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Introduction 
In a diffusion-weighted imaging experiment, the strong diffusion-sensitizing gradients can induce eddy currents, which will lead to image distortions in 
echo-planar images [1,2]. These distortions are typically represented with a 3-parameter model: scaling, translation, and shear along the phase-
encoding direction. In diffusion-tensor MRI (DTI), these distortions will be different for each diffusion encoding direction and diffusion-weighting, leading 
to misregistration and errors in images calculated from two or more diffusion-weighted images (e.g., FA and trace{D}). A variety of methods have been 
proposed to correct or minimize the distortion effects including modifying the diffusion gradient waveforms [4], gradient amplifier pre-emphasis settings 
[6], distortion measurements in a phantom [5], and registration and modeling of the distortion [1, 3].  The latter approach is sensitive to the selection of a 
reference image for registration [1,5] and can be very complex if motion is also considered [3].  We have developed a novel fast and robust algorithm for 
the correction of eddy current distortions in diffusion-weighted images.  The algorithm measures between-image distortions using low order moments of 
segmented diffusion weighted images, leading to a per-slice estimate of a linear model M of the imaging distortion. M maps from the diffusion-sensitizing 
gradient direction to the three parameters of the resulting eddy-current distortion. 
 

Methods (Algorithm) 
The algorithm can be summarized as: (1) Brain Segmentation:  The brain is segmented from the background by thresholding and a combination of 2D 
and 3D connected components [7], creating a binary image mask. (2) Calculation of Moments and Transforms:   Moments are a robust descriptor of 
object shape [8], calculated with −−= ba

ab yyxxm )()( for (x,y) within the binary image mask of the brain. The scale S and shear H components 

of the transform can be recovered from m20, m11, and m02 with )()''( 2
110220
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moments computed from the target image. Translation T is simply yy −' .  The transform Wij (consisting of H, S and T) from DWI i to j is calculated for 

all (i,j) pairs.  (3) Modeling Distortion due to Eddy Currents: Note that Wij, is equivalent to Wj*Wi
-1, where Wi is the transformation from a reference image 

to image i. The transformation W due to eddy currents is modeled as a linear function of the diffusion-sensitizing gradient [1,3] via a 3x3 model matrix M: 
[ ] [ ] [ ][ ]Tzyx

T GGGMTSHW =+= 1 . This expression allows M to be estimated with an over-determined linear system of Wij, Gi, and 

Gj, with one row per (i,j) DWI pair.   The process is repeated for each slice in the volume. (4) Warp Correction: By knowing the distortion model M, the 
transform Wi caused by gradient Gi can be determined from M*Gi and the correction of image i is simply the inverse of Wi. The non-iterative nature of 
this algorithm contributes to its speed. No single step in this method is particularly compute-intensive, the slowest step currently is segmentation.   
 

Results & Discussion 
An example of the correction results for a 3T DTI study with 12 DWIs are shown in Figure 1.  Results for a 40-slice volume took approximately 5 minutes 
to compute on a commodity PC. Because Wi is the warp to DWI i from the reference image without eddy current distortion (since M*0 is the identity 
transform), the distortion correction maps the DWIs onto the T2-w b=0 image (Fig. 1d) without ever having used the T2-w image as a registration 
reference.  The T2-w image is a poor reference for intensity based registration with the DWIs because of basic differences in contrast (e.g. CSF) and 
asymmetric intensity variations due to anisotropy (white matter in DWI).   The algorithm has been applied to both 1.5T (Utah) and 3T (Wisconsin) DTI 
studies with different encoding sets and appears to be quite robust.  The accuracy of the algorithm depends on the accuracy of the brain segmentation 
and binary mask, although the use of all DWIs to estimate M imparts insensitivity to small errors in individual masks.  Slice-to-slice consistency can be 
imposed by linear fitting of the distortion model M across all slices [e.g. 3].  Although the algorithm presented here is based on image moments from a 
binary image mask, the same distortion modeling and unwarping methodology could also be adapted to intensity-based image registration methods. 
 

 

 

 

  

 

  

 

 
Figure 1. Correction of a single slice from a 39 slice, 12 encoding direction (a), b = 
912 s/mm2 diffusion tensor study performed on a 3T scanner.  The misalignment is 
observed at the image edges in the RMS difference image shown in (b).  After 
correction (c), the edge artifacts in the RMS difference image are clearly reduced and 
the tracts appear much sharper.  One advantage of this approach is that the 
algorithm estimates the warp in each image from the T2-w reference image without 
actually using the T2-w image.  After correction (d), the mean diffusion weighted 
image (purple) shows very good alignment with the T2-w reference image (green).  
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Introduction 
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In diffusion-weighted imaging (DWI), the diffusion-
sensitizing gradients can induce eddy currents, which 
distort the echo-planar images (EPI) commonly used in 
clinical diffusion studies of the human brain. 
 
These distortions are typically characterized in terms of 
three degrees of freedom: shear, scaling, and 
translation along the phase-encoding direction [1,2]. 
 
In diffusion tensor MRI (DTI) [3], the eddy current 
distortions are different for each diffusion encoding 
direction and diffusion weighting.  The resulting 
misregistration between DWIs leads to errors in tensor 
estimation and tensor attributes (anisotropy, principal 
eigenvector, etc.), and loss of effective resolution. 
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A variety of methods to minimize or correct eddy current 
distortion effects in EPI have been described.  Bipolar 
diffusion-weighting gradients greatly reduce, but do not 
eliminate, eddy currents during EPI read-out [4]. 
Magnetic fields from eddy currents can be measured via 
field maps, though with increased acquisition time [2]. 
Phantom measurements can calibrate eddy current 
distortions in subsequent scans of human brains [5,6].  
Correlation-based registration between the DWI and T2-
weighted images is possible [1], though complicated by 
fundamental contrast differences (as in CSF) [7]. More 
sophisticated DWI registration methods have corrected 
both eddy current distortion and patient motion using the 
goodness-of-fit of the tensor model [8], or with a mutual 
information cost function to align DWI and T2 images [9]. 
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We have developed a fast and robust algorithm for 
correcting eddy current distortions in DWIs, based on 
image moments, a statistical 2-D shape measure. 
 
Calculating image moments of segmented DWIs enables 
recovery of the distortion transform between any two 
DWIs.  From the ensemble of all pair-wise transforms, 
we linearly model the eddy current distortion as a 
function of gradient direction, so that the distortion 
present in each DWI can be calculated and removed. 
 
Although the T2 (non-diffusion-weighted) image is not 
used in this process, the method maps the DWIs to the 
undistorted coordinates of the T2-weighted image.  It 
also generates scanner-specific information about the 
eddy current distortion, and its per-slice variations. 

Outline of Algorithm 
1)  Segmentation: In each DWI, the brain interior is 

segmented from the skull and background. 
2)  Transforms and Moments: Moments are calculated 

from segmented DWIs, from which the distortion 
transforms between all pairs of DWIs are determined. 

3)  Distortion Modeling: The mapping between the 
direction of the diffusion-sensitizing gradient and the 
eddy current distortion is modeled as a 3x3 matrix. 

4)  Model Fitting: The previous steps are repeated on 
each slice of the image volume. Results may be 
improved at the top and bottom of the scan by fitting 
the model to a smooth variation across slices. 

5)  Distortion Correction: The distortion at each slice of 
each DWI is now known from the model.  The DWIs 
are unwarped and resampled onto a common grid. 
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1) Segmentation 

7 

For each DWI, we generate a binary volume with value 1 inside 
the brain (including CSF in ventricles) and 0 outside. This allows 
the shape of the brain cross-sections in different DWIs to be 
compared readily, by removing intensity variations due to diffusion 
weighting. Our approach is a combination of thresholding and 
connected component analysis. The histogram of the DWI is 

typically bimodal: with a 
narrow peak for air, skull, 
and CSF, and a wide peak 
for the brain.  A simple 
valley-finding algorithm 
finds a suitable global 
threshold value from the 
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histogram of all DWIs.  Moments are 
robust against small changes in region 
borders, so careful optimization of the 
threshold determination is not crucial. 
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The thresholded DWIs are then processed with a combination of 
3-D and 2-D connected component analysis, as follows: 

A) The single largest bright 3-D 
connected component is the brain. 
All smaller bright 3-D connected 
components (scalp, eyes, noise, 
etc.) are merged with the dark 
background. 
 

B) Within each slice, the largest 
dark 2-D connected component is 
the background.  All smaller dark 
2-D connected components (CSF, 
noise) are merged with the brain.  
This completes our approximate 
segmentation procedure. 

2) Transforms and Moments 
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To represent the eddy current distortions, we use a 2-D 
homogeneous coordinate transform in which H, S, and T are the 
shear, scale, and translate components of the distortion transform, 
respectively.  The transform maps from (x,y) to (x�,y�): 

X, y, and z axes are read-out, phase-encode, and slice selection, 
respectively.  For brevity, we will notate the transform matrix as  [H  
S  T].  The inverse of [H  S  T] is [H  S  T]-1 = [-H/S  1/S  -T/S].  
 
Moments are statistical descriptors of image shape [10], used in 
computer vision for tasks such as object recognition, object pose 
estimation, and registration, including estimation of affine 
transforms [11,12]. The 2-D moments µij are defined in terms of 
summations over segmented DWI values v(x,y) in each slice: 
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Centroid of segmented 
image is (<x>,<y>) 

We recover H,S,T through a relationship between the original 
moments µ02, µ20, µ11 and distorted image moments µ�02, µ�20, 
µ�11:  

3) Distortion Modeling 
With the image moments and 
the formulas above, we can 
determine all pair-wise 
mappings 
from one 
distorted 
DWI to 
another: 

But we need to recover the 
mapping of each distorted 
DWI back to the 
(undistorted) 
coordinates of 
the T2- 
weighted 
reference 
image R: 

We accomplish this by modeling the relationship between the 
gradient direction g (associated with each DWI) and the induced 
eddy current distortion.  Our linear model M has nine parameters: 

R 

11 

12 

Without diffusion weighting, g=0, so there is no distortion in R. 
Given two DWIs A and B, and associated gradients gA and gB, the 
distortion warping from A to B may be expressed in two ways: 

B 

A 

WR→A
-1 = [h.gA  s.gA+1  t.gA]-1 

WR→B =[h.gB  s.gB+1  t.gB] 

WA→B = [H  S  T] = 
(1) 

(2) 

(2) 

(1) In terms of the 
known moments, 
as shown above: (2) In terms of the known 

gradients gA,gB and the 
unknown parameters 
h,s,t of model M.   

That is, WA→B = WR→B WR→A
-1: warping from A to B is the same as 

undoing the warp from R to A, then warping from R to B. This 
leads to a system of linear equations of the model parameters 
h,s,t in terms of the moments and gradients.  Every pair of DWIs 
contributes one equation to an over-determined system, solved 
with linear least squares, giving a per-slice distortion model M. 

R 

4) Model fitting 
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Smaller, more complex shapes in slices at the top of the cortex, 
and greater susceptibility artifacts at the bottom of the brain, are 
problematic for segmentation, degrading registration results.  The 
physical origin of the EPI distortion, however, suggests smooth 
variation with slice position, as observed by others [8]. So that 
distortion estimates on some slices can improve estimates 
elsewhere, we quantify segmentation uncertainty on each slice 
in terms of the list of segmented DWI values s(x,y)i at location 
(x,y), using their standard deviation, 
normalized by their L2 norm, 
summed over the image: 

After sorting slices by segmentation uncertainty, some fraction of 
the most �certain� slices are used to determine a linear fit of the 
nine parameter distortion model, as a function of slice position: 
M(z).  Future work will investigate higher-order fitting.  The 
segmentation uncertainty can be inspected with stdv(s(x,y)i): 

5) Distortion correction 
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Having defined the distortion model as a linear function of slice 
position M(z), the EPI distortion in the DWI measured with 
gradient g is the [H S T] matrix found from M(z)g. Since distortion 
correction needs 1-D resampling along only the phase-encoding 
direction, we use a high-quality filter, such as a Hann-windowed-
sinc kernel with 10 sample support, to better preserve small image 
features.  Intensity is adjusted according to image scaling [9]. 

Segmented DWI value s(x,y):        stdv(s(x,y)i): 

Low segmentation 
uncertainty ⇒ 
Slice should contribute 
to linear fit of M(z) 

High segmentation 
uncertainty ⇒ 
Slice should not 
contribute to M(z) 
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Results 
The corrections are small, so directly inspecting the pre- and post-
registration DWIs is less informative than inspecting the variance 
of the DWI values v(x,y)i, which is correlated with anisotropy, and 
which should be low in the gray matter, such as cortical surface. 

Before: 

After: 

To assess whether the 
registration succeeded in 
mapping the DWIs to the 
undistorted space of the 
T2-weighted image, we 
interlaced the DWI 
geometric mean with the 
T2 image.  The brain 
boundary and internal 
features match well. 
To determine the value of 
doing model fitting across 
slices, we inspected the 
DWI variance in a slice 
with high segmentation 
uncertainty. Model fitting 
improves the result. High 
�signal pile-up� corrupts 
the image at the temporal 
lobes, however. 

Per-slice model Linear fit to model 
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Discussion 
The computational simplicity of computing moments, transforms, 
and models allows this method to be extremely fast. No iterative 
search or optimization is used, and no additional calibration or 
phantom scans are needed. In the current implementation, the 
bottleneck is the DWI segmentation, not the registration itself. 
Robustness comes from using moments for shape measurement, 
the use of all DWIs simultaneously, and the model smoothing 
across slices.  There is only one free parameter: the fraction of 
slices to use for estimating model variation across slices. Using as 
few as 50% of the slices (as above) generally produces good 
results. Because our method does not account for patient motion, 
motion will confound the model estimation, incorrectly ascribing all 
translation to eddy current effects, with the shape estimation 
degraded by image rotations.  However, the underlying theory of 
using shape estimation techniques from computer vision to 
recover the parameters of a distortion model could likely be 
incorporated into a more complete registration framework [9]. 17 
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•  http://teem.sourceforge.net : command-line interface to C implementation 
•  http://software.sci.utah.edu/scirun-biopse_1_20.html : GUI to C++ wrapper 
  around C implementation, as well as various visualization and simulation tools  
•  http://www.sci.utah.edu/~gk/ismrm04/epi-moments.ppt : this poster 
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(this approximates the content of the poster presented by A Alexander)


