
Brno,	Czech	Republic June	7th,	2018

20th	EG/VGTC	  
Conference	on	Visualization

Rendering	and	Extracting	
Extremal	Features	in	3D	Fields	
Gordon	Kindlmann*,	Charisee	Chiw*,	Tri	Huynh*,	Attila	Gyulassy**, 

John	Reppy*,	Peer-Timo	Bremer**	

*Department	of	Computer	Science,	University	of	Chicago		

**	SCI	Institute,	University	of	Utah	

Paper	is	about	Mathematics	for	Visualization

f(x+ ✏) ⇡ f(x) +rf(x) · ✏
Taylor	series:

f(x) = v0

Isosurface:

✏ = d rf(x)
|rf(x)|

Step	from	x	to	
isosurface:v0 = f(x+ ✏) ⇡ f(x) +rf(x) · ✏

) v0 � f(x) ⇡ rf(x) · ✏

Newton	step	
for	isosurface

) v0 � f(x) = rf(x) · d rf(x)

|rf(x)| = d|rf(x)|

) d =
v0 � f(x)

|rf(x)|) ✏ =
(v0 � f(x))rf(x)

rf(x) ·rf(x)

Newton	steps	for	Visualization?

Direct	volume	
rendering:

feature

= max

✓
0, 1� |d|

w

◆
d

[Levoy-CGnA-1988]

w
d

↵tent(d)

) ↵(x) = ↵tent(|✏(x)|) = max

✓
0, 1� 1

w

|v0 � f(x)|
|rf(x)|

◆

Yes:	Newton	steps	for	Visualization!

Vis	method	
(implementation	of	

main	algorithm)

Vis	target	
(mathematical	
feature	of	interest)

Direct	Volume	
Rendering

Isosurfaces

Particle-based	
Feature	Extraction

Extremal	features	
(critical	points,	ridges,	
valleys,	surface	creases)	
[Guy-PAMI-1997],	[Tang-VIS-1998],		
[Amenta-SIGGRAPH-2004]

Newton	step!

for	scalar,	and	vector,	
and	tensor	data

(basic	idea	of	
our	paper)

Basic	idea	

Synthetic	data:	2	vis	methods,	various	features	

Technical	aspects	
point	meshing,	feature	strength	

Results	on	more	complex	data	

Conclusions

Outline

Example:	isosurfaces	on	synthetic	data
tent

degree	1	
support	2	

continuity	0	
accuracy	1

bspln3

degree	3	
support	4	

continuity	2	
accuracy	1

c4hexic

degree	6	
support	6	

continuity	4	
accuracy	3

Example:	isosurfaces	on	synthetic	data
tent

degree	1	
support	2	

continuity	0	
accuracy	1

bspln3

degree	3	
support	4	

continuity	2	
accuracy	1

c4hexic

degree	6	
support	6	

continuity	4	
accuracy	3

Not	easy	or	efficient	
in	other	vis	packages

(minimal)	Volume	Renderer	in	Diderot
G. Kindlmann et al. / Rendering & Extracting Extremal Features

1 input vec3 camEye ("Camera look-from point"); // look-at = [0,0,0]
2 input real camDepth ("Distance between near,far clip planes");
3 input real camFOV ("Vertical angle subtended by image");
4 input int imgRes ("Resolution on edge of square output image");
5 input real rayStep ("Sampling distance on central ray");
6 input real thick ("Apparent thickness of isosurface");
7 input real v0 ("which isosurface to render");
8 input image(3)[] vol ("data to render");
9 field#2(3)[] F = bspln3 ⇣ vol; // convolve image w/ recon kernel

10 // Only these feature functions are specific to isosurfaces
11 function vec3 fStep(vec3 x) = (v0 - F(x))*rF(x)/(rF(x)•rF(x));
12 function real fStrength(vec3 x) = |rF(x)|;
13 // Computing ray parameters and view-space basis
14 vec3 camN = normalize(-camEye); // N: away from eye
15 vec3 camU = normalize(camN ⇥ [0,0,1]); // U: right
16 vec3 camV = camN ⇥ camU; // V: down
17 real camNear = |camEye| - camDepth/2; // near clip, view space
18 real camFar = |camEye| + camDepth/2; // far clip, view space
19 // Core opacity function is a capped tent function
20 function real atent(real d) = clamp(0, 1, 1.5*(1 - |d|/thick));
21 // Renders ray through (rayU,rayV) on view plane through origin
22 strand ray(int ui, int vi) {
23 | real UVmax = tan(camFOV*p/360)*|camEye|;
24 | real rayU = lerp(-UVmax, UVmax, -0.5, ui, imgRes-0.5);
25 | real rayV = lerp(-UVmax, UVmax, -0.5, vi, imgRes-0.5);

26 | vec3 rayVec = camN + (rayU*camU + rayV*camV)/|camEye|;
27 | real rayN = camNear - rayStep; // init ray position
28 | output vec4 rgba = [0,0,0,0]; // output ray color
29 | real gray = 0; // ray grayscale
30 | real tt = 1; // ray tranparency
31 | update {
32 | | rayN += rayStep; // increment ray position
33 | | if (rayN > camFar) { // done if ray passed far plane
34 | | | real q = 1-tt if tt < 1 else 1; // un-pre-multiply
35 | | | rgba = [gray/q, gray/q, gray/q, 1-tt];
36 | | | stabilize;
37 | | }
38 | | vec3 pos = camEye + rayN*rayVec; // ray sample position
39 | | if (!inside(pos,F) || fStrength(pos) == 0) {
40 | | | continue; // neither in field nor possibly near feature
41 | | }
42 | | vec3 step = fStep(pos); // step towards feature
43 | | real aa = atent(|step|); // sample opacity
44 | | if (aa == 0) { continue; } // skip if no opacity
45 | | real gg = (normalize(step)•[0,0,1])^2; // 2-sided lighting
46 | | gray += tt*aa*((0.2 + 0.8*gg)); // ambient and diffuse
47 | | tt *= 1 - aa; // tranparencies multiply
48 | }
49 } // end strand
50 initially [ray(ui,vi) | vi in 0..imgRes-1, ui in 0..imgRes-1];

Figure 2: A minimal but complete volume renderer is made specific to isosurfaces only by fStep and fStrength on lines 11 and 12.

sought, and f 00 = c · (r⌦r f)c is the second directional deriva-
tive of f along c. For extremal lines, again consider H (16), the
Hessian of f projected to the plane within which the extremum is
sought. We propose strength measures for minimal line (“�`”) and
maximal line (“+`”) features:

r�` =
r0

r0 + |r f | , r+` =
�r1

r0 + |r f | , (22)

where r0 � r1 are the eigenvalues of H.

Additional tests may help include or exclude part of a feature,
such as requiring that ridges have sufficient height as well as suffi-
cient strength. In particular, when extracting Sujudi-Haimes vortex
cores [SH94] by the Parallel Vectors operator with ridge or valley
lines of h = (v/|v|) ·(r⌦v/|r⌦v|), we want h to be near ±1. Our
approach includes a feature mask function to be set and thresholded
to afford this extra control as needed.

4. Methods

We implement our approach in Diderot, a domain-specific language
for scientific visualization [CKR⇤12, KCS⇤16]. We describe two
Diderot programs, volume rendering (Sec. 4.1) and for particle-
based feature sampling (Sec. 4.2), and describe how each may be
specialized with feature functions. Code for the features functions
is listed in the context of volume rendering, but then re-used verba-
tim for particle-based feature sampling.

4.1. Direct Volume Rendering

The program in Fig. 2 volume renders isosurfaces and demonstrates
the basic structure of Diderot programs. Input variables (lines 1–8)
include rendering parameters, the isovalue, and the image data from
which the C2-continuous field F is created by convolving with the
cubic B-spline (line 9). After computing ray and camera geometry
(lines 14–18), the atent function (line 20) implements a modified
atent(d) (4), parameterized by isosurface thickness thick. The
ray strand (the unit of parallelism in Diderot) starting line 22 ren-
ders one ray. After computing ray geometry (lines 23–26), lines 27–
30 initialize ray state, and the update method (starting line 31)

(a) Rendered (b) iteration 0 (c) iteration 5 (d) iteration 55

Figure 3: Minimal but complete program results: Fig. 2 volume
renderer creates (a), Fig. 4 particle system creates (b), (c), and (d;
converged) after indicated iterations.

implements one iteration of ray traversal and volume sampling, as
explained in the code comments. The program ends (line 50) by
creating an array of strands to be executed in parallel. Figure 3a
shows how this program renders a small 64 ⇥ 64 ⇥ 32 synthetic
dataset (used throughout this section) containing a Möbius strip
with seven Gaussian blobs along its circular core.

The Fig. 2 renderer demonstrates how feature specificity can
be isolated to a few functions, in this case feature step fStep
and feature strength fStrength, on lines 11 and 12. The
fStep(x) function, directly copied from siso(x) (3) of Sec. 3,
determines opacity (line 43) and shading (line 45) based on
step = fStep(pos) (line 42). The fStrength function
(line 39) is used here to avoid divide-by-zero problems when com-
puting feature steps; it will have a greater role with extremal fea-
tures.

Results in Sec. 5 come from a more complete volume renderer,
listed in Appendix A. Compared to Fig. 2, this program renders in
color (with a univariate colormap of the underlying scalar value)
and it offers more control over ray geometry and rendered appear-
ance, but it too hinges on the same fStep and fStrength func-
tions. The top row of Fig. 1 shows a variety of features all vol-
ume rendered from the same Möbius strip synthetic dataset used
in Fig. 3a, all created with the program in Appendix A (used
without change for Fig. 1a). Copying (8) from Sec. 3, we can
change fStep and fStrength to show critical points instead:
function vec3 fStep(vec3 x) = // critical points

-inv(r⌦rF(x))•rF(x);
function real fStrength(vec3 x) = |r⌦rF(x)|;

c� 2018 The Author(s)
Computer Graphics Forum c� 2018 The Eurographics Association and John Wiley & Sons Ltd.

(minimal)	Volume	Renderer	in	Diderot

Diderot	language	supports:	continuous	fields,	field	
operators	like	!;	enables	mathematically	idiomatic	code

G. Kindlmann et al. / Rendering & Extracting Extremal Features

1 input vec3 camEye ("Camera look-from point"); // look-at = [0,0,0]
2 input real camDepth ("Distance between near,far clip planes");
3 input real camFOV ("Vertical angle subtended by image");
4 input int imgRes ("Resolution on edge of square output image");
5 input real rayStep ("Sampling distance on central ray");
6 input real thick ("Apparent thickness of isosurface");
7 input real v0 ("which isosurface to render");
8 input image(3)[] vol ("data to render");
9 field#2(3)[] F = bspln3 ⇣ vol; // convolve image w/ recon kernel

10 // Only these feature functions are specific to isosurfaces
11 function vec3 fStep(vec3 x) = (v0 - F(x))*rF(x)/(rF(x)•rF(x));
12 function real fStrength(vec3 x) = |rF(x)|;
13 // Computing ray parameters and view-space basis
14 vec3 camN = normalize(-camEye); // N: away from eye
15 vec3 camU = normalize(camN ⇥ [0,0,1]); // U: right
16 vec3 camV = camN ⇥ camU; // V: down
17 real camNear = |camEye| - camDepth/2; // near clip, view space
18 real camFar = |camEye| + camDepth/2; // far clip, view space
19 // Core opacity function is a capped tent function
20 function real atent(real d) = clamp(0, 1, 1.5*(1 - |d|/thick));
21 // Renders ray through (rayU,rayV) on view plane through origin
22 strand ray(int ui, int vi) {
23 | real UVmax = tan(camFOV*p/360)*|camEye|;
24 | real rayU = lerp(-UVmax, UVmax, -0.5, ui, imgRes-0.5);
25 | real rayV = lerp(-UVmax, UVmax, -0.5, vi, imgRes-0.5);

26 | vec3 rayVec = camN + (rayU*camU + rayV*camV)/|camEye|;
27 | real rayN = camNear - rayStep; // init ray position
28 | output vec4 rgba = [0,0,0,0]; // output ray color
29 | real gray = 0; // ray grayscale
30 | real tt = 1; // ray tranparency
31 | update {
32 | | rayN += rayStep; // increment ray position
33 | | if (rayN > camFar) { // done if ray passed far plane
34 | | | real q = 1-tt if tt < 1 else 1; // un-pre-multiply
35 | | | rgba = [gray/q, gray/q, gray/q, 1-tt];
36 | | | stabilize;
37 | | }
38 | | vec3 pos = camEye + rayN*rayVec; // ray sample position
39 | | if (!inside(pos,F) || fStrength(pos) == 0) {
40 | | | continue; // neither in field nor possibly near feature
41 | | }
42 | | vec3 step = fStep(pos); // step towards feature
43 | | real aa = atent(|step|); // sample opacity
44 | | if (aa == 0) { continue; } // skip if no opacity
45 | | real gg = (normalize(step)•[0,0,1])^2; // 2-sided lighting
46 | | gray += tt*aa*((0.2 + 0.8*gg)); // ambient and diffuse
47 | | tt *= 1 - aa; // tranparencies multiply
48 | }
49 } // end strand
50 initially [ray(ui,vi) | vi in 0..imgRes-1, ui in 0..imgRes-1];

Figure 2: A minimal but complete volume renderer is made specific to isosurfaces only by fStep and fStrength on lines 11 and 12.

sought, and f 00 = c · (r⌦r f)c is the second directional deriva-
tive of f along c. For extremal lines, again consider H (16), the
Hessian of f projected to the plane within which the extremum is
sought. We propose strength measures for minimal line (“�`”) and
maximal line (“+`”) features:

r�` =
r0

r0 + |r f | , r+` =
�r1

r0 + |r f | , (22)

where r0 � r1 are the eigenvalues of H.

Additional tests may help include or exclude part of a feature,
such as requiring that ridges have sufficient height as well as suffi-
cient strength. In particular, when extracting Sujudi-Haimes vortex
cores [SH94] by the Parallel Vectors operator with ridge or valley
lines of h = (v/|v|) ·(r⌦v/|r⌦v|), we want h to be near ±1. Our
approach includes a feature mask function to be set and thresholded
to afford this extra control as needed.

4. Methods

We implement our approach in Diderot, a domain-specific language
for scientific visualization [CKR⇤12, KCS⇤16]. We describe two
Diderot programs, volume rendering (Sec. 4.1) and for particle-
based feature sampling (Sec. 4.2), and describe how each may be
specialized with feature functions. Code for the features functions
is listed in the context of volume rendering, but then re-used verba-
tim for particle-based feature sampling.

4.1. Direct Volume Rendering

The program in Fig. 2 volume renders isosurfaces and demonstrates
the basic structure of Diderot programs. Input variables (lines 1–8)
include rendering parameters, the isovalue, and the image data from
which the C2-continuous field F is created by convolving with the
cubic B-spline (line 9). After computing ray and camera geometry
(lines 14–18), the atent function (line 20) implements a modified
atent(d) (4), parameterized by isosurface thickness thick. The
ray strand (the unit of parallelism in Diderot) starting line 22 ren-
ders one ray. After computing ray geometry (lines 23–26), lines 27–
30 initialize ray state, and the update method (starting line 31)

(a) Rendered (b) iteration 0 (c) iteration 5 (d) iteration 55

Figure 3: Minimal but complete program results: Fig. 2 volume
renderer creates (a), Fig. 4 particle system creates (b), (c), and (d;
converged) after indicated iterations.

implements one iteration of ray traversal and volume sampling, as
explained in the code comments. The program ends (line 50) by
creating an array of strands to be executed in parallel. Figure 3a
shows how this program renders a small 64 ⇥ 64 ⇥ 32 synthetic
dataset (used throughout this section) containing a Möbius strip
with seven Gaussian blobs along its circular core.

The Fig. 2 renderer demonstrates how feature specificity can
be isolated to a few functions, in this case feature step fStep
and feature strength fStrength, on lines 11 and 12. The
fStep(x) function, directly copied from siso(x) (3) of Sec. 3,
determines opacity (line 43) and shading (line 45) based on
step = fStep(pos) (line 42). The fStrength function
(line 39) is used here to avoid divide-by-zero problems when com-
puting feature steps; it will have a greater role with extremal fea-
tures.

Results in Sec. 5 come from a more complete volume renderer,
listed in Appendix A. Compared to Fig. 2, this program renders in
color (with a univariate colormap of the underlying scalar value)
and it offers more control over ray geometry and rendered appear-
ance, but it too hinges on the same fStep and fStrength func-
tions. The top row of Fig. 1 shows a variety of features all vol-
ume rendered from the same Möbius strip synthetic dataset used
in Fig. 3a, all created with the program in Appendix A (used
without change for Fig. 1a). Copying (8) from Sec. 3, we can
change fStep and fStrength to show critical points instead:
function vec3 fStep(vec3 x) = // critical points

-inv(r⌦rF(x))•rF(x);
function real fStrength(vec3 x) = |r⌦rF(x)|;

c� 2018 The Author(s)
Computer Graphics Forum c� 2018 The Eurographics Association and John Wiley & Sons Ltd.

G. Kindlmann et al. / Rendering & Extracting Extremal Features

1 input vec3 camEye ("Camera look-from point"); // look-at = [0,0,0]
2 input real camDepth ("Distance between near,far clip planes");
3 input real camFOV ("Vertical angle subtended by image");
4 input int imgRes ("Resolution on edge of square output image");
5 input real rayStep ("Sampling distance on central ray");
6 input real thick ("Apparent thickness of isosurface");
7 input real v0 ("which isosurface to render");
8 input image(3)[] vol ("data to render");
9 field#2(3)[] F = bspln3 ⇣ vol; // convolve image w/ recon kernel

10 // Only these feature functions are specific to isosurfaces
11 function vec3 fStep(vec3 x) = (v0 - F(x))*rF(x)/(rF(x)•rF(x));
12 function real fStrength(vec3 x) = |rF(x)|;
13 // Computing ray parameters and view-space basis
14 vec3 camN = normalize(-camEye); // N: away from eye
15 vec3 camU = normalize(camN ⇥ [0,0,1]); // U: right
16 vec3 camV = camN ⇥ camU; // V: down
17 real camNear = |camEye| - camDepth/2; // near clip, view space
18 real camFar = |camEye| + camDepth/2; // far clip, view space
19 // Core opacity function is a capped tent function
20 function real atent(real d) = clamp(0, 1, 1.5*(1 - |d|/thick));
21 // Renders ray through (rayU,rayV) on view plane through origin
22 strand ray(int ui, int vi) {
23 | real UVmax = tan(camFOV*p/360)*|camEye|;
24 | real rayU = lerp(-UVmax, UVmax, -0.5, ui, imgRes-0.5);
25 | real rayV = lerp(-UVmax, UVmax, -0.5, vi, imgRes-0.5);

26 | vec3 rayVec = camN + (rayU*camU + rayV*camV)/|camEye|;
27 | real rayN = camNear - rayStep; // init ray position
28 | output vec4 rgba = [0,0,0,0]; // output ray color
29 | real gray = 0; // ray grayscale
30 | real tt = 1; // ray tranparency
31 | update {
32 | | rayN += rayStep; // increment ray position
33 | | if (rayN > camFar) { // done if ray passed far plane
34 | | | real q = 1-tt if tt < 1 else 1; // un-pre-multiply
35 | | | rgba = [gray/q, gray/q, gray/q, 1-tt];
36 | | | stabilize;
37 | | }
38 | | vec3 pos = camEye + rayN*rayVec; // ray sample position
39 | | if (!inside(pos,F) || fStrength(pos) == 0) {
40 | | | continue; // neither in field nor possibly near feature
41 | | }
42 | | vec3 step = fStep(pos); // step towards feature
43 | | real aa = atent(|step|); // sample opacity
44 | | if (aa == 0) { continue; } // skip if no opacity
45 | | real gg = (normalize(step)•[0,0,1])^2; // 2-sided lighting
46 | | gray += tt*aa*((0.2 + 0.8*gg)); // ambient and diffuse
47 | | tt *= 1 - aa; // tranparencies multiply
48 | }
49 } // end strand
50 initially [ray(ui,vi) | vi in 0..imgRes-1, ui in 0..imgRes-1];

Figure 2: A minimal but complete volume renderer is made specific to isosurfaces only by fStep and fStrength on lines 11 and 12.

sought, and f 00 = c · (r⌦r f)c is the second directional deriva-
tive of f along c. For extremal lines, again consider H (16), the
Hessian of f projected to the plane within which the extremum is
sought. We propose strength measures for minimal line (“�`”) and
maximal line (“+`”) features:

r�` =
r0

r0 + |r f | , r+` =
�r1

r0 + |r f | , (22)

where r0 � r1 are the eigenvalues of H.

Additional tests may help include or exclude part of a feature,
such as requiring that ridges have sufficient height as well as suffi-
cient strength. In particular, when extracting Sujudi-Haimes vortex
cores [SH94] by the Parallel Vectors operator with ridge or valley
lines of h = (v/|v|) ·(r⌦v/|r⌦v|), we want h to be near ±1. Our
approach includes a feature mask function to be set and thresholded
to afford this extra control as needed.

4. Methods

We implement our approach in Diderot, a domain-specific language
for scientific visualization [CKR⇤12, KCS⇤16]. We describe two
Diderot programs, volume rendering (Sec. 4.1) and for particle-
based feature sampling (Sec. 4.2), and describe how each may be
specialized with feature functions. Code for the features functions
is listed in the context of volume rendering, but then re-used verba-
tim for particle-based feature sampling.

4.1. Direct Volume Rendering

The program in Fig. 2 volume renders isosurfaces and demonstrates
the basic structure of Diderot programs. Input variables (lines 1–8)
include rendering parameters, the isovalue, and the image data from
which the C2-continuous field F is created by convolving with the
cubic B-spline (line 9). After computing ray and camera geometry
(lines 14–18), the atent function (line 20) implements a modified
atent(d) (4), parameterized by isosurface thickness thick. The
ray strand (the unit of parallelism in Diderot) starting line 22 ren-
ders one ray. After computing ray geometry (lines 23–26), lines 27–
30 initialize ray state, and the update method (starting line 31)

(a) Rendered (b) iteration 0 (c) iteration 5 (d) iteration 55

Figure 3: Minimal but complete program results: Fig. 2 volume
renderer creates (a), Fig. 4 particle system creates (b), (c), and (d;
converged) after indicated iterations.

implements one iteration of ray traversal and volume sampling, as
explained in the code comments. The program ends (line 50) by
creating an array of strands to be executed in parallel. Figure 3a
shows how this program renders a small 64 ⇥ 64 ⇥ 32 synthetic
dataset (used throughout this section) containing a Möbius strip
with seven Gaussian blobs along its circular core.

The Fig. 2 renderer demonstrates how feature specificity can
be isolated to a few functions, in this case feature step fStep
and feature strength fStrength, on lines 11 and 12. The
fStep(x) function, directly copied from siso(x) (3) of Sec. 3,
determines opacity (line 43) and shading (line 45) based on
step = fStep(pos) (line 42). The fStrength function
(line 39) is used here to avoid divide-by-zero problems when com-
puting feature steps; it will have a greater role with extremal fea-
tures.

Results in Sec. 5 come from a more complete volume renderer,
listed in Appendix A. Compared to Fig. 2, this program renders in
color (with a univariate colormap of the underlying scalar value)
and it offers more control over ray geometry and rendered appear-
ance, but it too hinges on the same fStep and fStrength func-
tions. The top row of Fig. 1 shows a variety of features all vol-
ume rendered from the same Möbius strip synthetic dataset used
in Fig. 3a, all created with the program in Appendix A (used
without change for Fig. 1a). Copying (8) from Sec. 3, we can
change fStep and fStrength to show critical points instead:
function vec3 fStep(vec3 x) = // critical points

-inv(r⌦rF(x))•rF(x);
function real fStrength(vec3 x) = |r⌦rF(x)|;

c� 2018 The Author(s)
Computer Graphics Forum c� 2018 The Eurographics Association and John Wiley & Sons Ltd.

G. Kindlmann et al. / Rendering & Extracting Extremal Features

1 input real rad ("Inter-particle potential radius");
2 input real eps ("General convergence threshold");
3 input real v0 ("Which isosurface to sample");
4 input vec3{} ipos ("Initial point positions");
5 input image(3)[] vol ("Data to analyze");
6 field#2(3)[] F = bspln3 ⇣ clamp(vol); // convolve w/ recon kernel
7 // Only these three "f" functions are specific to isosurfaces
8 function vec3 fStep(vec3 x) = (v0 - F(x))*rF(x)/(rF(x)•rF(x));
9 function tensor[3,3] fPerp(vec3 x) {

10 | vec3 norm = normalize(rF(x));
11 | return identity[3] - norm⌦norm;
12 }
13 function real fStrength(vec3 x) = |rF(x)|;
14 function real phi(real r) = (1 - r)^4; // univariate potential
15 function real phi’(real r) = -4*(1 - r)^3;
16 function real enr(vec3 x) = phi(|x|/rad);
17 function vec3 frc(vec3 x) = phi’(|x|/rad) * (1/rad) * x/|x|;
18 // Strands first find feature, then interact w/ or make neighbors
19 strand point (vec3 pos0, real hh0) {
20 | output vec3 pos = pos0; // current particle position
21 | real hh = hh0; // energy gradient descent stepsize
22 | vec3 step = [0,0,0]; // energy+feature steps this iter
23 | bool found = false; // whether feature has been found
24 | int nfs = 0; // number feature steps taken
25 | update {
26 | | if (!inside(pos, F) || fStrength(pos) == 0) {
27 | | | die; // not in field domain & not possibly near feature
28 | | }
29 | | if (!found) { // looking for feature
30 | | | step = fStep(pos); // one step towards feature
31 | | | pos += step;
32 | | | if (|step|/rad > eps) { // took a substantial step
33 | | | | nfs += 1;
34 | | | | if (nfs > 10) { die; } // too slow to converge
35 | | | } else { found = true; } // else converged on feature
36 | | } else { // feature found; interact with other points
37 | | | pos += fStep(pos); // refine feature sampling
38 | | | step = [0,0,0]; // initialize output step
39 | | | real oldE = 0; // energy at current location
40 | | | vec3 force = [0,0,0]; // force on me from neighbors
41 | | | int nn = 0; // number of neighbors
42 | | | foreach (point P in sphere(rad)) {

43 | | | | oldE += enr(P.pos - pos);
44 | | | | force += frc(P.pos - pos);
45 | | | | nn += 1;
46 | | | }
47 | | | if (0 == nn) { // no neighbors, so create one
48 | | | | new point(pos + [0.5*rad,0,0], hh);
49 | | | | continue;
50 | | | } // else interact w/ neighbors
51 | | | force = fPerp(pos)•force; // no force perp. to fStep(pos)
52 | | | vec3 es = hh*force; // energy step along force
53 | | | if (|es| > rad) { // limit motion to radius
54 | | | | hh *= rad/|es|; // decrease stepsize and step
55 | | | | es *= rad/|es|;
56 | | | } // now |es| <= rad
57 | | | vec3 fs = fStep(pos+es); // find step towards feature
58 | | | if (|fs|/|es| > 0.5) { // feature step too big
59 | | | | hh *= 0.5; // try again w/ smaller step
60 | | | | continue;
61 | | | }
62 | | | vec3 oldpos = pos;
63 | | | pos += fs + es; // take steps, find new energy
64 | | | real newE = sum { enr(pos - P.pos) | P in sphere(rad) };
65 | | | if (newE - oldE > 0.5*(pos - oldpos)•(-force)) {
66 | | | | pos = oldpos; // energy didn’t go down enough;
67 | | | | hh *= 0.5; // try again w/ smaller step
68 | | | | continue;
69 | | | }
70 | | | hh *= 1.1; // cautiously increase stepsize
71 | | | step = fs + es; // record steps taken
72 | | | if (nn < 5) { // add neighbor if have too few
73 | | | | new point(pos + 0.5*rad*normalize(es), hh);
74 | | | }
75 | | } // else found
76 | } // update
77 }
78 global {
79 | bool allfound = all { P.found | P in point.all};
80 | real maxstep = max { |P.step| | P in point.all };
81 | if (allfound && maxstep/rad < eps) { stabilize; }
82 }
83 initially { point(ipos[ii], 1) | ii in 0 .. length(ipos)-1 };

Figure 4: A minimal but complete surface feature sampler is made specific to isosurfaces only by three feature functions starting line 8.

This produces Fig. 1b. The image clarity benefits from
fStrength (the Frobenius norm of the Hessian) and a user-
defined threshold to give opacity only to critical points near signif-
icant second-order variation. Direct volume rendering offers visual
feedback to help determine such thresholds. For consistency one
colormap of scalar data value is used for all renderings in Fig. 1,
which for this synthetic dataset clearly distinguishes in Fig. 1(b)
between maxima (blue) and saddle points (orange).

The following implements srs and srl for ridge surfaces and
lines (Fig. 1(c) and (e)), which depends on Hessian eigensystems.
function vec3 fStep(vec3 x) { // ridge surfaces
vec3{3} E = evecs(r⌦rF(x));
real{3} L = evals(r⌦rF(x));
return -(1/L{2})*E{2}⌦E{2}•rF(x);

}
function real fStrength(vec3 x) = // ridge surfaces
-evals(r⌦rF(x)){2}/(fBias + |rF(x)|);

function vec3 fStep(vec3 x) { // ridge lines
vec3{3} E = evecs(r⌦rF(x));
real{3} L = evals(r⌦rF(x));
return -(E{2}⌦E{2}/L{2} + E{1}⌦E{1}/L{1})•rF(x);

}
function real fStrength(vec3 x) = // ridge lines
-evals(r⌦rF(x)){1}/(fBias + |rF(x)|);

In both cases, fStep and fStrength transcribe the mathemati-
cal definitions in (13), (12), and (20), using the sequence (indexed
by {}) of Hessian eigenvectors E and eigenvalues L. Examples
of fStep and fStrength functions for other extremal features
(Sec. 3.2) are given with Results (Sec. 5).

4.2. Particle-based Feature Sampling

Being less common than direct volume rendering in visualization,
the mechanics of particle systems and their implementation merit
more detailed explanation. The Diderot program in Fig. 4 uses en-
ergy minimization to uniformly sample an isosurface. Similar to
the volume renderer in Fig. 2, this uses functions fStep, fPerp,
and fStrength (starting line 8) to isolate its specificity to isosur-
face features; the rest of the program is invariant with respect to the
type of surface feature. The fPerp function returns a projection
onto the space perpendicular to locally possible fSteps.

Based on a univariate potential energy function phi and its
derivative (lines 14 and 15), functions enr and frc (lines 16 and
17) give the energy and force due to a particle at offset x, where the
potential energy profile around each particle has circular support
with radius rad (line 1). Each strand (line 19) computes the posi-
tion of one particle, initialized with an initial set of points (lines 4
and 83, created by a pre-process to randomly sample the volume
domain), and then updated through two stages of computation. In
the first stage, while !found (line 29), the particle is transported
onto the feature by successive applications of the fStep function,
one step per iteration, until the step size is small enough to im-
ply convergence, at which point found is set to true (line 35).
In the second stage (line 36), each iteration computes one step of
gradient descent through the potential energy created by neighbor-
ing particles (if a particle has no neighbors it creates one; line 47).
This involves learning, at the current particle location pos, the en-
ergy and force due to neighbors (line 42), projecting out the force

c� 2018 The Author(s)
Computer Graphics Forum c� 2018 The Eurographics Association and John Wiley & Sons Ltd.

✏ =
(v0 � f(x))rf(x)

rf(x) ·rf(x)

(minimal)	Particle-Based	Feature	Sampler	in	DiderotG. Kindlmann et al. / Rendering & Extracting Extremal Features

1 input real rad ("Inter-particle potential radius");
2 input real eps ("General convergence threshold");
3 input real v0 ("Which isosurface to sample");
4 input vec3{} ipos ("Initial point positions");
5 input image(3)[] vol ("Data to analyze");
6 field#2(3)[] F = bspln3 ⇣ clamp(vol); // convolve w/ recon kernel
7 // Only these three "f" functions are specific to isosurfaces
8 function vec3 fStep(vec3 x) = (v0 - F(x))*rF(x)/(rF(x)•rF(x));
9 function tensor[3,3] fPerp(vec3 x) {

10 | vec3 norm = normalize(rF(x));
11 | return identity[3] - norm⌦norm;
12 }
13 function real fStrength(vec3 x) = |rF(x)|;
14 function real phi(real r) = (1 - r)^4; // univariate potential
15 function real phi’(real r) = -4*(1 - r)^3;
16 function real enr(vec3 x) = phi(|x|/rad);
17 function vec3 frc(vec3 x) = phi’(|x|/rad) * (1/rad) * x/|x|;
18 // Strands first find feature, then interact w/ or make neighbors
19 strand point (vec3 pos0, real hh0) {
20 | output vec3 pos = pos0; // current particle position
21 | real hh = hh0; // energy gradient descent stepsize
22 | vec3 step = [0,0,0]; // energy+feature steps this iter
23 | bool found = false; // whether feature has been found
24 | int nfs = 0; // number feature steps taken
25 | update {
26 | | if (!inside(pos, F) || fStrength(pos) == 0) {
27 | | | die; // not in field domain & not possibly near feature
28 | | }
29 | | if (!found) { // looking for feature
30 | | | step = fStep(pos); // one step towards feature
31 | | | pos += step;
32 | | | if (|step|/rad > eps) { // took a substantial step
33 | | | | nfs += 1;
34 | | | | if (nfs > 10) { die; } // too slow to converge
35 | | | } else { found = true; } // else converged on feature
36 | | } else { // feature found; interact with other points
37 | | | pos += fStep(pos); // refine feature sampling
38 | | | step = [0,0,0]; // initialize output step
39 | | | real oldE = 0; // energy at current location
40 | | | vec3 force = [0,0,0]; // force on me from neighbors
41 | | | int nn = 0; // number of neighbors
42 | | | foreach (point P in sphere(rad)) {

43 | | | | oldE += enr(P.pos - pos);
44 | | | | force += frc(P.pos - pos);
45 | | | | nn += 1;
46 | | | }
47 | | | if (0 == nn) { // no neighbors, so create one
48 | | | | new point(pos + [0.5*rad,0,0], hh);
49 | | | | continue;
50 | | | } // else interact w/ neighbors
51 | | | force = fPerp(pos)•force; // no force perp. to fStep(pos)
52 | | | vec3 es = hh*force; // energy step along force
53 | | | if (|es| > rad) { // limit motion to radius
54 | | | | hh *= rad/|es|; // decrease stepsize and step
55 | | | | es *= rad/|es|;
56 | | | } // now |es| <= rad
57 | | | vec3 fs = fStep(pos+es); // find step towards feature
58 | | | if (|fs|/|es| > 0.5) { // feature step too big
59 | | | | hh *= 0.5; // try again w/ smaller step
60 | | | | continue;
61 | | | }
62 | | | vec3 oldpos = pos;
63 | | | pos += fs + es; // take steps, find new energy
64 | | | real newE = sum { enr(pos - P.pos) | P in sphere(rad) };
65 | | | if (newE - oldE > 0.5*(pos - oldpos)•(-force)) {
66 | | | | pos = oldpos; // energy didn’t go down enough;
67 | | | | hh *= 0.5; // try again w/ smaller step
68 | | | | continue;
69 | | | }
70 | | | hh *= 1.1; // cautiously increase stepsize
71 | | | step = fs + es; // record steps taken
72 | | | if (nn < 5) { // add neighbor if have too few
73 | | | | new point(pos + 0.5*rad*normalize(es), hh);
74 | | | }
75 | | } // else found
76 | } // update
77 }
78 global {
79 | bool allfound = all { P.found | P in point.all};
80 | real maxstep = max { |P.step| | P in point.all };
81 | if (allfound && maxstep/rad < eps) { stabilize; }
82 }
83 initially { point(ipos[ii], 1) | ii in 0 .. length(ipos)-1 };

Figure 4: A minimal but complete surface feature sampler is made specific to isosurfaces only by three feature functions starting line 8.

This produces Fig. 1b. The image clarity benefits from
fStrength (the Frobenius norm of the Hessian) and a user-
defined threshold to give opacity only to critical points near signif-
icant second-order variation. Direct volume rendering offers visual
feedback to help determine such thresholds. For consistency one
colormap of scalar data value is used for all renderings in Fig. 1,
which for this synthetic dataset clearly distinguishes in Fig. 1(b)
between maxima (blue) and saddle points (orange).

The following implements srs and srl for ridge surfaces and
lines (Fig. 1(c) and (e)), which depends on Hessian eigensystems.
function vec3 fStep(vec3 x) { // ridge surfaces
vec3{3} E = evecs(r⌦rF(x));
real{3} L = evals(r⌦rF(x));
return -(1/L{2})*E{2}⌦E{2}•rF(x);

}
function real fStrength(vec3 x) = // ridge surfaces
-evals(r⌦rF(x)){2}/(fBias + |rF(x)|);

function vec3 fStep(vec3 x) { // ridge lines
vec3{3} E = evecs(r⌦rF(x));
real{3} L = evals(r⌦rF(x));
return -(E{2}⌦E{2}/L{2} + E{1}⌦E{1}/L{1})•rF(x);

}
function real fStrength(vec3 x) = // ridge lines
-evals(r⌦rF(x)){1}/(fBias + |rF(x)|);

In both cases, fStep and fStrength transcribe the mathemati-
cal definitions in (13), (12), and (20), using the sequence (indexed
by {}) of Hessian eigenvectors E and eigenvalues L. Examples
of fStep and fStrength functions for other extremal features
(Sec. 3.2) are given with Results (Sec. 5).

4.2. Particle-based Feature Sampling

Being less common than direct volume rendering in visualization,
the mechanics of particle systems and their implementation merit
more detailed explanation. The Diderot program in Fig. 4 uses en-
ergy minimization to uniformly sample an isosurface. Similar to
the volume renderer in Fig. 2, this uses functions fStep, fPerp,
and fStrength (starting line 8) to isolate its specificity to isosur-
face features; the rest of the program is invariant with respect to the
type of surface feature. The fPerp function returns a projection
onto the space perpendicular to locally possible fSteps.

Based on a univariate potential energy function phi and its
derivative (lines 14 and 15), functions enr and frc (lines 16 and
17) give the energy and force due to a particle at offset x, where the
potential energy profile around each particle has circular support
with radius rad (line 1). Each strand (line 19) computes the posi-
tion of one particle, initialized with an initial set of points (lines 4
and 83, created by a pre-process to randomly sample the volume
domain), and then updated through two stages of computation. In
the first stage, while !found (line 29), the particle is transported
onto the feature by successive applications of the fStep function,
one step per iteration, until the step size is small enough to im-
ply convergence, at which point found is set to true (line 35).
In the second stage (line 36), each iteration computes one step of
gradient descent through the potential energy created by neighbor-
ing particles (if a particle has no neighbors it creates one; line 47).
This involves learning, at the current particle location pos, the en-
ergy and force due to neighbors (line 42), projecting out the force

c� 2018 The Author(s)
Computer Graphics Forum c� 2018 The Eurographics Association and John Wiley & Sons Ltd.

(minimal)	Particle-Based	Feature	Sampler	in	DiderotG. Kindlmann et al. / Rendering & Extracting Extremal Features

1 input real rad ("Inter-particle potential radius");
2 input real eps ("General convergence threshold");
3 input real v0 ("Which isosurface to sample");
4 input vec3{} ipos ("Initial point positions");
5 input image(3)[] vol ("Data to analyze");
6 field#2(3)[] F = bspln3 ⇣ clamp(vol); // convolve w/ recon kernel
7 // Only these three "f" functions are specific to isosurfaces
8 function vec3 fStep(vec3 x) = (v0 - F(x))*rF(x)/(rF(x)•rF(x));
9 function tensor[3,3] fPerp(vec3 x) {

10 | vec3 norm = normalize(rF(x));
11 | return identity[3] - norm⌦norm;
12 }
13 function real fStrength(vec3 x) = |rF(x)|;
14 function real phi(real r) = (1 - r)^4; // univariate potential
15 function real phi’(real r) = -4*(1 - r)^3;
16 function real enr(vec3 x) = phi(|x|/rad);
17 function vec3 frc(vec3 x) = phi’(|x|/rad) * (1/rad) * x/|x|;
18 // Strands first find feature, then interact w/ or make neighbors
19 strand point (vec3 pos0, real hh0) {
20 | output vec3 pos = pos0; // current particle position
21 | real hh = hh0; // energy gradient descent stepsize
22 | vec3 step = [0,0,0]; // energy+feature steps this iter
23 | bool found = false; // whether feature has been found
24 | int nfs = 0; // number feature steps taken
25 | update {
26 | | if (!inside(pos, F) || fStrength(pos) == 0) {
27 | | | die; // not in field domain & not possibly near feature
28 | | }
29 | | if (!found) { // looking for feature
30 | | | step = fStep(pos); // one step towards feature
31 | | | pos += step;
32 | | | if (|step|/rad > eps) { // took a substantial step
33 | | | | nfs += 1;
34 | | | | if (nfs > 10) { die; } // too slow to converge
35 | | | } else { found = true; } // else converged on feature
36 | | } else { // feature found; interact with other points
37 | | | pos += fStep(pos); // refine feature sampling
38 | | | step = [0,0,0]; // initialize output step
39 | | | real oldE = 0; // energy at current location
40 | | | vec3 force = [0,0,0]; // force on me from neighbors
41 | | | int nn = 0; // number of neighbors
42 | | | foreach (point P in sphere(rad)) {

43 | | | | oldE += enr(P.pos - pos);
44 | | | | force += frc(P.pos - pos);
45 | | | | nn += 1;
46 | | | }
47 | | | if (0 == nn) { // no neighbors, so create one
48 | | | | new point(pos + [0.5*rad,0,0], hh);
49 | | | | continue;
50 | | | } // else interact w/ neighbors
51 | | | force = fPerp(pos)•force; // no force perp. to fStep(pos)
52 | | | vec3 es = hh*force; // energy step along force
53 | | | if (|es| > rad) { // limit motion to radius
54 | | | | hh *= rad/|es|; // decrease stepsize and step
55 | | | | es *= rad/|es|;
56 | | | } // now |es| <= rad
57 | | | vec3 fs = fStep(pos+es); // find step towards feature
58 | | | if (|fs|/|es| > 0.5) { // feature step too big
59 | | | | hh *= 0.5; // try again w/ smaller step
60 | | | | continue;
61 | | | }
62 | | | vec3 oldpos = pos;
63 | | | pos += fs + es; // take steps, find new energy
64 | | | real newE = sum { enr(pos - P.pos) | P in sphere(rad) };
65 | | | if (newE - oldE > 0.5*(pos - oldpos)•(-force)) {
66 | | | | pos = oldpos; // energy didn’t go down enough;
67 | | | | hh *= 0.5; // try again w/ smaller step
68 | | | | continue;
69 | | | }
70 | | | hh *= 1.1; // cautiously increase stepsize
71 | | | step = fs + es; // record steps taken
72 | | | if (nn < 5) { // add neighbor if have too few
73 | | | | new point(pos + 0.5*rad*normalize(es), hh);
74 | | | }
75 | | } // else found
76 | } // update
77 }
78 global {
79 | bool allfound = all { P.found | P in point.all};
80 | real maxstep = max { |P.step| | P in point.all };
81 | if (allfound && maxstep/rad < eps) { stabilize; }
82 }
83 initially { point(ipos[ii], 1) | ii in 0 .. length(ipos)-1 };

Figure 4: A minimal but complete surface feature sampler is made specific to isosurfaces only by three feature functions starting line 8.

This produces Fig. 1b. The image clarity benefits from
fStrength (the Frobenius norm of the Hessian) and a user-
defined threshold to give opacity only to critical points near signif-
icant second-order variation. Direct volume rendering offers visual
feedback to help determine such thresholds. For consistency one
colormap of scalar data value is used for all renderings in Fig. 1,
which for this synthetic dataset clearly distinguishes in Fig. 1(b)
between maxima (blue) and saddle points (orange).

The following implements srs and srl for ridge surfaces and
lines (Fig. 1(c) and (e)), which depends on Hessian eigensystems.
function vec3 fStep(vec3 x) { // ridge surfaces
vec3{3} E = evecs(r⌦rF(x));
real{3} L = evals(r⌦rF(x));
return -(1/L{2})*E{2}⌦E{2}•rF(x);

}
function real fStrength(vec3 x) = // ridge surfaces
-evals(r⌦rF(x)){2}/(fBias + |rF(x)|);

function vec3 fStep(vec3 x) { // ridge lines
vec3{3} E = evecs(r⌦rF(x));
real{3} L = evals(r⌦rF(x));
return -(E{2}⌦E{2}/L{2} + E{1}⌦E{1}/L{1})•rF(x);

}
function real fStrength(vec3 x) = // ridge lines
-evals(r⌦rF(x)){1}/(fBias + |rF(x)|);

In both cases, fStep and fStrength transcribe the mathemati-
cal definitions in (13), (12), and (20), using the sequence (indexed
by {}) of Hessian eigenvectors E and eigenvalues L. Examples
of fStep and fStrength functions for other extremal features
(Sec. 3.2) are given with Results (Sec. 5).

4.2. Particle-based Feature Sampling

Being less common than direct volume rendering in visualization,
the mechanics of particle systems and their implementation merit
more detailed explanation. The Diderot program in Fig. 4 uses en-
ergy minimization to uniformly sample an isosurface. Similar to
the volume renderer in Fig. 2, this uses functions fStep, fPerp,
and fStrength (starting line 8) to isolate its specificity to isosur-
face features; the rest of the program is invariant with respect to the
type of surface feature. The fPerp function returns a projection
onto the space perpendicular to locally possible fSteps.

Based on a univariate potential energy function phi and its
derivative (lines 14 and 15), functions enr and frc (lines 16 and
17) give the energy and force due to a particle at offset x, where the
potential energy profile around each particle has circular support
with radius rad (line 1). Each strand (line 19) computes the posi-
tion of one particle, initialized with an initial set of points (lines 4
and 83, created by a pre-process to randomly sample the volume
domain), and then updated through two stages of computation. In
the first stage, while !found (line 29), the particle is transported
onto the feature by successive applications of the fStep function,
one step per iteration, until the step size is small enough to im-
ply convergence, at which point found is set to true (line 35).
In the second stage (line 36), each iteration computes one step of
gradient descent through the potential energy created by neighbor-
ing particles (if a particle has no neighbors it creates one; line 47).
This involves learning, at the current particle location pos, the en-
ergy and force due to neighbors (line 42), projecting out the force

c� 2018 The Author(s)
Computer Graphics Forum c� 2018 The Eurographics Association and John Wiley & Sons Ltd.

Inter-particle	
dynamics

One	iteration

Distribute	myself	
w.r.t.	neighbors	…	

Take	steps	until	
converged

…	re-find	feature	

Ensure	energy	
decrease

Control	particle	
system	
population

feature	strength

Rendering	&	sampling	an	isosurface

Direct	Volume	Rendering

Rendering	&	sampling	an	isosurface

Direct	Volume	Rendering Particle-based	Feature	Sampling

[Witkin-Particles-1994]	[Crossno-Particles-1997]	[Meyer-Robust-2005]	…

(MOVIE OF CONVERGENCE HERE)

G. Kindlmann et al. / Rendering & Extracting Extremal Features

1 input vec3 camEye ("Camera look-from point"); // look-at = [0,0,0]
2 input real camDepth ("Distance between near,far clip planes");
3 input real camFOV ("Vertical angle subtended by image");
4 input int imgRes ("Resolution on edge of square output image");
5 input real rayStep ("Sampling distance on central ray");
6 input real thick ("Apparent thickness of isosurface");
7 input real v0 ("which isosurface to render");
8 input image(3)[] vol ("data to render");
9 field#2(3)[] F = bspln3 ⇣ vol; // convolve image w/ recon kernel

10 // Only these feature functions are specific to isosurfaces
11 function vec3 fStep(vec3 x) = (v0 - F(x))*rF(x)/(rF(x)•rF(x));
12 function real fStrength(vec3 x) = |rF(x)|;
13 // Computing ray parameters and view-space basis
14 vec3 camN = normalize(-camEye); // N: away from eye
15 vec3 camU = normalize(camN ⇥ [0,0,1]); // U: right
16 vec3 camV = camN ⇥ camU; // V: down
17 real camNear = |camEye| - camDepth/2; // near clip, view space
18 real camFar = |camEye| + camDepth/2; // far clip, view space
19 // Core opacity function is a capped tent function
20 function real atent(real d) = clamp(0, 1, 1.5*(1 - |d|/thick));
21 // Renders ray through (rayU,rayV) on view plane through origin
22 strand ray(int ui, int vi) {
23 | real UVmax = tan(camFOV*p/360)*|camEye|;
24 | real rayU = lerp(-UVmax, UVmax, -0.5, ui, imgRes-0.5);
25 | real rayV = lerp(-UVmax, UVmax, -0.5, vi, imgRes-0.5);

26 | vec3 rayVec = camN + (rayU*camU + rayV*camV)/|camEye|;
27 | real rayN = camNear - rayStep; // init ray position
28 | output vec4 rgba = [0,0,0,0]; // output ray color
29 | real gray = 0; // ray grayscale
30 | real tt = 1; // ray tranparency
31 | update {
32 | | rayN += rayStep; // increment ray position
33 | | if (rayN > camFar) { // done if ray passed far plane
34 | | | real q = 1-tt if tt < 1 else 1; // un-pre-multiply
35 | | | rgba = [gray/q, gray/q, gray/q, 1-tt];
36 | | | stabilize;
37 | | }
38 | | vec3 pos = camEye + rayN*rayVec; // ray sample position
39 | | if (!inside(pos,F) || fStrength(pos) == 0) {
40 | | | continue; // neither in field nor possibly near feature
41 | | }
42 | | vec3 step = fStep(pos); // step towards feature
43 | | real aa = atent(|step|); // sample opacity
44 | | if (aa == 0) { continue; } // skip if no opacity
45 | | real gg = (normalize(step)•[0,0,1])^2; // 2-sided lighting
46 | | gray += tt*aa*((0.2 + 0.8*gg)); // ambient and diffuse
47 | | tt *= 1 - aa; // tranparencies multiply
48 | }
49 } // end strand
50 initially [ray(ui,vi) | vi in 0..imgRes-1, ui in 0..imgRes-1];

Figure 2: A minimal but complete volume renderer is made specific to isosurfaces only by fStep and fStrength on lines 11 and 12.

sought, and f 00 = c · (r⌦r f)c is the second directional deriva-
tive of f along c. For extremal lines, again consider H (16), the
Hessian of f projected to the plane within which the extremum is
sought. We propose strength measures for minimal line (“�`”) and
maximal line (“+`”) features:

r�` =
r0

r0 + |r f | , r+` =
�r1

r0 + |r f | , (22)

where r0 � r1 are the eigenvalues of H.

Additional tests may help include or exclude part of a feature,
such as requiring that ridges have sufficient height as well as suffi-
cient strength. In particular, when extracting Sujudi-Haimes vortex
cores [SH94] by the Parallel Vectors operator with ridge or valley
lines of h = (v/|v|) ·(r⌦v/|r⌦v|), we want h to be near ±1. Our
approach includes a feature mask function to be set and thresholded
to afford this extra control as needed.

4. Methods

We implement our approach in Diderot, a domain-specific language
for scientific visualization [CKR⇤12, KCS⇤16]. We describe two
Diderot programs, volume rendering (Sec. 4.1) and for particle-
based feature sampling (Sec. 4.2), and describe how each may be
specialized with feature functions. Code for the features functions
is listed in the context of volume rendering, but then re-used verba-
tim for particle-based feature sampling.

4.1. Direct Volume Rendering

The program in Fig. 2 volume renders isosurfaces and demonstrates
the basic structure of Diderot programs. Input variables (lines 1–8)
include rendering parameters, the isovalue, and the image data from
which the C2-continuous field F is created by convolving with the
cubic B-spline (line 9). After computing ray and camera geometry
(lines 14–18), the atent function (line 20) implements a modified
atent(d) (4), parameterized by isosurface thickness thick. The
ray strand (the unit of parallelism in Diderot) starting line 22 ren-
ders one ray. After computing ray geometry (lines 23–26), lines 27–
30 initialize ray state, and the update method (starting line 31)

(a) Rendered (b) iteration 0 (c) iteration 5 (d) iteration 55

Figure 3: Minimal but complete program results: Fig. 2 volume
renderer creates (a), Fig. 4 particle system creates (b), (c), and (d;
converged) after indicated iterations.

implements one iteration of ray traversal and volume sampling, as
explained in the code comments. The program ends (line 50) by
creating an array of strands to be executed in parallel. Figure 3a
shows how this program renders a small 64 ⇥ 64 ⇥ 32 synthetic
dataset (used throughout this section) containing a Möbius strip
with seven Gaussian blobs along its circular core.

The Fig. 2 renderer demonstrates how feature specificity can
be isolated to a few functions, in this case feature step fStep
and feature strength fStrength, on lines 11 and 12. The
fStep(x) function, directly copied from siso(x) (3) of Sec. 3,
determines opacity (line 43) and shading (line 45) based on
step = fStep(pos) (line 42). The fStrength function
(line 39) is used here to avoid divide-by-zero problems when com-
puting feature steps; it will have a greater role with extremal fea-
tures.

Results in Sec. 5 come from a more complete volume renderer,
listed in Appendix A. Compared to Fig. 2, this program renders in
color (with a univariate colormap of the underlying scalar value)
and it offers more control over ray geometry and rendered appear-
ance, but it too hinges on the same fStep and fStrength func-
tions. The top row of Fig. 1 shows a variety of features all vol-
ume rendered from the same Möbius strip synthetic dataset used
in Fig. 3a, all created with the program in Appendix A (used
without change for Fig. 1a). Copying (8) from Sec. 3, we can
change fStep and fStrength to show critical points instead:
function vec3 fStep(vec3 x) = // critical points

-inv(r⌦rF(x))•rF(x);
function real fStrength(vec3 x) = |r⌦rF(x)|;

c� 2018 The Author(s)
Computer Graphics Forum c� 2018 The Eurographics Association and John Wiley & Sons Ltd.

G. Kindlmann et al. / Rendering & Extracting Extremal Features

1 input vec3 camEye ("Camera look-from point"); // look-at = [0,0,0]
2 input real camDepth ("Distance between near,far clip planes");
3 input real camFOV ("Vertical angle subtended by image");
4 input int imgRes ("Resolution on edge of square output image");
5 input real rayStep ("Sampling distance on central ray");
6 input real thick ("Apparent thickness of isosurface");
7 input real v0 ("which isosurface to render");
8 input image(3)[] vol ("data to render");
9 field#2(3)[] F = bspln3 ⇣ vol; // convolve image w/ recon kernel

10 // Only these feature functions are specific to isosurfaces
11 function vec3 fStep(vec3 x) = (v0 - F(x))*rF(x)/(rF(x)•rF(x));
12 function real fStrength(vec3 x) = |rF(x)|;
13 // Computing ray parameters and view-space basis
14 vec3 camN = normalize(-camEye); // N: away from eye
15 vec3 camU = normalize(camN ⇥ [0,0,1]); // U: right
16 vec3 camV = camN ⇥ camU; // V: down
17 real camNear = |camEye| - camDepth/2; // near clip, view space
18 real camFar = |camEye| + camDepth/2; // far clip, view space
19 // Core opacity function is a capped tent function
20 function real atent(real d) = clamp(0, 1, 1.5*(1 - |d|/thick));
21 // Renders ray through (rayU,rayV) on view plane through origin
22 strand ray(int ui, int vi) {
23 | real UVmax = tan(camFOV*p/360)*|camEye|;
24 | real rayU = lerp(-UVmax, UVmax, -0.5, ui, imgRes-0.5);
25 | real rayV = lerp(-UVmax, UVmax, -0.5, vi, imgRes-0.5);

26 | vec3 rayVec = camN + (rayU*camU + rayV*camV)/|camEye|;
27 | real rayN = camNear - rayStep; // init ray position
28 | output vec4 rgba = [0,0,0,0]; // output ray color
29 | real gray = 0; // ray grayscale
30 | real tt = 1; // ray tranparency
31 | update {
32 | | rayN += rayStep; // increment ray position
33 | | if (rayN > camFar) { // done if ray passed far plane
34 | | | real q = 1-tt if tt < 1 else 1; // un-pre-multiply
35 | | | rgba = [gray/q, gray/q, gray/q, 1-tt];
36 | | | stabilize;
37 | | }
38 | | vec3 pos = camEye + rayN*rayVec; // ray sample position
39 | | if (!inside(pos,F) || fStrength(pos) == 0) {
40 | | | continue; // neither in field nor possibly near feature
41 | | }
42 | | vec3 step = fStep(pos); // step towards feature
43 | | real aa = atent(|step|); // sample opacity
44 | | if (aa == 0) { continue; } // skip if no opacity
45 | | real gg = (normalize(step)•[0,0,1])^2; // 2-sided lighting
46 | | gray += tt*aa*((0.2 + 0.8*gg)); // ambient and diffuse
47 | | tt *= 1 - aa; // tranparencies multiply
48 | }
49 } // end strand
50 initially [ray(ui,vi) | vi in 0..imgRes-1, ui in 0..imgRes-1];

Figure 2: A minimal but complete volume renderer is made specific to isosurfaces only by fStep and fStrength on lines 11 and 12.

sought, and f 00 = c · (r⌦r f)c is the second directional deriva-
tive of f along c. For extremal lines, again consider H (16), the
Hessian of f projected to the plane within which the extremum is
sought. We propose strength measures for minimal line (“�`”) and
maximal line (“+`”) features:

r�` =
r0

r0 + |r f | , r+` =
�r1

r0 + |r f | , (22)

where r0 � r1 are the eigenvalues of H.

Additional tests may help include or exclude part of a feature,
such as requiring that ridges have sufficient height as well as suffi-
cient strength. In particular, when extracting Sujudi-Haimes vortex
cores [SH94] by the Parallel Vectors operator with ridge or valley
lines of h = (v/|v|) ·(r⌦v/|r⌦v|), we want h to be near ±1. Our
approach includes a feature mask function to be set and thresholded
to afford this extra control as needed.

4. Methods

We implement our approach in Diderot, a domain-specific language
for scientific visualization [CKR⇤12, KCS⇤16]. We describe two
Diderot programs, volume rendering (Sec. 4.1) and for particle-
based feature sampling (Sec. 4.2), and describe how each may be
specialized with feature functions. Code for the features functions
is listed in the context of volume rendering, but then re-used verba-
tim for particle-based feature sampling.

4.1. Direct Volume Rendering

The program in Fig. 2 volume renders isosurfaces and demonstrates
the basic structure of Diderot programs. Input variables (lines 1–8)
include rendering parameters, the isovalue, and the image data from
which the C2-continuous field F is created by convolving with the
cubic B-spline (line 9). After computing ray and camera geometry
(lines 14–18), the atent function (line 20) implements a modified
atent(d) (4), parameterized by isosurface thickness thick. The
ray strand (the unit of parallelism in Diderot) starting line 22 ren-
ders one ray. After computing ray geometry (lines 23–26), lines 27–
30 initialize ray state, and the update method (starting line 31)

(a) Rendered (b) iteration 0 (c) iteration 5 (d) iteration 55

Figure 3: Minimal but complete program results: Fig. 2 volume
renderer creates (a), Fig. 4 particle system creates (b), (c), and (d;
converged) after indicated iterations.

implements one iteration of ray traversal and volume sampling, as
explained in the code comments. The program ends (line 50) by
creating an array of strands to be executed in parallel. Figure 3a
shows how this program renders a small 64 ⇥ 64 ⇥ 32 synthetic
dataset (used throughout this section) containing a Möbius strip
with seven Gaussian blobs along its circular core.

The Fig. 2 renderer demonstrates how feature specificity can
be isolated to a few functions, in this case feature step fStep
and feature strength fStrength, on lines 11 and 12. The
fStep(x) function, directly copied from siso(x) (3) of Sec. 3,
determines opacity (line 43) and shading (line 45) based on
step = fStep(pos) (line 42). The fStrength function
(line 39) is used here to avoid divide-by-zero problems when com-
puting feature steps; it will have a greater role with extremal fea-
tures.

Results in Sec. 5 come from a more complete volume renderer,
listed in Appendix A. Compared to Fig. 2, this program renders in
color (with a univariate colormap of the underlying scalar value)
and it offers more control over ray geometry and rendered appear-
ance, but it too hinges on the same fStep and fStrength func-
tions. The top row of Fig. 1 shows a variety of features all vol-
ume rendered from the same Möbius strip synthetic dataset used
in Fig. 3a, all created with the program in Appendix A (used
without change for Fig. 1a). Copying (8) from Sec. 3, we can
change fStep and fStrength to show critical points instead:
function vec3 fStep(vec3 x) = // critical points

-inv(r⌦rF(x))•rF(x);
function real fStrength(vec3 x) = |r⌦rF(x)|;

c� 2018 The Author(s)
Computer Graphics Forum c� 2018 The Eurographics Association and John Wiley & Sons Ltd.

In	Diderot:

Rendering	&	sampling	critical	points
Taylor	series,	for	gradient:
rf(x+ ✏) ⇡ rf(x) +Hf(x)✏

Critical	point:
rf(x) = 0

0 = rf(x) +Hf(x)✏) ✏ = �(Hf(x))�1rf(x)
Newton	optimization	step

Sampled	
critical	
points:

Volume	
rendered	
critical	
points:

Full	programs	in	Appendices	A	and	B

Deriving	Newton	step	for	Ridges	and	Valleys

Eigensystem	of	Hessian: H =
2X

i=0

�i ei⌦ei �0 � �1 � �2

rf(x) · e2 = 0, �2 < 0Ridge	surface	(rs)	[Eberly-1996]:

rf(x) · e2 = rf(x) · e1 = 0, �1 < 0Ridge	line	(rl):

Prs = e2 ⌦ e2 Prl = e1 ⌦ e1 + e2 ⌦ e2
Pvs = e0 ⌦ e0 Pvl = e0 ⌦ e0 + e1 ⌦ e1

Projection	onto	
relevant	eigenvectors:

Prf = 0Necessary	ridge,valley	condition:

Newton	step	for	Ridges	and	Valleys
Taylor	series,	for	gradient:
rf(x+ ✏) ⇡ rf(x) +Hf(x)✏

Ridge,valley: Prf = 0Prf(x+ ✏) ⇡ Prf(x) +PHf(x)✏

0 = Prf(x) +PHf(x)✏ P,	H	diagonal	in	{ei}	basis
pick	"	in	span	of	relevant	ei

) ✏ = �(Hf(x))�1Prf(x)

Hf(x)P✏

Hf(x)✏

P,	H–1	diagonal	in	{ei}	basis

Newton	step	for	e.g.	ridge	surfaces

In	Diderot:

G. Kindlmann et al. / Rendering & Extracting Extremal Features

1 input real rad ("Inter-particle potential radius");
2 input real eps ("General convergence threshold");
3 input real v0 ("Which isosurface to sample");
4 input vec3{} ipos ("Initial point positions");
5 input image(3)[] vol ("Data to analyze");
6 field#2(3)[] F = bspln3 ⇣ clamp(vol); // convolve w/ recon kernel
7 // Only these three "f" functions are specific to isosurfaces
8 function vec3 fStep(vec3 x) = (v0 - F(x))*rF(x)/(rF(x)•rF(x));
9 function tensor[3,3] fPerp(vec3 x) {

10 | vec3 norm = normalize(rF(x));
11 | return identity[3] - norm⌦norm;
12 }
13 function real fStrength(vec3 x) = |rF(x)|;
14 function real phi(real r) = (1 - r)^4; // univariate potential
15 function real phi’(real r) = -4*(1 - r)^3;
16 function real enr(vec3 x) = phi(|x|/rad);
17 function vec3 frc(vec3 x) = phi’(|x|/rad) * (1/rad) * x/|x|;
18 // Strands first find feature, then interact w/ or make neighbors
19 strand point (vec3 pos0, real hh0) {
20 | output vec3 pos = pos0; // current particle position
21 | real hh = hh0; // energy gradient descent stepsize
22 | vec3 step = [0,0,0]; // energy+feature steps this iter
23 | bool found = false; // whether feature has been found
24 | int nfs = 0; // number feature steps taken
25 | update {
26 | | if (!inside(pos, F) || fStrength(pos) == 0) {
27 | | | die; // not in field domain & not possibly near feature
28 | | }
29 | | if (!found) { // looking for feature
30 | | | step = fStep(pos); // one step towards feature
31 | | | pos += step;
32 | | | if (|step|/rad > eps) { // took a substantial step
33 | | | | nfs += 1;
34 | | | | if (nfs > 10) { die; } // too slow to converge
35 | | | } else { found = true; } // else converged on feature
36 | | } else { // feature found; interact with other points
37 | | | pos += fStep(pos); // refine feature sampling
38 | | | step = [0,0,0]; // initialize output step
39 | | | real oldE = 0; // energy at current location
40 | | | vec3 force = [0,0,0]; // force on me from neighbors
41 | | | int nn = 0; // number of neighbors
42 | | | foreach (point P in sphere(rad)) {

43 | | | | oldE += enr(P.pos - pos);
44 | | | | force += frc(P.pos - pos);
45 | | | | nn += 1;
46 | | | }
47 | | | if (0 == nn) { // no neighbors, so create one
48 | | | | new point(pos + [0.5*rad,0,0], hh);
49 | | | | continue;
50 | | | } // else interact w/ neighbors
51 | | | force = fPerp(pos)•force; // no force perp. to fStep(pos)
52 | | | vec3 es = hh*force; // energy step along force
53 | | | if (|es| > rad) { // limit motion to radius
54 | | | | hh *= rad/|es|; // decrease stepsize and step
55 | | | | es *= rad/|es|;
56 | | | } // now |es| <= rad
57 | | | vec3 fs = fStep(pos+es); // find step towards feature
58 | | | if (|fs|/|es| > 0.5) { // feature step too big
59 | | | | hh *= 0.5; // try again w/ smaller step
60 | | | | continue;
61 | | | }
62 | | | vec3 oldpos = pos;
63 | | | pos += fs + es; // take steps, find new energy
64 | | | real newE = sum { enr(pos - P.pos) | P in sphere(rad) };
65 | | | if (newE - oldE > 0.5*(pos - oldpos)•(-force)) {
66 | | | | pos = oldpos; // energy didn’t go down enough;
67 | | | | hh *= 0.5; // try again w/ smaller step
68 | | | | continue;
69 | | | }
70 | | | hh *= 1.1; // cautiously increase stepsize
71 | | | step = fs + es; // record steps taken
72 | | | if (nn < 5) { // add neighbor if have too few
73 | | | | new point(pos + 0.5*rad*normalize(es), hh);
74 | | | }
75 | | } // else found
76 | } // update
77 }
78 global {
79 | bool allfound = all { P.found | P in point.all};
80 | real maxstep = max { |P.step| | P in point.all };
81 | if (allfound && maxstep/rad < eps) { stabilize; }
82 }
83 initially { point(ipos[ii], 1) | ii in 0 .. length(ipos)-1 };

Figure 4: A minimal but complete surface feature sampler is made specific to isosurfaces only by three feature functions starting line 8.

This produces Fig. 1b. The image clarity benefits from
fStrength (the Frobenius norm of the Hessian) and a user-
defined threshold to give opacity only to critical points near signif-
icant second-order variation. Direct volume rendering offers visual
feedback to help determine such thresholds. For consistency one
colormap of scalar data value is used for all renderings in Fig. 1,
which for this synthetic dataset clearly distinguishes in Fig. 1(b)
between maxima (blue) and saddle points (orange).

The following implements srs and srl for ridge surfaces and
lines (Fig. 1(c) and (e)), which depends on Hessian eigensystems.
function vec3 fStep(vec3 x) { // ridge surfaces
vec3{3} E = evecs(r⌦rF(x));
real{3} L = evals(r⌦rF(x));
return -(1/L{2})*E{2}⌦E{2}•rF(x);

}
function real fStrength(vec3 x) = // ridge surfaces
-evals(r⌦rF(x)){2}/(fBias + |rF(x)|);

function vec3 fStep(vec3 x) { // ridge lines
vec3{3} E = evecs(r⌦rF(x));
real{3} L = evals(r⌦rF(x));
return -(E{2}⌦E{2}/L{2} + E{1}⌦E{1}/L{1})•rF(x);

}
function real fStrength(vec3 x) = // ridge lines
-evals(r⌦rF(x)){1}/(fBias + |rF(x)|);

In both cases, fStep and fStrength transcribe the mathemati-
cal definitions in (13), (12), and (20), using the sequence (indexed
by {}) of Hessian eigenvectors E and eigenvalues L. Examples
of fStep and fStrength functions for other extremal features
(Sec. 3.2) are given with Results (Sec. 5).

4.2. Particle-based Feature Sampling

Being less common than direct volume rendering in visualization,
the mechanics of particle systems and their implementation merit
more detailed explanation. The Diderot program in Fig. 4 uses en-
ergy minimization to uniformly sample an isosurface. Similar to
the volume renderer in Fig. 2, this uses functions fStep, fPerp,
and fStrength (starting line 8) to isolate its specificity to isosur-
face features; the rest of the program is invariant with respect to the
type of surface feature. The fPerp function returns a projection
onto the space perpendicular to locally possible fSteps.

Based on a univariate potential energy function phi and its
derivative (lines 14 and 15), functions enr and frc (lines 16 and
17) give the energy and force due to a particle at offset x, where the
potential energy profile around each particle has circular support
with radius rad (line 1). Each strand (line 19) computes the posi-
tion of one particle, initialized with an initial set of points (lines 4
and 83, created by a pre-process to randomly sample the volume
domain), and then updated through two stages of computation. In
the first stage, while !found (line 29), the particle is transported
onto the feature by successive applications of the fStep function,
one step per iteration, until the step size is small enough to im-
ply convergence, at which point found is set to true (line 35).
In the second stage (line 36), each iteration computes one step of
gradient descent through the potential energy created by neighbor-
ing particles (if a particle has no neighbors it creates one; line 47).
This involves learning, at the current particle location pos, the en-
ergy and force due to neighbors (line 42), projecting out the force

c� 2018 The Author(s)
Computer Graphics Forum c� 2018 The Eurographics Association and John Wiley & Sons Ltd.

[Obermaier-MeshFree-2012]

) ✏rs = �e2(e2 ·rf(x))

�2

Rendering	&	sampling	ridge	surfaces
Direct	Volume	Rendering Particle-based	Feature	Sampling

(MOVIE OF CONVERGENCE HERE)

Teaser	Figure

Eurographics Conference on Visualization (EuroVis) 2018
J. Heer, H. Leitte, and T. Ropinski
(Guest Editors)

Volume 37 (2018), Number 3

Rendering and Extracting Extremal Features in 3D Fields

G. Kindlmann1, C. Chiw1, T. Huynh1, A. Gyulassy2, and J. Reppy1, P.-T. Bremer2

1Department of Computer Science, University of Chicago
2SCI Institute, University of Utah

Vo
lu

m
e

R
en

de
rin

g
Fe

at
ur

e
Ex

tra
ct

io
n

Isosurface Critical Points Ridge Surface Valley Surface Ridge Line

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 1: Direct volume renderings (top row) and meshes (bottom row) show the structure of one synthetic dataset. One program computed
all renderings, and another computed the mesh vertices. Between features (columns), the only differences in their source code were functions
for computing a Newton step to the feature, and for measuring feature strength. These functions were shared between the two programs,
achieving orthogonality between implementing visualization algorithms, and specifying the particular features of interest.

Abstract
Visualizing and extracting three-dimensional features is important for many computational science applications, each with
their own feature definitions and data types. While some are simple to state and implement (e.g. isosurfaces), others require
more complicated mathematics (e.g. multiple derivatives, curvature, eigenvectors, etc.). Correctly implementing mathemati-
cal definitions is difficult, so experimenting with new features requires substantial investments. Furthermore, traditional inter-
polants rarely support the necessary derivatives, and approximations can reduce numerical stability. Our new approach directly
translates mathematical notation into practical visualization and feature extraction, with minimal mental and implementation
overhead. Using a mathematically expressive domain-specific language, Diderot, we compute direct volume renderings and
particle-based feature samplings for a range of mathematical features. Non-expert users can experiment with complex feature
definitions without any exposure to meshes, interpolants, derivative computation, etc. We demonstrate high-quality results on
notoriously difficult features, such as ridges and vortex cores, using working code simple enough to be presented in its entirety.
CCS Concepts
•Computing methodologies ! Scientific visualization; •Software and its engineering ! Domain specific languages;
•Human-centered computing ! Visualization systems and tools;

1. Introduction

Many different analysis and visualization techniques for spatio-
temporal data share an overarching goal: to better understand some
feature of interest. Features may be defined locally, such as isosur-
faces as points with a certain value, or globally, as with stream-
lines and separatrices. In general, local feature definitions are more
common and cover features ranging from isosurfaces and ridges in

scalar fields [Ebe96], to vortex core lines in vector fields [PR99]
and crease lines in tensor fields [TKW08]. Depending on the ap-
plication, these definitions are either approximated by some (po-
tentially fuzzy) indicator, such as a transfer function in volume
rendering or explicitly evaluated through an algorithm like March-
ing Cubes [LC87]. However, feature definitions in visualization re-
search have long evolved from the simple definitions to complex,

c� 2018 The Author(s)
Computer Graphics Forum c� 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Teaser	Figure

Eurographics Conference on Visualization (EuroVis) 2018
J. Heer, H. Leitte, and T. Ropinski
(Guest Editors)

Volume 37 (2018), Number 3

Rendering and Extracting Extremal Features in 3D Fields

G. Kindlmann1, C. Chiw1, T. Huynh1, A. Gyulassy2, and J. Reppy1, P.-T. Bremer2

1Department of Computer Science, University of Chicago
2SCI Institute, University of Utah

Vo
lu

m
e

R
en

de
rin

g
Fe

at
ur

e
Ex

tra
ct

io
n

Isosurface Critical Points Ridge Surface Valley Surface Ridge Line

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 1: Direct volume renderings (top row) and meshes (bottom row) show the structure of one synthetic dataset. One program computed
all renderings, and another computed the mesh vertices. Between features (columns), the only differences in their source code were functions
for computing a Newton step to the feature, and for measuring feature strength. These functions were shared between the two programs,
achieving orthogonality between implementing visualization algorithms, and specifying the particular features of interest.

Abstract
Visualizing and extracting three-dimensional features is important for many computational science applications, each with
their own feature definitions and data types. While some are simple to state and implement (e.g. isosurfaces), others require
more complicated mathematics (e.g. multiple derivatives, curvature, eigenvectors, etc.). Correctly implementing mathemati-
cal definitions is difficult, so experimenting with new features requires substantial investments. Furthermore, traditional inter-
polants rarely support the necessary derivatives, and approximations can reduce numerical stability. Our new approach directly
translates mathematical notation into practical visualization and feature extraction, with minimal mental and implementation
overhead. Using a mathematically expressive domain-specific language, Diderot, we compute direct volume renderings and
particle-based feature samplings for a range of mathematical features. Non-expert users can experiment with complex feature
definitions without any exposure to meshes, interpolants, derivative computation, etc. We demonstrate high-quality results on
notoriously difficult features, such as ridges and vortex cores, using working code simple enough to be presented in its entirety.
CCS Concepts
•Computing methodologies ! Scientific visualization; •Software and its engineering ! Domain specific languages;
•Human-centered computing ! Visualization systems and tools;

1. Introduction

Many different analysis and visualization techniques for spatio-
temporal data share an overarching goal: to better understand some
feature of interest. Features may be defined locally, such as isosur-
faces as points with a certain value, or globally, as with stream-
lines and separatrices. In general, local feature definitions are more
common and cover features ranging from isosurfaces and ridges in

scalar fields [Ebe96], to vortex core lines in vector fields [PR99]
and crease lines in tensor fields [TKW08]. Depending on the ap-
plication, these definitions are either approximated by some (po-
tentially fuzzy) indicator, such as a transfer function in volume
rendering or explicitly evaluated through an algorithm like March-
ing Cubes [LC87]. However, feature definitions in visualization re-
search have long evolved from the simple definitions to complex,

c� 2018 The Author(s)
Computer Graphics Forum c� 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Eurographics Conference on Visualization (EuroVis) 2018
J. Heer, H. Leitte, and T. Ropinski
(Guest Editors)

Volume 37 (2018), Number 3

Rendering and Extracting Extremal Features in 3D Fields

G. Kindlmann1, C. Chiw1, T. Huynh1, A. Gyulassy2, and J. Reppy1, P.-T. Bremer2

1Department of Computer Science, University of Chicago
2SCI Institute, University of Utah

Vo
lu

m
e

R
en

de
rin

g
Fe

at
ur

e
Ex

tra
ct

io
n

Isosurface Critical Points Ridge Surface Valley Surface Ridge Line

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 1: Direct volume renderings (top row) and meshes (bottom row) show the structure of one synthetic dataset. One program computed
all renderings, and another computed the mesh vertices. Between features (columns), the only differences in their source code were functions
for computing a Newton step to the feature, and for measuring feature strength. These functions were shared between the two programs,
achieving orthogonality between implementing visualization algorithms, and specifying the particular features of interest.

Abstract
Visualizing and extracting three-dimensional features is important for many computational science applications, each with
their own feature definitions and data types. While some are simple to state and implement (e.g. isosurfaces), others require
more complicated mathematics (e.g. multiple derivatives, curvature, eigenvectors, etc.). Correctly implementing mathemati-
cal definitions is difficult, so experimenting with new features requires substantial investments. Furthermore, traditional inter-
polants rarely support the necessary derivatives, and approximations can reduce numerical stability. Our new approach directly
translates mathematical notation into practical visualization and feature extraction, with minimal mental and implementation
overhead. Using a mathematically expressive domain-specific language, Diderot, we compute direct volume renderings and
particle-based feature samplings for a range of mathematical features. Non-expert users can experiment with complex feature
definitions without any exposure to meshes, interpolants, derivative computation, etc. We demonstrate high-quality results on
notoriously difficult features, such as ridges and vortex cores, using working code simple enough to be presented in its entirety.
CCS Concepts
•Computing methodologies ! Scientific visualization; •Software and its engineering ! Domain specific languages;
•Human-centered computing ! Visualization systems and tools;

1. Introduction

Many different analysis and visualization techniques for spatio-
temporal data share an overarching goal: to better understand some
feature of interest. Features may be defined locally, such as isosur-
faces as points with a certain value, or globally, as with stream-
lines and separatrices. In general, local feature definitions are more
common and cover features ranging from isosurfaces and ridges in

scalar fields [Ebe96], to vortex core lines in vector fields [PR99]
and crease lines in tensor fields [TKW08]. Depending on the ap-
plication, these definitions are either approximated by some (po-
tentially fuzzy) indicator, such as a transfer function in volume
rendering or explicitly evaluated through an algorithm like March-
ing Cubes [LC87]. However, feature definitions in visualization re-
search have long evolved from the simple definitions to complex,

c� 2018 The Author(s)
Computer Graphics Forum c� 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Basic	idea	

Synthetic	data:	2	vis	methods,	various	features	

Technical	aspects	
point	meshing,	feature	strength	

Results	on	more	complex	data	

Conclusions

Outline

Meshing	surface	feature	sampling

0)	Points	from	converged	
particle	system	

Meshing	surface	feature	sampling

0)	Points	from	converged	
particle	system	

1)	Edges	for	all	interacting	
particles	

Meshing	surface	feature	sampling

0)	Points	from	converged	
particle	system	

1)	Edges	for	all	interacting	
particles	

Meshing	surface	feature	sampling

0)	Points	from	converged	
particle	system	

1)	Edges	for	all	interacting	
particles	

2)	Removing	crossed	edges	

Meshing	surface	feature	sampling

0)	Points	from	converged	
particle	system	

1)	Edges	for	all	interacting	
particles	

2)	Removing	crossed	edges	

3)	Triangulate	3-loops

Meshing	surface	feature	sampling

0)	Points	from	converged	
particle	system	

1)	Edges	for	all	interacting	
particles	

2)	Removing	crossed	edges	

3)	Triangulate	3-loops

Meshing	surface	feature	sampling

0)	Points	from	converged	
particle	system	

1)	Edges	for	all	interacting	
particles	

2)	Removing	crossed	edges	

3)	Triangulate	3-loops	

4)	Remove	stray	edges	

Meshing	surface	feature	sampling

0)	Points	from	converged	
particle	system	

1)	Edges	for	all	interacting	
particles	

2)	Removing	crossed	edges	

3)	Triangulate	3-loops	

4)	Remove	stray	edges	

5)	Triangulate	holes

Feature	strength	(e.g.	ridge	surface)

Answers:	when	is	it	ok	to	skip	looking	for	feature?		

Want	only	“real”	features,	not	noise/artifact	

Unfortunately,	depends	on	user-specified	threshold	T

�2 < T

T < 0
[Kindlmann-SSP-2009]

|rf |
�2

> T

T < 0
[Haralick-Ridges-1983]	

[Schultz-CreaseSurf-2009]

e2 rf

�2 < 0

We	propose:
��2

r0 + |rf | > T

r0 > 0, T > 0
r0 =	strength	bias

(analogous	measures	for	
other	extremal	features)

Basic	idea	

Synthetic	data:	2	vis	methods,	various	features	

Technical	aspects	
point	meshing,	feature	strength	

Results	on	more	complex	data	

Conclusions

Outline

Results:	rendering	local	maxima

GFP:	MIP	&	RFP:	Iso GFP:	MIP	inside	RFP	Iso GFP	maxima	inside	RFP	Iso

Results:	Rendering	surface	creases

!1

!2

(a) (b) (c)

G. Kindlmann et al. / Rendering & Extracting Extremal Features

!1

!2

(a) (b) (c)

Figure 8: Curvature-based transfer functions do a poor job (a) of
isolating surface crease lines, but feature steps toward curvature
extrema permit their clean rendering (b), (c).

job of capturing surface creases (Sec 3.2) on a synthetic vol-
ume of a dodecahedron with indented faces and edges of vary-
ing sharpness. To render crease lines properly, we create scalar
fields K1 and K2 of curvature, based on formulae in [KWTM03]:
field#3(3)[3] N = -rF/|rF|; // F=C^4 scalar field
field#3(3)[3,3] P = identity[3] - N⌦N; // evals=1,1,0
field#2(3)[3,3] G = P•(r⌦N)•P; // evals=k1,k2,0
field#2(3)[] discrim = sqrt(2*G:G - trace(G)*trace(G));
field#2(3)[] K1 = (trace(G) + discrim)/2;
field#2(3)[] K2 = (trace(G) - discrim)/2;
field#2(3)[] KT = sqrt(K1^2 + K2^2);

Rendering crease lines does not require creating a new func-
tion to fStep in 3D towards the curvature extrema, but we
do require the length of that step. Outward creases (maxima of
k1 along d1) are rendered by setting material color mcol via:
1 if (KT(pos) < fMaskTh) {
2 mcol = gray; // low total curvature; uninteresting
3 } else {
4 vec3 d1 = col1span(G(pos) - K2(pos)*P(pos));
5 real k1’ = d1•rK1(pos);
6 real k1’’ = d1•(r⌦rK1(pos))•d1;
7 mcol = lerp(gray, rcol, atent(1,|k1’/k1’’|/3));
8 }

where gray and rcol are the colors for gray and the outward
crease color; the code for inward crease rendering is essentially
the same. The tensor G(pos)-K2(pos)*P(pos) on line 4 has
eigenvalues k1,0,0; utility function col1span (App. D.1) returns
the eigenvector (i.e. the curvature direction d1) for k1. From (15),
the crease line feature step length is |k1’/k1’’|, used on line 7
with the same atent of Fig. 2 line 20 to effect the crease line
coloring, shown in Fig 8b. Results on a foot of the Visible Human
female CT scan are in Fig 8c. Some creases indicate skin folds
and toenail edges, while others demarcate the toenails, and the toes
themselves. The ease of creating these renderings, which depend
on fourth derivatives (Hessian of curvature), is notable.

5.4. Vortex Cores in 3D Flow

Vortex cores remain an important target for scientific visualization
and feature extraction, because of the variety of possible definitions
of cores. We use our approach to side-step tedious implementation
work for two possible vortex core definitions.

The second principal invariant (the coefficient of quadratic term
of the characteristic equation) of the Jacobian J =r⌦v of a vector
field v, is (c.f. (2) of [CPC90]):

Q =
tr(J)2 � tr(J ·J)

2
(23)

If WWW = (J � JT)/2 and S = J + JT are the anti-symmetric

(vorticity tensor) and symmetric (rate-of-strain tensor) compo-
nents of J, then Q = (|WWW|2 � |S|2)/2 > 0 implies that vor-
ticity dominates strain [JH95, HAL05]. The Q-criterion identi-
fies vortices with regions of high Q [HWM88]. We express
a differentiable field of Q in Diderot by copying (23) with
field#4[] V = c4hexic ⇣ img; // img == data volume
field#3(3)[3,3] J = r⌦V;
field#3(3)[] F = (trace(J)^2 - trace(J•J))/2;

and visualize and extracting ridge lines of F= Q with the feature
functions previously described.

Alternatively, the Sujudi-Haimes condition identifies vortex
cores as points where the flow direction is the sole real eigen-
vector of J [SH94]. This is equivalent to saying that v and
JJJvvv are parallel, and that the discriminant of J is negative (i.e.
there are two complex conjugate eigenvalues) [RP96]. In Diderot:
field#2(3)[] F = (V/|V|) • (J•V/|J•V|);
field#2(3)[] A = -trace(J);
field#2(3)[] B = (trace(J)^2 - trace(J•J))/2; // == Q
field#2(3)[] C = -det(J);
field#2(3)[] discrim = A^2*B^2 - 4*B^3 \

- 4*A^3*C + 18*A*B*C - 27*C^2;
function real fMask(vec3 x) = -discrim(x);

Our approach here is a literal interpretation of the Parallel Vectors
operator applied to v and JJJvvv: we seek the ridge and valley lines F
at F= +1 and F=�1, respectively, with the additional requirement
that fMask > 0 [PR99].

Figure 9: Volume rendering of Q isosurfaces around extracted
polylines of Q ridge lines

Fig. 9 visualizes a 3503 region of a turbulent reacting jet-in-
crossflow simulation [GGK⇤12]. As described in [BGB⇤16], the
complex variety of vortex structures merit study with dedicated
flow analysis tools. Our goal was to see if a direct first-principles
approach could produce something plausible. The rendering in
Fig. 9 shows translucent isosurfaces of Q volume rendered by OS-
PRay (http://www.ospray.org), color coded by the sign of
Q. Within the volume rendering are tubes around polylines ex-
tracted from our particle-based feature extraction of the ridge lines
of Q (Sec. 4.3). This demonstrates one value of our explicit feature
extraction: integration with other visualization and analysis tools.

Our work on Parallel Vector Operator (PVO) features also in-
cludes novel formulae for the gradient and Hessian of the dot

c� 2018 The Author(s)
Computer Graphics Forum c� 2018 The Eurographics Association and John Wiley & Sons Ltd.

G. Kindlmann et al. / Rendering & Extracting Extremal Features

!1

!2

(a) (b) (c)

Figure 8: Curvature-based transfer functions do a poor job (a) of
isolating surface crease lines, but feature steps toward curvature
extrema permit their clean rendering (b), (c).

job of capturing surface creases (Sec 3.2) on a synthetic vol-
ume of a dodecahedron with indented faces and edges of vary-
ing sharpness. To render crease lines properly, we create scalar
fields K1 and K2 of curvature, based on formulae in [KWTM03]:
field#3(3)[3] N = -rF/|rF|; // F=C^4 scalar field
field#3(3)[3,3] P = identity[3] - N⌦N; // evals=1,1,0
field#2(3)[3,3] G = P•(r⌦N)•P; // evals=k1,k2,0
field#2(3)[] discrim = sqrt(2*G:G - trace(G)*trace(G));
field#2(3)[] K1 = (trace(G) + discrim)/2;
field#2(3)[] K2 = (trace(G) - discrim)/2;
field#2(3)[] KT = sqrt(K1^2 + K2^2);

Rendering crease lines does not require creating a new func-
tion to fStep in 3D towards the curvature extrema, but we
do require the length of that step. Outward creases (maxima of
k1 along d1) are rendered by setting material color mcol via:
1 if (KT(pos) < fMaskTh) {
2 mcol = gray; // low total curvature; uninteresting
3 } else {
4 vec3 d1 = col1span(G(pos) - K2(pos)*P(pos));
5 real k1’ = d1•rK1(pos);
6 real k1’’ = d1•(r⌦rK1(pos))•d1;
7 mcol = lerp(gray, rcol, atent(1,|k1’/k1’’|/3));
8 }

where gray and rcol are the colors for gray and the outward
crease color; the code for inward crease rendering is essentially
the same. The tensor G(pos)-K2(pos)*P(pos) on line 4 has
eigenvalues k1,0,0; utility function col1span (App. D.1) returns
the eigenvector (i.e. the curvature direction d1) for k1. From (15),
the crease line feature step length is |k1’/k1’’|, used on line 7
with the same atent of Fig. 2 line 20 to effect the crease line
coloring, shown in Fig 8b. Results on a foot of the Visible Human
female CT scan are in Fig 8c. Some creases indicate skin folds
and toenail edges, while others demarcate the toenails, and the toes
themselves. The ease of creating these renderings, which depend
on fourth derivatives (Hessian of curvature), is notable.

5.4. Vortex Cores in 3D Flow

Vortex cores remain an important target for scientific visualization
and feature extraction, because of the variety of possible definitions
of cores. We use our approach to side-step tedious implementation
work for two possible vortex core definitions.

The second principal invariant (the coefficient of quadratic term
of the characteristic equation) of the Jacobian J =r⌦v of a vector
field v, is (c.f. (2) of [CPC90]):

Q =
tr(J)2 � tr(J ·J)

2
(23)

If WWW = (J � JT)/2 and S = J + JT are the anti-symmetric

(vorticity tensor) and symmetric (rate-of-strain tensor) compo-
nents of J, then Q = (|WWW|2 � |S|2)/2 > 0 implies that vor-
ticity dominates strain [JH95, HAL05]. The Q-criterion identi-
fies vortices with regions of high Q [HWM88]. We express
a differentiable field of Q in Diderot by copying (23) with
field#4[] V = c4hexic ⇣ img; // img == data volume
field#3(3)[3,3] J = r⌦V;
field#3(3)[] F = (trace(J)^2 - trace(J•J))/2;

and visualize and extracting ridge lines of F= Q with the feature
functions previously described.

Alternatively, the Sujudi-Haimes condition identifies vortex
cores as points where the flow direction is the sole real eigen-
vector of J [SH94]. This is equivalent to saying that v and
JJJvvv are parallel, and that the discriminant of J is negative (i.e.
there are two complex conjugate eigenvalues) [RP96]. In Diderot:
field#2(3)[] F = (V/|V|) • (J•V/|J•V|);
field#2(3)[] A = -trace(J);
field#2(3)[] B = (trace(J)^2 - trace(J•J))/2; // == Q
field#2(3)[] C = -det(J);
field#2(3)[] discrim = A^2*B^2 - 4*B^3 \

- 4*A^3*C + 18*A*B*C - 27*C^2;
function real fMask(vec3 x) = -discrim(x);

Our approach here is a literal interpretation of the Parallel Vectors
operator applied to v and JJJvvv: we seek the ridge and valley lines F
at F= +1 and F=�1, respectively, with the additional requirement
that fMask > 0 [PR99].

Figure 9: Volume rendering of Q isosurfaces around extracted
polylines of Q ridge lines

Fig. 9 visualizes a 3503 region of a turbulent reacting jet-in-
crossflow simulation [GGK⇤12]. As described in [BGB⇤16], the
complex variety of vortex structures merit study with dedicated
flow analysis tools. Our goal was to see if a direct first-principles
approach could produce something plausible. The rendering in
Fig. 9 shows translucent isosurfaces of Q volume rendered by OS-
PRay (http://www.ospray.org), color coded by the sign of
Q. Within the volume rendering are tubes around polylines ex-
tracted from our particle-based feature extraction of the ridge lines
of Q (Sec. 4.3). This demonstrates one value of our explicit feature
extraction: integration with other visualization and analysis tools.

Our work on Parallel Vector Operator (PVO) features also in-
cludes novel formulae for the gradient and Hessian of the dot

c� 2018 The Author(s)
Computer Graphics Forum c� 2018 The Eurographics Association and John Wiley & Sons Ltd.

Surface	creases:	points	where	
curvature	#i	is	extremal	w.r.t	motion	
along	curvature	direction	di		
[Monga-CrestLines-1994]

Results:	Sampling	vortex	cores	(vector	data)
“Q”	invariant	of	Jacobian	[Chong-3DFlow-1990]:

“Q-criterion”	[Hunt-Eddies-1988]	suggests	
finding	ridge	lines	of	Q

G. Kindlmann et al. / Rendering & Extracting Extremal Features

job of capturing surface creases (Sec 3.2) on a synthetic vol-
ume of a dodecahedron with indented faces and edges of vary-
ing sharpness. To render crease lines properly, we create scalar
fields K1 and K2 of curvature, based on formulae in [KWTM03]:
field#3(3)[3] N = -rF/|rF|; // F=C^4 scalar field
field#3(3)[3,3] P = identity[3] - N⌦N; // evals=1,1,0
field#2(3)[3,3] G = P•(r⌦N)•P; // evals=k1,k2,0
field#2(3)[] discrim = sqrt(2*G:G - trace(G)*trace(G));
field#2(3)[] K1 = (trace(G) + discrim)/2;
field#2(3)[] K2 = (trace(G) - discrim)/2;
field#2(3)[] KT = sqrt(K1^2 + K2^2);

Rendering crease lines does not require creating a new func-
tion to fStep in 3D towards the curvature extrema, but we
do require the length of that step. Outward creases (maxima of
k1 along d1) are rendered by setting material color mcol via:
1 if (KT(pos) < fMaskTh) {
2 mcol = gray; // low total curvature; uninteresting
3 } else {
4 vec3 d1 = col1span(G(pos) - K2(pos)*P(pos));
5 real k1’ = d1•rK1(pos);
6 real k1’’ = d1•(r⌦rK1(pos))•d1;
7 mcol = lerp(gray, rcol, atent(1,|k1’/k1’’|/3));
8 }

where gray and rcol are the colors for gray and the outward
crease color; the code for inward crease rendering is essentially
the same. The tensor G(pos)-K2(pos)*P(pos) on line 4 has
eigenvalues k1,0,0; utility function col1span (App. D.1) returns
the eigenvector (i.e. the curvature direction d1) for k1. From (15),
the crease line feature step length is |k1’/k1’’|, used on line 7
with the same atent of Fig. 2 line 20 to effect the crease line
coloring, shown in Fig 8b. Results on a foot of the Visible Human
female CT scan are in Fig 8c. Some creases indicate skin folds
and toenail edges, while others demarcate the toenails, and the toes
themselves. The ease of creating these renderings, which depend
on fourth derivatives (Hessian of curvature), is notable.

5.4. Vortex Cores in 3D Flow

Vortex cores remain an important target for scientific visualization
and feature extraction, because of the variety of possible definitions
of cores. We consider two possible vortex core definitions.

The second principal invariant (the coefficient of quadratic term
of the characteristic equation) of the Jacobian J =r⌦v of a vector
field v, is (c.f. (6) of [CPC90]):

Q =
tr(J)2 � tr(J ·J)

2
(23)

If WWW = (J � JT)/2 and S = (J + JT)/2 are the anti-symmetric
(vorticity tensor) and symmetric (rate-of-strain tensor) compo-
nents of J, then Q = (|WWW|2 � |S|2)/2 > 0 implies that vor-
ticity dominates strain [JH95, HAL05]. The Q-criterion identi-
fies vortices with regions of high Q [HWM88]. We express
a differentiable field of Q in Diderot by copying (23) with
field#4[] V = c4hexic ⇣ img; // img == data volume
field#3(3)[3,3] J = r⌦V;
field#3(3)[] F = (trace(J)^2 - trace(J•J))/2;

and visualize and extracting ridge lines of F= Q with the feature
functions previously described.

Alternatively, the Sujudi-Haimes condition identifies vortex
cores as points where the flow direction is the sole real eigen-
vector of J [SH94]. This is equivalent to saying that v and
JJJvvv are parallel, and that the discriminant of J is negative (i.e.

there are two complex conjugate eigenvalues) [RP96]. In Diderot:
field#2(3)[] F = (V/|V|) • (J•V/|J•V|);
field#2(3)[] A = -trace(J);
field#2(3)[] B = (trace(J)^2 - trace(J•J))/2; // == Q
field#2(3)[] C = -det(J);
field#2(3)[] discrim = A^2*B^2 - 4*B^3 \

- 4*A^3*C + 18*A*B*C - 27*C^2;
function real fMask(vec3 x) = -discrim(x);

Our approach here is a literal interpretation of the Parallel Vectors
operator applied to v and JJJvvv: we could seek the ridge and valley
lines of F at F= +1 and F= �1, respectively, with the additional
requirement that fMask > 0 [PR99].

Figure 9: Volume rendering of Q isosurfaces around extracted
polylines of Q ridge lines

Fig. 9 visualizes a small region of a turbulent reacting jet-in-
crossflow simulation [GGK⇤12]. As described in [BGB⇤16], the
complex variety of vortex structures merit study with dedicated
flow analysis tools. Our goal was to see if a direct first-principles
approach could produce something plausible. The rendering in
Fig. 9 shows translucent isosurfaces of Q volume rendered by OS-
PRay, and color coded by the sign of Q. Within the volume ren-
dering are tubes around polylines extracted from our particle-based
feature extraction of the ridge lines of Q (Sec. 4.3). This demon-
strates one value of our explicit feature extraction: integration with
other visualization and analysis tools.

Our work on Parallel Vector Operator (PVO) features produced
novel formulae for the gradient and Hessian of the dot product
(a/|a|) · (b/|b|) between two vector fields a and b, normalized.
For Sujudi-Haimes vortex cores of vector field v, a = v and b =
(r⌦ v)v. As described in Appendix C, we modified the Diderot
compiler to produce human-readable expressions of the intermedi-
ate representations used to compute PVO, which are compared to
the PVsolve formulae of Van Gelder and Pang [GP09].

5.5. DTI Anisotropy Extremal Features

Scalar fields of tensor invariants provide a rich vocabulary
for defining and exploring various possible features. Diffusion
tensor image (DTI) visualization can use fractional anisotropy
(FA) [Bas95] to highlight nervous tissue white matter. Our pre-
vious work [KCS⇤16] used Diderot to create a scalar field F of

c� 2018 The Author(s)
Computer Graphics Forum c� 2018 The Eurographics Association and John Wiley & Sons Ltd.

533

Diderot	code:

Q

Jet	in	cross-
flow	simulation

Results:	Anisotropy	features	(tensor	data)

G. Kindlmann et al. / Rendering & Extracting Extremal Features

(a) Isosurface (b) Ridge Surface (c) Ridge Line (d) Max Line (e) Min Surface
Figure 10: Different feature step functions reveal a variety of Fractional Anisotropy (FA) features from a DTI volume.

product (a/|a|) · (b/|b|) between two vector fields a and b, nor-
malized. For Sujudi-Haimes vortex cores of vector field v, a = v
and b = (r⌦ v)v. As described in Appendix C, we modified the
Diderot compiler to produce human-readable expressions of the in-
termediate representations used to compute PVO, which are com-
pared to the PVsolve formulae of Van Gelder and Pang [GP09].

5.5. DTI Anisotropy Extremal Features

Scalar fields of tensor invariants provide a rich vocabulary
for defining and exploring various possible features. Diffusion
tensor image (DTI) visualization can use fractional anisotropy
(FA) [Bas95] to highlight nervous tissue white matter. Our pre-
vious work [KCS⇤16] used Diderot to create a scalar field F of
FA, and render its isosurface, as in Fig. 10a (showing a human
brain DTI from above, with a near cutting plane). With our new ap-
proach, Fig. 10b shows an FA ridge surface obtained by swapping
out the isosurface fStep function (Fig. 2 line 11) with the one
for ridge surfaces (Sec. 4.1). With another feature step function,
Fig. 10c shows FA ridge lines [TKW08]. Fig. 10d shows, on the
other hand, the maximal lines of FA with respect to the medium and
minor eigenvector of the diffusion tensor itself (not the eigenvectors
of the FA Hessian), using (18) and (22). With strength thresholds
set to generate comparably dense visualizations, FA maximal lines
(Fig. 10d) seem to have better coherent organization than FA ridge
lines (Fig. 10c). Since both capture the cingulum bundles (two di-
agonal green paths near center), FA maximal lines merit further
exploration as neuroanatomical markers. Fig. 10e shows another
experimental DTI feature, using (15) and (21) to render surfaces
of minimal FA with respect to the diffusion tensor minor eigenvec-
tor (spaning adjacent but orthogonal white matter paths [KTW07]),
colored by the minor eigenvector orientation.

6. Discussion, Conclusions, Future Work

Our new approach unifies, both in mathematical formulation and in
source code, the tasks of volume rendering and geometrically ex-
tracting features from 3D fields. These are complementary tasks:
one can quickly volume render to ascertain the presence of features
and set appropriate feature strength and feature mask (Sec. 3.3)
thresholds, before running feature extraction and meshing. Using
the exact same code to describe features for both tasks increases
trust in the results, and legible code that mirrors math notation sim-
plifies exploring new features. Our results can be integrated with

other tools by saving extracted features to files read by other vi-
sualization tools (as in Fig. 9), or by linking a Diderot program,
compiled to a library [KCS⇤16], into another application that con-
trols its execution.

Our focus has been establishing a new way of implementing sci-
entific visualization research, to address the bottleneck of human
implementation time, rather than computational execution time.
Still, the volume rendering and particle system programs can both
execute in parallel, which makes them workable with sufficient
cores, but we did not record any specific measurements of com-
pile time, execution time, or parallel speedup. On a modern Mac
laptop with 8 cores, most programs compiled in under 20 seconds,
though particle systems on vector and tensor data took up to 2 min-
utes. Execution times ranged from under 5 seconds for scalar vol-
ume renderings, to several minutes for the more complex particle
systems. One drawback is that any change to the field or feature
functions requires recompiling the entire program. Some dynamic
linking of feature-specific modules may be possible, but it would
complicate the Diderot compiler’s whole-program optimization.

Though the volume rendering and feature sampling programs are
mature enough to work on real data, they favor implementation
simplicity over computational efficiency or algorithmic sophisti-
cation. Volume rendering would be more efficient with adaptive
sampling of rays, perhaps based on the Lipschitz constants used
by Kalra and Barr [KB89]. The particle system currently makes no
effort to vary density with feature curvature [MGW05], or to dis-
cover the optimal feature scale [KESW09]. With a meshing strategy
more sophisticated than that of Sec. 4.3, the stringent convergence
tests and ensuing computational expense of our particles could be
reduced; at the opposite extreme of this are methods like AFront
which compute vertices and meshing in one sweep [SSS06].

Except for the C code for particle system meshing (Sec. 4.3),
all the code for generating our results is in Diderot, and nearly
all of it is included in this manuscript and its Appendices. While
mature visualization applications will likely require connections to
other libraries and interfaces, we are holding ourselves to a stan-
dard for self-contained reproducibility that we believe may culti-
vate research interest in scientific visualization by simplifying how
readers may explore and experiment with new methods.

7. Acknowledgments

This work supported by NSF grants CCF-1564298 and IOS-
1555972.

c� 2018 The Author(s)
Computer Graphics Forum c� 2018 The Eurographics Association and John Wiley & Sons Ltd.

Basic	idea	

Synthetic	data:	2	vis	methods,	various	features	

Technical	aspects	
point	meshing,	feature	strength	

Results	on	more	complex	data	

Conclusions

Outline

Conclusions:	contributions

Advocating	principled	approach	to	vis	implementation	
Vis	method	and	target	feature	connected	by	Newton	step

Diderot	enabled	this	exploratory	research:	
easy	to	express	Newton	steps	for	a	variety	of	features	
implement	volume	renderer	&	particle-based	feature	sampler

Meshing	particles	sampling	(non-isosurface)	surface	features

Reproducibility:	all	Diderot	code	used	is	in	paper	and	its	appendices

Conclusions:	future	work

Accelerate	particle	system	(execution	time	=	minutes)	

(numerical	methods)

Verify	if	particle	system	convergence	justifies	meshing	strategy	

(computational	geometry)

Curvature-dependent	particle	sampling

Build	a	GUI,	integrate	with	other	vis	tools

	References	(in	order	of	appearance)
[Levoy-CGnA-1988]	Display	of	Surfaces	from	Volume	Data.	M	Levoy.	IEEE	Computer	Graphics	&	Applications,	8(5):29–37,	1988	
[Guy-PAMI-1997]	Inference	of	surfaces,	3D	curves,	and	junctions	from	sparse,	noisy,	3D	data.	G	Guy	and	G	Medioni.	IEEE	Transactions	on	

Pattern	Analysis	and	Machine	Intelligence,	19(11):1265–1277,	November	1997.	
[Tang-VIS-1998]	Extremal	Feature	Extraction	from	3-D	Vector	and	Noisy	Scalar	Fields.	CK	Tang	and	G	Medioni.	In	Proc.	IEEE	Visualization	'98,	

pages	95–102,	October	1998	
[Amenta-SIGGRAPH-2004]	Defining	point-set	surfaces.	N	Amenta	and	YJ	Kil.	Computer	Graphics	(Proc.	SIGGRAPH),	pages	264–270,	2004	
[Witkin-Particles-1994]	Using	Particles	to	Sample	and	Control	Implicit	Surfaces.	AP	Witkin	and	PS	Heckbert.	Computer	Graphics	(Proc.	

SIGGRAPH),	28:269–277,	1994	
[Crossno-Particles-1997]	Isosurface	Extraction	Using	Particle	Systems.	P	Crossno	and	E	Angel.	In	Proc.	IEEE	Vis,	pages	495–498,	1997	
[Meyer-Robust-2005]	Robust	Particle	Systems	for	Curvature	Dependent	Sampling	of	Implicit	Surfaces.	MD	Meyer,	P	Georgel,	and	RT	Whitaker.	

In	Proc.	Shape	Modeling	and	Applications	(SMI),	pages	124–133,	June	2005	
[Eberly-1996]	Ridges	in	Image	and	Data	Analysis.	D	Eberly.	Kluwer	Academic	Publishers,	1996	
[Obermaier-MeshFree-2012]	On	mesh-free	valley	surface	extraction	with	application	to	low	frequency	sound	simulation.	H	Obermaier,	

J	Mohring,	E	Deines,	M	Hering-Bertram,	and	H	Hagen.	IEEE	TVCG,	18(2):270–282,	2012.	
[Kindlmann-SSP-2009]	Sampling	and	Visualizing	Creases	with	Scale-Space	Particles.	GL	Kindlmann,	RSJ	Estépar,	SM	Smith,	and	C-F	Westin.	

IEEE	TVCG,	15(6):1415–1424,	2009	
[Haralick-Ridges-1983]	Ridges	and	Valleys	on	Digital	Images.	RM	Haralick.	Computer	Vision,	Graphics,	and	Image	Processing,	22:28–38,	1983	
[Monga-CrestLines-1994]	Crest	lines	extraction	in	volume	3D	medical	images:	a	multi-scale	approach.	O	Monga,	R	Lengagne,	and	R	Deriche.	

In	Proceedings	of	12th	International	Conference	on	Pattern	Recognition,	volume	1,	pages	553–555	vol.1,	October	1994	
[Chong-3DFlow-1990]	A	general	classification	of	three-dimensional	flow	fields.	MS	Chong,	AE	Perry,	and	BJ	Cantwell.	Physics	of	Fluids	A:	Fluid	

Dynamics,	2(5):765–777,	1990	
[Hunt-Eddies-1988]	Eddies,	stream,	and	convergence	zones	in	turbulent	flows.	JCR	Hunt,	A	Wray,	and	P	Moin.	In	Proceedings	of	the	Summer	

Program,	pages	193–208.	Center	for	Turbulence	Research	(Stanford	University),	1988

Thank	you
Biology	collaborators:	Ana	Beiriger	and	Prof.	Victoria	Prince	
NSF	grants	CCF-1564298	and	IOS-1555972

Questions?
Learn	from	Diderot	examples	(google:	diderot	examples)	
https://github.com/Diderot-Language/examples	
Reproducible	Diderot	figures	(google:	reproducible	diderot)	
https://github.com/Diderot-Language/reproduce	
Google	group:	https://groups.google.com/forum/#!forum/diderot-language	
Email	glk@uchicago.edu	to	join	slack	channel

