 35]),

and type of anisotropy (mode K3 = R3) [22]. Note that Trace (K1) and FA (R2) are

not part of the same invariant set and are therefore not orthogonal, despite their

common paired use as two complementary shape measures [20, 27].

The third invariant in both sets is mode [13]. Mode is a dimensionless parameter

of anisotropy type, varying between -1 and +1, proportional to eigenvalue skewness

[15]. Negative mode indicates planar anisotropy (oblateness, two large eigenvalues

and one small eigenvalue); positive mode indicates linear anisotropy (prolateness,

one large eigenvalue and two small). Fig. 2 illustrates the space spanned by tensor



304 Kindlmann and Westin

FA

Mode

0.
00

0.
17

0.
32

0.
47

0.
59

0.
70

0.
78

0.
85

0.
91

0.
95

0.
99-1.00

-0.87
-0.50 0.00 0.50

0.87
1.00

Fig. 2 Illustration of the bivariate space of FA = R2 and Mode = R3 = K3 for tensors of fixed norm
R1. Tensors not shown (at high FA and negative mode) have negative eigenvalues.

mode and FA, using superquadric tensor glyphs [16]. Mode becomes less meaning-

ful when K2 or R2 is low.

The tensor-valued gradients of Ki and Ri span local shape variations [15]:

∇∇∇DK1(D)=I ∇∇∇DR1(D)=D/|D|
∇∇∇DK2(D)=θ(D) ∇∇∇DR2(D)=

√
3
2

(
θ(D)
|D| −

|D̃|D
|D|3
)

∇∇∇DK3(D) = ∇∇∇DR3(D) = 3
√

6θ(D)2−3K3(D)θ(D)−
√

6I
K2(D)

(10)

where θ(D) = D̃/|D̃|. To create elements of an orthonormal Sym3 basis, we nor-

malize the invariant gradients. ∇̂∇∇DJ denotes the unit-norm tensor-valued gradient of

invariant J:

∇̂∇∇DJ(D) = ∇∇∇DJ(D)/|∇∇∇DJ(D)| . (11)

These formulae obscure the fact that the numerical implementation of the invari-

ant gradients is fairly simple. Finding the coefficients for the matrix representation

of ∇̂∇∇DK1 = ∇∇∇DK1 and ∇̂∇∇DR1 = ∇∇∇DR1 is straightforward. With
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[D̃]B =

⎡⎣ 1
3 (2D11−D22−D33) D12 D13

1
3 (2D22−D11−D33) D23

sym 1
3 (2D33−D11−D22)

⎤⎦ ,

(12)

∇̂∇∇DK2 = ∇∇∇DK2 = D̃/|D̃| is easily computed. Knowing that the magnitude of ∇∇∇DR2

will be normalized to compute ∇̂∇∇DR1, we can easily compute

E =

√
2

3
|D|2∇∇∇DR2 =

|D|
|D̃|

D̃− |D̃||D|D (13)

and then ∇̂∇∇DR2 = ∇̂∇∇DFA = E/|E|. The formula for the remaining gradient ∇∇∇DK3 =
∇∇∇DR3 = ∇∇∇Dmode is unwieldy, but it can be found by starting with the gradient of the

determinant, which is is known from tensor analysis as [19]

∇∇∇D det(D) = det(D)D−1 . (14)

Subtracting out the components of ∇∇∇D det(D) parallel to ∇̂∇∇DK1 and ∇̂∇∇DK2 gives

G = ∇∇∇Ddet− (∇∇∇Ddet ::: ∇̂∇∇DK1)∇̂∇∇DK1− (∇∇∇Ddet ::: ∇̂∇∇DK2)∇̂∇∇DK2 (15)

which is simple to compute as a matrix given the equations above. It can be

shown [23] that G vanishes only at the extremum of mode (where the gradient of

mode vanishes anyway), so without loss of generality we can then define

∇̂∇∇DK3 = G/‖G‖ . (16)

which completes the numerical implementation of the normalized invariant gradi-

ents.

5 Rotation Tangents

The rotation tangents are defined in terms of the tensor eigenvectors {e1,e2,e3},
which are important for DTI applications. In nervous tissue, the principal eigenvec-

tor e1 is aligned with the direction of the white matter fiber tracts [9, 14, 32], which

is the basis of most deterministic fiber tracking algorithms [7, 11].

Let Rv(φ)∈ SO3 be rotation by angle φ around v. We define the rotation tangent
ΦΦΦ i(D) associated with eigenvector ei of D as the change in tensor value due to

infinitesimal rotations (5) around ei [22]:
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ΦΦΦ i(D) =
∂ψ(Rei(φ),D)

∂φ

∣∣∣∣
φ=0

⇒ (17)

ΦΦΦ1(D) = (λ2−λ3)(e2⊗ e3 + e3⊗ e2) , (18)

ΦΦΦ2(D) = (λ1−λ3)(e1⊗ e3 + e3⊗ e1) , (19)

ΦΦΦ3(D) = (λ1−λ2)(e1⊗ e2 + e2⊗ e1) . (20)

The rotation tangents ΦΦΦ i(D) are mutually orthogonal, and all ΦΦΦ i(D) are orthogonal

to all invariant gradients [22].

The eigenvalue differences that scale the magnitude of the ΦΦΦ i correspond to

the intuition that if two eigenvalues are equal, then the tensor is rotationally sym-

metric, and there is no effect of rotating around its symmetry axis. To strengthen

this intuition, for a tensor D = λi(ei ⊗ ei) (spectral decomposition), we define

P = ‖ΦΦΦ i‖(ei⊗ ei) which has the same eigenvectors as D, but has eigenvalues that

reflect the magnitudes of the corresponding rotation tangents. These tensors are vi-

sualized in Figure 3(e). When D has rotational symmetry, either with linear or planar

anisotropy (where mode K3 is extremal), the orientation space of D is only two-

dimensional (instead of three-dimensional), thus one eigenvalue of P is zero, and

the P glyph is a flat disc. Note also that the overall size of P varies with anisotropy,

as measured by K2. Interestingly, although the space of orientation variation is in

general three-dimensional, it is never isotropic: the P glyphs are never spheres (ex-

cept at P = 0). Thus, the P glyphs provide an general sense of how the space of

orientation variation depends on tensor anisotropy and mode. The total number of

degrees of freedom in the tensor is always six, but at rotational symmetries, the dis-

tinction between directions of shape variation and directions of orientation variation

becomes blurred, as described in [22].

Unit-norm rotation tangents are defined as

Φ̂ΦΦ1(D) = (e2⊗ e3 + e3⊗ e2)/
√

2 (21)

Φ̂ΦΦ2(D) = (e3⊗ e1 + e1⊗ e3)/
√

2 (22)

Φ̂ΦΦ3(D) = (e1⊗ e2 + e2⊗ e1)/
√

2 . (23)

There are no simple matrix expressions for the Φ̂ΦΦ i in the laboratory frame because

they depend on the tensor eigenvectors, but they are simple to create once the eigen-

vectors are found. Our approach for tensor analysis is the combination of normalized

invariant gradients (either {∇̂∇∇DKi} or {∇̂∇∇DRi}) and rotation tangents {Φ̂ΦΦ i}, which to-

gether constitute an orthonormal Sym3 basis, designed around a given tensor, to

span the sub-spaces of shape and orientation variation.

6 Example Application: Edge Detection

With the machinery of invariant gradients and rotation tangents in place, one of

the simplest applications is edge detection, based on measuring the spatial gradient
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within the tensor data. Let F be a smooth tensor-valued image, or tensor field that

represents DTI data:

F : W �→ Sym3 (24)

F(x) = D. (25)

The spatial gradient of F is a third-order tensor [19], previously described by Pajevic

et al., as part of their spline-based reconstruction [29]:

∇F : W �→ Sym3⊗W

∇F(x) = GGG

[GGG ]i jk = Gi jk = [∇F(x)]i jk =
[

∂F(x)
∂xk

]
i j

(26)

(26) describes how to compute the third-order gradient tensor; each Di j in the matrix

representation of the tensor is replaced by the spatial gradient of Di j in the field.

Dxx

Dyy

Dzz

K1 = const

(a) Isocontour of K1 (b) Isocontours of K2 (c) Isocontours f K3

(d) Glyphs of D (e) Glyphs of P

Fig. 3 The space of effective orientation change in D = λi(ei⊗ei), visualized by P = ‖ΦΦΦ i‖(ei⊗ei).
Symmetries in D correspond to zero eigenvalues in P.
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Considering the coordinate-free representation, however, we see that the contraction

of the full tensor gradient GGG with a fixed second-order tensor T

T :::GGG = T :::∇F(x) = ∇(T :::F(x)). (27)

is the vector-valued gradient of the scalar T:::F(x). Thus, contractions of the gradient

tensor ∇F can access the differential structure of attributes of F. Invariant gradients

and rotation tangents provide the tensors with which we contract ∇F, generating

three spatial gradient vectors of tensor shape, and three spatial gradients of tensor

orientation.

Using the normalized invariant gradients, we define the projected gradient of

invariant J in tensor field F by contracting ∇F with the unit-norm ∇̂∇∇DJ

∇Ĵ : W �→ W

∇Ĵ(x) = ∇̂∇∇DJ(F(x)) :::∇F(x) (28)

= ∇∇∇DJ(F(x)) :::∇F(x)/|∇∇∇DJ(F(x))| (29)

∇Ĵ is an abuse of notation to indicate normalization by tensor norm |∇∇∇DJ|, rather

than vector length |∇J|; i.e., ∇Ĵ �= ∇̂J. ∇̂∇∇DJ differs from the regular spatial gradient

of the invariant ∇J by a scaling factor that depends on the parameterization of J. By

using normalized invariant gradients, the specifics of parameterization are removed.

To numerically compute the projected invariant gradient of an invariant J, one first

computes the 3× 3 matrix [∇̂∇∇DJ] (Sect. 4 describes this for ∇̂∇∇DKi and ∇̂∇∇DRi), then

computes the 3× 3× 3 matrix [∇F] of the tensor field spatial derivative by finding

the spatial gradient of each tensor coefficient Di j (26). The project gradient is then

found by contraction:

[∇Ĵ(x)]k = ∇̂∇∇DJ(F(x)) :::∇F(x)

= ∑
i=1,2,3

∑
j=1,2,3

[∇̂∇∇DJ(F(x))]i j[∇Di j]k (30)

Using the rotation tangents, we define three spatial gradients of orientation, one

for each of the tensor eigenvectors

∇φ̂i : W �→ W

∇φ̂i(x) = Φ̂ΦΦ i(F(x)) :::∇F(x) . (31)

∇φ̂i is also clearly an abuse of notation: there is no scalar field φi in which we can

measure the spatial gradient. Rather, ∇φ̂i indicates the direction (in W ) along which

the tensor orientation “φi” around eigenvector ei varies fastest. Indeed, this shows

the utility of the rotation tangents: it allows the rate of rotation around eigenvector

ei to be isolated and measured, even though there is no global φi scalar quantity that

represents the orientation around ei. The numerical computation of the orientation

gradients is similar to that in (30).
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To demonstrate this machinery for edge detection in a slice of a brain scan, Fig. 4

illustrates the tensor field gradient |∇F| and its decomposition along the invariant

gradients and rotation tangents. Note that most of the gradient ∇F is aligned along

∇̂∇∇DR1, variation of tensor norm R1, because of the large difference in diffusivity

between the parenchyma (white and gray matter) and CSF. Previous work which
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√
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f g
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Fig. 4 Decomposition of tensor field gradient the magnitudes of the projected Ri invariant gradi-

ents |∇F| (a) with ri = |∇R̂i|, and the magnitudes of the orientation gradients pi = |∇φ̂i|. Splitting
r1 (b) from the rest of the gradient (c) shows how most of the gradient is aligned with variation
in tensor norm R1, isolating the parenchyma-CSF boundary. Splitting (c) further, the remaining
invariant gradients (d) capture tissue boundaries better than rotation tangents (e). The component

along R2 = FA (f) in particular clearly shows the white matter boundary. The combination of |∇φ̂3|
(j) and |∇R̂3| (g) into (k) delineates white matter tracts that are adjacent yet distinctly oriented, such
as between the cingulum bundle and corpus callosum, and between the tapetum, posterior corona
radiata, and superior longitudinal fasciculus. Previous work terms (k) Adjacent Orthogonality [22].
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introduced the study of tensor field gradients in DTI decomposed ∇F into the gra-

dient of the isotropic ∇F and deviatoric ∇F̃ components, which is equivalent in our

framework to separating out the component of ∇F along ∇̂∇∇DK1. Both trace K1 and

norm R1 measure over-all size, so either will capture the CSF boundary. Our frame-

work offers a more fine-grained decomposition of the gradient, enabling for example

the Adjacent Orthogonality (AO) measure (Fig. 4(k)) that indicates locations where

distinctly-oriented white matter pathways touch [22].

For comparison, Fig. 5 shows the decomposition of the tensor gradient in terms

of the gradients of the individual tensor components, as measured in the BBB basis

defined in (1).

The gradient components associated with the on-diagonal tensor coefficients em-

phasize the CSF boundary, while the gradients of off-diagonal coefficients do not,

but the decomposition is not as specific as the decomposition along invariant gra-

dients and rotation tangents, nor is it rotationally invariant. Comparing Figs. 4 and

5 supports our claim that the invariant gradients and rotation tangents offer a more

biologically meaningful basis for tensor analysis.

|∇F:B1|

|∇F:B2| |∇F:B3|

|∇F:B4|

|∇F:B5|

|∇F:B6|

Fig. 5 Decomposition of tensor field gradient |∇F| with the BBB basis (1) corresponding to variation
in the individual tensor components Di j; compare to (4).
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7 Other Applications

With the ability to selectively detect different kinds of tissue boundaries with the

specialized edge detectors described above, one interesting application of invari-

ant gradients and rotation tangents is to non-linear filtering of tensor fields. Just as

Perona-Malik filtering [31] and most subsequent approaches to anisotropic (inho-

mogeneous) diffusion are based on a conductance function of a gradient magnitude,

one can imagine a PDE-based tensor filtering algorithm that is based on a conduc-

tance function of some of the select edge components illustrated in Fig. 4. It might

also be possible to restrict the updates to the per-sample tensor value according to

variation in shape or orientation alone. Note also that the gradients in Fig. 4 are

shown only as gradient magnitudes, but the gradient vectors also have spatial direc-

tion that is likely useful for describing the orientation of tissue interfaces.

Another application of the invariant gradients and rotation tangents is for the task

of tensor interpolation. Previous work has described geodesic-loxodromes that are

geodesics along tensor orientation orbits (Sect. 3), and loxodromes through variation

of tensor shape [21]. These paths have the property that the angles between the

interpolation path P(s) and three orthogonal invariant gradients (for example ∇̂∇∇DRi)

are constants ci:
dP
ds

::: ∇̂∇∇DRi = ci ∀i = 1,2,3. (32)

One can also imagine, however, an interpolation path that is also a loxodrome in

orientation, which obeys (32) as well as

dP
ds

:::Φ̂ΦΦ i = ki ∀i = 1,2,3. (33)

Along such a path, the rate of rotation around each eigenvector is constant. Investi-

gations of such interpolation paths and their properties is ongoing.

8 Discussion

Our framework is “Euclidean” in that we consider diffusion tensors as elements of a

vector space, even though this overlooks the positive-definiteness of diffusion. This

simplifying assumption has established precedent in the DTI literature [4, 6, 7], even

in the context of reconstructing tensors from discrete samples [1, 29]. In some ap-

proaches DTI analysis, tensors are located on a Riemannian manifold endowed with

a metric that effectively creates an infinite distance between valid tensors and those

with zero determinant [2, 8, 17, 18, 26, 30]. While these methods can leverage a

wide range of Riemannian formalisms, we do not feel that the positive-definite con-

straint is a necessary ingredient for effective DTI processing, because we view the

larger goals of image analysis (such as generating geometric models of anatomical

features) as more important than maintaining the physical plausibility of the sam-
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ple values at every stage in the analysis. By analogy, much work with traditional

scalar-valued MR images use interpolation methods (e.g. windowed sinc) that do

not necessarily preserve the positiveness of each pixel value, even though, as the

magnitude of a complex-valued MR signal, it must be positive. We feel that the im-

mediate practical utility of our tensor gradient decomposition (shown in Fig. 4) is

adequate justification for our Euclidean approach to tensor analysis; the Rieman-

nian methods have not produced a decomposition of the same specificity. We hope

that invariant gradients and rotation tangents will provide a means of extending and

creating a wide variety of image processing methods to tensor fields.
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