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Fig. 1. The shape of a synthetic volume is shown with an isosurface (a). Ridge lines sampled at the original scale (b), shown with
a semi-transparent cutting plane, capture only the narrowest portion correctly. Scale-space particles sample the feature manifold
through the 4-D scale-space of different blurring levels with spline interpolation across scales (c); the colormap highlights with white
the spatially-varying scale of maximal ridge strength. Feature scale is accurately recovered in (d) with an energy term from ridge
strength; this is not possible with linear (e) instead of spline interpolation across the same pre-blurred scale samples. Glyphs in (f)
show scale with disc radius, indicating a successful sampling of the complete ridge line localized in both space and scale.

Abstract—Particle systems have gained importance as a methodology for sampling implicit surfaces and segmented objects to
improve mesh generation and shape analysis. We propose that particle systems have a significantly more general role in sampling
structure from unsegmented data. We describe a particle system that computes samplings of crease features (i.e. ridges and valleys,
as lines or surfaces) that effectively represent many anatomical structures in scanned medical data. Because structure naturally
exists at a range of sizes relative to the image resolution, computer vision has developed the theory of scale-space, which considers
an n-D image as an (n+ 1)-D stack of images at different blurring levels. Our scale-space particles move through continuous four-
dimensional scale-space according to spatial constraints imposed by the crease features, a particle-image energy that draws particles
towards scales of maximal feature strength, and an inter-particle energy that controls sampling density in space and scale. To make
scale-space practical for large three-dimensional data, we present a spline-based interpolation across scale from a small number of
pre-computed blurrings at optimally selected scales. The configuration of the particle system is visualized with tensor glyphs that
display information about the local Hessian of the image, and the scale of the particle. We use scale-space particles to sample the
complex three-dimensional branching structure of airways in lung CT, and the major white matter structures in brain DTI.

Index Terms—Particle Systems, Crease Features, Ridge and Valley Detection, Lung CT, Diffusion Tensor MRI

1 INTRODUCTION

We present a new approach to sampling features in volumetric data
with dynamic particle systems. Particle systems appear most often in
computer graphics and visualization for sampling or meshing implicit
surfaces from geometric modeling or pre-computed image segmenta-
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tion. One reason for the success of particle systems is that they cleanly
separate the task of computing an optimal distribution of vertices on a
feature, from the task of connecting the vertices into a polygonal mesh
(whereas Marching Cubes [44], for example, does both at the same
time). Calculating vertex locations is done with some combination of
energy minimization and constraint satisfaction, both of which can be
implemented in a straight-forward manner at the level of individual
particles, since the required information is limited to a small neigh-
borhood of particles and data values. Particles also enjoy the property
of existing in a mathematically continuous representation of the im-
age, so the underlying image resolution and sampling grid have no
undue influence. Our work leverages these properties while it extends
particle systems into new feature types and image domains.

Effective computational analysis of medical imaging data often re-
quires geometric models of anatomic features. Challenges to feature
localization and extraction arise from image noise and limited reso-
lution, as well as from the properties of features themselves, such as
branching or variable geometry, or having a wide range of charac-
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teristic sizes. Scale-space is a computer vision framework for robust
feature extraction, in which an n-D image is considered as a (n+1)-D
stack of images at successive blurring levels, so that large and small
features can be detected with equal ease. While theory and methods
for scale-space of grayscale, two-dimensional images are well-studied,
the promise of scale-space analysis has yet to be realized in practi-
cal tools for three-dimensional imaging. Scale-space analysis of non-
scalar data, such as diffusion tensor imaging, is largely unexplored.

We propose that particle systems can play a more fundamental
role in biomedical visualization and analysis, by sampling complex
anatomic features in unsegmented data. We focus on ridge and valley
features (collectively, creases) that can approximate the skeletal cores
of objects, rather than the closed isocontours and material boundaries
of previous particle systems. Creases are either codimension-one sur-
faces or codimension-two curves, defined as local extrema with respect
to motion along Hessian eigenvectors. Crease surfaces are in general
non-orientable, and often appear as multiple disjoint surface patches
rather than as closed boundaries. A major challenge associated with
using crease features to represent objects in images is that objects nat-
urally occur at a range of sizes relative to the pixel resolution. Scale-
space particles locate and sample creases throughout their continuous
extent in space and scale. The scale at which a crease appears strongest
relates to the characteristic size of the underlying object.

Particle systems are particularly well-suited to crease feature sam-
pling and visualization in scale-space. The mathematical definition
of creases directly maps to the rules that individual particles obey to
satisfy the constraint of lying within a crease. The implementation of
pair-wise particle dynamics, which ultimately drives the system, is the
same regardless of feature codimension (surfaces versus lines), and
image domain dimension (three or four). In real-world applications,
we often don’t know where features are, or in how many disjoint pieces
they appear; this corresponds to the nature of particles and their lack of
explicit topology and connectivity. The point-based representation al-
lows us to simply initialize the system with particles densely sampling
the entire image domain, and later reduce the number of particles ac-
cording to their density on the detected features. At this initial stage
of work, however, we are refraining from tackling the task of meshing
the particle system solution. Subsequent research will investigate the
computational geometric considerations for reliably connecting the fi-
nal particle locations into polygonal feature models.

Our contributions stem from how we design, implement, and apply
the combination of particle systems and scale space. At the lowest
level, we introduce in Section 3.2 a novel Hermite spline approach for
efficiently interpolating through image scales to create a continuous,
four-dimensional scale-space. Generalizing the implicit surface con-
straint previously used for particles, Section 3.3 describes constraints
that keep particles within ridges and valleys. We introduce in Sec-
tion 3.4 inter-particle energy functions that allow particles to either
repel or attract along scale, so that the features can either be broadly
sampled through scale-space, or be localized at the particular scale that
maximizes feature strength. Another novel aspect of our implementa-
tion (Sect. 3.5) is that population control (the adding and deleting of
particles) is formulated in terms of the same energy minimization that
drives the particles towards uniform sampling. We use glyph-based
visualizations (Sect. 3.5) to inspect the local properties and over-all
configuration of the particle system. Our results (Sect. 4) include vi-
sualizations of scale-space particles sampling the branching airways
in lung CT, and white matter features in diffusion tensor MRI.

2 RELATED WORK

There are three research areas our work draws upon: scale-space fea-
ture extraction (Sect. 2.1), particle systems (Sect. 2.2), and Diffusion
Tensor Imaging analysis (Sect. 2.3). Connections to previous work es-
tablishing the biomedical utility of crease lines and crease surfaces are
drawn in Sections 2.1 and 2.3, respectively.

2.1 Scale-Space Analysis and Crease Lines

The concept of scale and its importance for computer vision led to
scale-space theory, which embeds a signal f (x) in a one-parameter

family of functions L(x; t), with diffusion time t inducing Gaussian
blurring with standard deviation

√
t [69, 35, 66]. Florack et al. show

how principles of linearity, scale-invariance, and well-posed differen-
tiation also imply the Gaussian kernel, independent of a diffusion pro-
cess [21]. Koenderink notes that significant image features exist at a
continuous scale range and conceives of image understanding as hap-
pening at all scales simultaneously, rather than at a discrete set of blur-
ring levels [35]. A number of scale-space feature-extraction methods
have been developed from these ideas. Gauch and Pizer propose multi-
resolution analysis for ridge and valley lines by projecting the Hessian
at different scales into the level curve tangents, while pointing out the
difficulties caused by working on a discrete grid [24]. Eberly presents
a general description for ridge detection in n-D signals without focus-
ing on the scale-dependent nature of the problem [17], an extension
that was theoretically described by Miller and Furst [49].

A prominent application of ridge and valley analysis is the extrac-
tion of tubular structures, like airways and blood vessels, from medical
imaging [2, 22, 3]. Lindeberg studies the problem of finding the opti-
mal scale of features (including ridges) by maximizing measurements
of feature strength along scale [41]. There is, however, no explicit en-
forcement of the spatial continuity of feature scale, which we address
with a novel scale-attractive inter-particle energy function (Sect. 3.4).
An initial application of our work is in airway analysis in lung CT, a
modality commonly used to assess various pulmonary conditions [59].
For some diseases, such as chronic obstructive pulmonary disease
(COPD), the narrowest airways (near the limits of imaging resolution)
are the most clinically significant [28]. This significance creates a need
to accurately sample features at the smallest scales, which we accom-
plish with smooth spatial-domain reconstruction (Sect. 3.2.2), while
our scale interpolation (Sect. 3.2.1) captures the connected branching
structures continuously across scale.

In the visualization community, there has been some work in ex-
ploring scale-space for vector flow-field visualization and feature ex-
traction. Bauer and Peikert use scale-space concepts to recover vortex
lines via the parallel vector operator [54] in smoothed volumes [6].
Klein and Ertl track vector field critical points through discretely sam-
pled scales, to better filter out noise effects [34]. In the image pro-
cessing community, non-linear filtering of tensor fields has been stud-
ied [13, 65, 9], which is conceptually related to scale-space by its
mathematical connection to earlier work by Perona and Malik on non-
linear scale-space [55], but there has been relatively little study of the
scale-space features in tensor fields. Florack and Astola argue that a
scale-space treatment of diffusion tensor fields should respect com-
mutativity of blurring and tensor inversion, and describe the mathe-
matical components of the resulting non-linear scale-space [19]. We
contribute to this previous work by explicitly locating and uniformly
sampling the geometry of image features in tensor fields, across their
full extent in space and scale, using particle systems.

2.2 Particle Systems

Particle systems have been studied in computer graphics for various
applications; the application most closely related to ours is surface
representation. Szeliski and Tonnesen model synthetic surfaces using
systems of oriented particles with non-rotationally symmetric energy
profiles that self-assemble into surfaces [62]. Witkin and Heckbert
used a system of particles with rotationally symmetric energy profiles
to interactively sample and sculpt implicit surfaces [70, 27]. Continued
refinements have enabled further applications to shape modeling and
other applications (e.g. see [61] and references therein).

Other studies outside computer graphics use particle systems in a
more data-driven way for scientific or biomedical applications, in-
cluding interactive scientific visualization [52], anisotropic mesh gen-
eration [8, 72], feature-aware mesh smoothing [30], visualization of
Smoothed Particle Hydrodynamics [42], and illustrative volume vi-
sualization [10]. For medical image analysis, Cates et al. develop
entropy-based particle systems that simultaneously sample surfaces
across multiple volumes, efficiently determining surface correspon-
dences and modes of shape variation [12, 11]. Isosurface sampling is
a prominent application of data-driven particle systems [57, 15]. This



has been studied in detail by Meyer et al., with curvature-dependent
sampling [48] and sampling of isosurfaces in high-order finite element
grids [46]. Later work connects particles into meshes representing
segmented object surfaces [45] and the topology of multi-material vol-
umes [47]. We follow the example of Meyer et al. in first determining
particle motion, interaction, and population control, while leaving the
separate (and significant) computational geometry task of computing
vertex connectivity to later work.

A limited amount of previous work shares our approach of using
particles to accomplish feature sampling in unsegmented data. Szeliski
et al. direct their oriented particles [62] with an edge detection en-
ergy term to form surface models of segmented and unsegmented vol-
ume objects [63]. More recently, Jalba et al. attach fixed electrostatic
charges to the edge pixels or voxels in an image, which then attract
mutually repelling and mobile particles that converge in tracing out re-
gion boundaries [29]. Other previous work, on active contours, creates
long-range attractive forces based on gradient vector flows to ensure
insensitivity to initialization [71]. A virtue of particles demonstrated
by Jalba at al. [29] is that they can be initialized at every image pixel,
ensuring that no significant edge features are missed, which side-steps
the problem of sensitivity to initial conditions. However, the magni-
tudes of the data-driven force (for feature localization) and the inter-
particle force (for uniform sampling) must be calibrated so that edges
attract particles more strongly than particles repel each other.

Relative to this previous work, our contributions are (1) employing
spatial constraints, rather than forces or potentials, to maintain parti-
cles within features, and (2) moving particles smoothly through scale
to sample features in continuous four-dimensional scale-space. With
its emphasis on feature detection and localization, our use of parti-
cles is conceptually related to active contours and deformable models
that use energy-minimizing parameterized curves or surfaces to cap-
ture image features [31]. Our particles, however, are not connected
in any pre-determined topology, and are not described by any partic-
ular model of feature geometry, so they can sample codimension-one
surfaces as easily as codimension-two lines.

2.3 Diffusion Anisotropy Analysis and Crease Surfaces

Diffusion tensor magnetic resonance imaging (DTI) uses a tensor
model of diffusion-weighted MRI to describe directional tissue struc-
ture [4]. The coherent organization of axons in nervous tissue con-
tributes to the anisotropic diffusion of water within it, enabling re-
search on white matter organization in health and disease [37]. Much
interest in DTI stems from using integrals of the principal eigenvector
of the diffusion tensor (termed tractography) to approximate axonal
connectivity between different brain areas [14, 5]. On the other hand,
much of the neuroscientific research using DTI focuses on scalar-
valued tensor invariants such as fractional anisotropy (FA), which are
local measures of microstructural organization [56, 7]. Many applica-
tions of DTI amount to correlating statistically significant differences
in FA with various neurological or psychiatric conditions. For exam-
ple, Kubicki et al. review such methods in schizophrenia [36]. De-
tecting local changes in tissue properties (through measures like FA)
is a fundamental neuroimage analysis task, separate from but comple-
mentary to connectivity measurements from the tractography methods
typically studied in the visualization community.

To improve the statistical validity of voxel-based group studies of
FA variations, Smith et al. developed Tract-Based Spatial Statistics
(TBSS) [60]. TBSS rasterizes FA ridge surfaces in a high-resolution,
group mean, tensor image to form a white matter skeleton for statis-
tical tests. Other work has similarly analyzed the differential struc-
ture of FA to measure anatomic features in DTI. Goodlett et al. use
an FA ridge surface strength metric to improve registration in group
studies [26], analogous to previous registration work for scalar im-
ages [43]. Kindlmann et al. use a modification of Marching Cubes to
extract polygonal models of FA ridge and valley surfaces [33]. Tric-
oche et al. study general invariant crease lines in tensor fields and
detect some white matter structures as FA ridge lines [64]. Schultz et
al. present a new approach to extracting crease surfaces that improves
on previous voxel-based methods [23, 33] in speed and topological

correctness, which they apply to DTI anisotropy measures [58].
Our work relates to these previous results in two ways. First, along

with lung airway segmentation (Sect. 2.1), extensions to TBSS [60] are
a driving application. We plan to expand the target of the TBSS white
matter skeletonization from the smooth group mean image to single-
subject images. Initial experiments with this, as well as experience
with anisotropy crease surfaces [33] and lines [64], have highlighted
the problem with picking a single scale to measure derivatives: fea-
tures at significantly smaller or larger scales are poorly captured or not
detected at all. Second and more generally, we suspect that the essen-
tial scale-dependence of derivative measurements [20], combined with
the combinatorial complexity of extending Marching Cubes-type ap-
proaches to four-dimensional scale-space lattices [23, 18], may have
limited the adoption of previous crease surface extraction methods,
as compared to the ubiquity of isosurfaces from Marching Cubes it-
self [44]. We hope our initial results with scale-space particles can
expand the exploration and application of scale-space creases in real-
world three-dimensional datasets.

3 METHODS

3.1 Methods overview

The particles in our system are moved, added, and deleted to mini-
mize their collective energy. There are two energy sources: particle-
image and inter-particle. A combination of constraints and particle-
image energy (Sect. 3.3) spatially binds particles to creases, while al-
lowing them to move along scale toward maximal feature strength.
The constraints and particle-image energy are conceptually similar to
the external energy terms of active contours or the data-attachment
terms of level sets, which locate image features. Inter-particle en-
ergy (Sect. 3.4) creates uniform feature sampling. Scale-space parti-
cles lack an analog to the internal energy of active contours, or the
curvature terms of level sets, which ensure smoothness in the feature
representation. The particle system does not maintain any particular
geometric or topological configuration, as individual particles are in-
dependent and unconnected. Rather, constraints keep particles within
features, which are smooth curves or surfaces, due to their mathemat-
ical definition as well as our scale-space reconstruction (Sect. 3.2).

We minimize the energy E of a set of N particles {(xi,si)} within
the four-dimensional image f (x,s), where x is three-dimensional spa-
tial location, and s is univariate scale, by numerically solving

argmin
{(xi,si)},N

E = argmin
{(xi,si)},N

(1−α)
N

∑
i=1

Ei +
α

2

N

∑
i, j=1

Ei j. (1)

The particle-image energy Ei (Sect. 3.3) is determined entirely by the
local properties of the image f at (xi,si) . The symmetric inter-particle
energy Ei j = E ji, Eii = 0 (Sect. 3.4) is independent of location in the
image domain. The balance between inter-particle and particle-image
energies is determined by the parameter α ∈ [0,1], which is roughly
analogous to the user-defined weighting in level-set methods between
the smoothness and data-attachment terms.

Not apparent in Eq. 1 are constraints, which force particles to re-
main within features, but which do not themselves contribute to the
system energy. Alternatively, without constraints, particles can be
steered by an energy that is locally minimal at the feature [63, 29].
For four-dimensional scale-space, the choice between constraints
and particle-image energy exists independently for both the three-
dimensional spatial domain and the one-dimensional scale domain.
Following previous work on implicit surface sampling with particles,
we choose to spatially constrain particles to lie within crease features.
This is enabled by their simple mathematical definition (Sect. 3.3),
combined with analytic spatial derivatives of the image (Sect. 3.2).
Along the scale axis, however, we use particle-image energy to push
particles toward the scales of maximal feature strength. We have found
that crease strength measures (Sect. 3.3) are effective but not as stable
as the spatial location of the crease itself, so we balance a particle-
image energy based on crease strength with an inter-particle energy
that attracts particles to each other along scale, producing a feature
sampling with better spatial continuity of scale.



3.2 Interpolation in Scale-Space

We reconstruct continuous scale-space from discrete samples in space
and scale. Each scale sample is some blurring of the original volume
data at its original raster resolution. The range of blurring scales is
sampled non-uniformly with S scales between s = 0 (no blurring) to
s = smax, the largest expected feature scale, which should be known
from the imaging application domain, where s is the standard devia-
tion of a Gaussian blurring kernel. The scale-space location of a par-
ticle and the spatial reconstruction kernels determines the neighbor-
hood of image samples that fall within the spatial convolution support
and the two samples along scale that bracket the particle’s scale posi-
tion. We first interpolate, along scale, the spatial support of the par-
ticle (Sect. 3.2.1), and then use spatial convolution to reconstruct val-
ues and spatial derivatives (Sect. 3.2.2). Following our previous work
on anisotropy creases [33, 64], tensors are interpolated component-
wise, which facilitates analytic computation of spatial derivatives of
anisotropy. Non-linear tensor interpolation methods are also possible
(e.g. [1, 38]) but lack a similarly accurate way of computing anisotropy
derivatives, and with necessarily greater computational expense.

3.2.1 Scale Interpolation

Sampling scale-space by convolving with a blurring kernel whose
width equals the scale sample position is completely accurate but pro-
hibitively slow at large scales. Alternatively, one can interpolate be-
tween a large set of images pre-blurred at varying scales, and then use
a fixed-size spatial support reconstruction in space. For large three-
dimensional images, however, the number of such scale samples is
limited by available memory. Balancing memory efficiency with re-
construction accuracy is a challenge for volumetric scale-space.

Some previous work has used linear interpolation between pre-
blurred images at adjacent scale samples [34]. We introduce a more
accurate method using cubic Hermite splines, based on the underlying
properties of a particular blurring kernel. Consider first a continuous
one-dimensional signal f (·) undergoing isotropic diffusion for time t,
which is equivalent to convolving f with a Gaussian g.

L(x; t) = ( f (·)!g(·; t))(x) =
∫

g(ξ ; t) f (x−ξ )dξ , (2)

g(ξ ; t) = exp(−ξ 2/2t)/
√

2πt. (3)

The time-derivative of L(x; t) is the second spatial derivative [35, 40]

∂L(x; t)/∂ t = 1
2 ∂ 2L(x; t)/∂x2. (4)

For discretely sampled f [·], we replace the continuous Gaussian g(·; t)
with its discrete analog K[·; t], created by Lindeberg [39].

L[i; t] = ( f !K[·; t])[x] = ∑
n

K[n; t] f [i−n], (5)

K[n; t] = exp(−t)In(t), (6)

where In is the modified Bessel function of integer order n. By the re-
cursive properties of In and the design of K[·; t], the continuous deriva-
tive with respect to time is found by second central differences [39]

∂L[i; t]/∂ t = 1
2 (L[·; t]!

[

1 −2 1
]

)[i]. (7)

With a change of variables from diffusion time t to spatial scale s=
√

t,

∂L[i;s2]/∂ s = s (L[·;s2]!
[

1 −2 1
]

)[i]. (8)

This analytical derivative ∂L/∂ s enables our cubic Hermite spline in-
terpolation. As pointed out by Lindeberg, the same property does not
hold for blurring with a discretely sampled continuous Gaussian.

We pre-compute blurrings of the original data f [·, ·, ·] with a set

of S different three-dimensional discrete Gaussians K[·, ·, ·;s2
" ], with

non-uniformly spaced scale positions {s"}S
"=1. Blurring at scale s" to

produce volume f [·, ·, ·,"] is computed by

f [i, j,k,"] = ∑
m,n,o

K[m,n,o;s2
" ] f [i−m, j−n,k−o], (9)

K[m,n,o; t] = exp(−t)3Im(t)In(t)Io(t). (10)

To interpolate between f0 = f [i, j,k,"0] and f1 = f [i, j,k,"1] at s, we
find s"0

and s"1
such that s"0

≤ s < s"1
, let ∆ = (s−s"0

)/(s"1
−s"0

), and
compute the 3-D analog to (8) at s"0

and s"1
,

f ′0 = s"0
( f [·, ·, ·,"0]!M)[i, j,k], (11)

f ′1 = s"1
( f [·, ·, ·,"1]!M)[i, j,k], (12)

where M is the standard 3× 3× 3 discrete Laplacian mask. Then the
cubic Hermite spline between scales is

f [i, j,k](s) =
[

∆3 ∆2 ∆ 1
]







f ′0 + f ′1 +2 f0−2 f1
−2 f ′0− f ′1−3 f0 +3 f1

f ′0
f0







. (13)

For comparison, linear interpolation would simply be

f [i, j,k](s) = (1−∆) f0 +∆ f1. (14)

For each particle, we interpolate along scale only those image samples
that fall within the support of the spatial reconstruction kernels.
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Fig. 2. Comparison of error with linear and cubic Hermite scale-space
interpolation for s ∈ [0,5], reconstructed with 6 samples, placed either
uniformly or non-uniformly. Scale-space particles use Hermite interpola-
tion with optimized non-uniform samples for greatly improved accuracy.

We measure scale-space reconstruction error as the squared dif-
ference between the true blurring kernel (the point-spread func-
tion) K[·, ·, ·;s2], and an approximate kernel interpolated between

K[·, ·, ·;s2
"0
] and K[·, ·, ·;s2

"1
], averaged over the support of K. Fig-

ure 2 depicts reconstruction error from linear and spline interpolation,
with uniform and non-uniform scale samples. The locations of the
non-uniform scale samples were computed by a brute-force gradient-
descent minimization of the mean squared error, numerically inte-
grated over all scales. For a given reconstruction accuracy, our new
Hermite spline approach requires significantly fewer pre-blurred vol-
umes f [·, ·, ·,"], which greatly reduces memory use and makes contin-
uous scale-space analysis practical for large 3-D data.

3.2.2 Spatial Interpolation and Differentiation

Following scale interpolation, we compute spatial interpolation and
differentiation by convolving with separable piecewise polynomial
kernels. From the framework of Möller et al. [50], we use the six-
sample support, fifth-degree polynomial, C3 continuous approxima-
tion filter, with fourth-degree error (which exactly reconstructs cubic
polynomials). The data is first de-convolved so subsequent first convo-
lution interpolates the original data. We have used a high order of con-
tinuity and accuracy so that the creases (themselves determined by sec-
ond derivatives) are smooth and ripple-free. Continuous values f (x,s)
are reconstructed by convolving discrete data samples f [i, j,k](s) with
the separable filter R(x,y,z) = r(x)r(y)r(z) for the chosen univariate
filter r(x). Partial derivatives are measured by convolving f [i, j,k](s)
with the corresponding partial derivative of R.

The final reconstruction step is scale-normalization of derivatives,
as described by Lindeberg [41]. Intuitively, at higher blurring levels,



the data signal naturally becomes flatter, so spatial derivative magni-
tudes decrease. To make meaningful comparisons between derivatives
at different scales, they are normalized by scale:

∇̃ f (x,s) = s ∇ f (x,s), (15)

H̃ f (x,s) = s2 H f (x,s). (16)

We use the tilde to denote a quantity associated with a scale-
normalized derivative. For DTI analysis, scale-normalization is ap-
plied to the derivatives of the individual tensor components, not to the
derivatives of the derived non-linear tensor attributes like FA.

3.3 Particle-Image Energy and Crease Feature Definition

We use Eberly’s definition of creases in terms of the gradient g = ∇ f
and Hessian H of a smooth function f [16]. For DTI analysis, the
gradient and Hessian of fractional anisotropy (FA) are computed ana-
lytically from the gradients and Hessians of the individual tensor com-
ponents, using formulae in [33]. Let {v1,v2,v3} be unit-length eigen-
vectors of H with corresponding eigenvalues λ1 ≥ λ2 ≥ λ3. Crease
surfaces are defined by g ·vi = 0 and crease lines by g ·vi = g ·v j = 0,
with i, j set according to crease type (ridge or valley). For example,
ridge surfaces are defined by g ·v3 = 0: f is maximized with respect to
motion along the direction of greatest negative curvature. Crease fea-
ture strength h is quantified by the magnitude of certain eigenvalues

of the scale-normalized Hessian H̃, e.g. −λ̃3 is ridge surface strength
since a very negative λ3 indicates strong downward concavity. Table 1
summarizes crease features with the defining dot products, required
eigenvalue sign, feature strength h, and an approximate crease tangent
projection T used in particle updates (Sect. 3.5). Particle-image energy
Ei (1) is defined in proportion to feature strength h by

Ei = e( f ,xi,si) =−γ h(xi,si). (17)

The negation in (17) makes particles locate higher crease strengths
while decreasing their energy. Although total energy (1) has the α
parameter to balance inter-particle and particle-image energy, we in-

clude γ > 0 in (17) to convert from units of the Hessian (length−2) to
units of energy, and to control for the dynamic range of image values.
Section 3.5 describes a way to set γ automatically.

The spatial crease constraints are implemented in terms of defi-
nitions in Table 1. If our feature were the implicit surface f = 0,
the gradient g would be used in Newton-Raphson surface localiza-
tion [70, 45]. Creases are local extrema, so we perform a minimization
or maximization, rather than a root-finding, to locate them. We restrict
gradient ascent (for ridges) or descent (for valleys) to the perpendicu-
lar space of the approximate crease tangent T.

x←
{

x+ c(I−T)g for ridges
x− c(I−T)g for valleys

(18)

Particles are constrained to creases by iterating (18) with an adaptive
stepsize c until the length of updates to spatial position x falls below εc

times the voxel size; current work uses εc = 0.001. Note that at conver-
gence of (18), (I−T)g= 0 and I=∑i vi⊗vi imply the g ·vi = 0 crease
definition. The constraint is enforced per particle per iteration, concep-
tually happening instantaneously relative to the particle motion that
minimizes the total system energy (1). (18) does not exactly transport

R L R S V L V S

Definition
g·v2=0
g·v3=0

g ·v3 = 0
g·v1=0
g·v2=0

g ·v1 = 0

λ sign λ3 ≤ λ2 < 0 λ3 < 0 0 < λ2 ≤ λ1 0 < λ1

Strength h −λ̃2 −λ̃3 λ̃2 λ̃1

Tangent T v1⊗v1
v1⊗v1

+v2⊗v2
v3⊗v3

v2⊗v2
+v3⊗v3

Table 1. Summary of ridge (R) and valley (V) surfaces (S) and lines (L).
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Fig. 3. Inter-particle energy starts with radial profile φc(r) in (a) (with w =
0.6, d =−0.1 for illustrative purposes), used in scale-repelling Φ1(r,s) in
(b). Butterworth function b(ω) (with bord = 20, bcut = 0.87) in (c) windows
the scale-attractive Φ2(r,s) in (d), shown with β = 0.5.

particles onto creases along a perpendicular, but it is accurate enough
for the small position updates that arise in our system.

In data with any amount of noise, a crease feature that usefully mod-
els some underlying anatomic structure will, at its perimeter, gradually
become meaningless as it extends into the background. To keep sam-
pling within well-defined features, we impose a user-specified global
minimum crease strength hmin, which limits the sampled feature ex-
tent. Strength thresholding tends to separate the crease into a larger
number of disjoint pieces, each with an open boundary. We currently
do not explicitly locate the boundary where h(x) = hmin but simply
delete particles that fall below the strength minimum. This has impli-
cations for inter-particle spatial repulsion, discussed next.

3.4 Inter-Particle Energy

The inter-particle energy determines how particles interact with each
other. Previous work has explored varying total potential [48], ra-
dius [15, 45], or orientation [62], based on local data properties. Our
focus is an initial exploration of particles in scale-space, rather than the
optimization of feature sampling, so currently we consider only rota-
tionally symmetric and fixed-size spatial energy profiles. The inter-
particle energy at (xi,si) due to (x j,s j) is

Ei j = Φ(ri j,si j) = Φ

(

|xi−x j|
σr

,
si− s j

σs

)

, (19)

where σr and σs are user-specified radii along space and scale. These
radii are set based on the desired sampling resolutions in space and
scale, likely with recognition of the intrinsic resolution of the image
itself. We present two energy functions, Φ1 for sampling the full scale-
extent of a feature, and Φ2 for localizing the scale of maximal feature
strength. Both have finite support in r and s.

We start with the single spatial radial energy profile, a tunable C2

piecewise cubic function φc(r) with a potential well of depth d < 0 at
radius r = w, shown in Fig. 3(a).

φc(r) =











1+ 3(d−1)|r|
w − 3(d−1)|r|2

w2 + (d−1)|r|3
w3 0 < |r|< w,

d− 2d(|r|−w)3

(w−1)3 −
3d(|r|−w)2

(w−1)2 w≤ |r|< 1,

0 |r|≥ 1.

(20)

The negative potential well in φc(r) serves two purposes. First, as
creases are often disjoint open surfaces or curves, some attraction
maintains a tighter sampling pattern than created by pure repulsion
(i.e. φ(r) ≥ 0∀r), as with the Coulomb [29], cotangent-based [48],
and Gaussian [70] profiles used previously. This is the main way in



which our crease sampling goal differentiates our inter-particle energy
from previous energies for sampling closed surfaces (with the excep-
tion of the infinite-support Lennard-Jones potential, also with a po-
tential well [62]). Second, a potential well in φ(r) allows population
control to be expressed and implemented as energy minimization. As
described in Section 3.5, total system energy (1) can be lowered by
adding particles at the edge of a well-sampled area or by filling in
holes in the distribution. We use w = 0.6 and d = −0.002 for this
work, as determined by experience, but we have not found the system
to be very sensitive to small changes in these values.

Our first energy function Φ1, shown in Fig. 3(b), evenly distributes
particles along both space and scale.

Φ1(r,s) = φc(
√

r2 + s2). (21)

When using Φ1, we set α in (1) to 1.0 (turning off particle-image
energy), so that we can visualize the full extent of each feature along
scale and see how feature position changes as a function of scale.

However, with Φ2, shown in Fig. 3(d), particles attract each other
along the scale while repelling in space, with a blending of two terms
controlled by β ∈ [0,1].

Φ2(r,s) = (1−β )φc(r)b(s)+βb(r)b(s)s2, (22)

b(ω) =
1

1+( ω
bcut

)2bord
. (23)

Together with α < 1, the particle-image energy (previous section) will
draw particles along scale so they coalesce at the scale-space position
of peak feature strength while maintaining uniform spatial distribu-
tion. Attraction along scale keeps spatially adjacent particles at simi-
lar scales, which makes the feature sampling more robust. We use the
transfer function of a low-pass Butterworth filter [25] b(ω) (Fig. 3(c))
to enforce locality along r and s, not because of any spectral proper-
ties, but simply because it is a smooth, tunable approximation to a box
function. Current work has used bord = 20 and bcut = 0.87.

3.5 Initialization, Computation, and Visualization

The goal of initialization is to sample all features, wherever they may
be, with at least one particle. Following the general strategy of Jalba et
al. [29], for every voxel, we seed particles at multiple locations along
scale (no more than the S pre-blurred volumes). From their initial seed
location, particles undergo constraint satisfaction (Sect. 3.3) but are
deleted if they travel more than two voxel widths before convergence.
Particles are then added to the system only if their support does not
overlap with more than 50% of a previously added particle’s support,
and if their feature strength exceeds the user-specified threshold hmin.
The result is a large number of initial particles placed unevenly on
whatever creases are present in the scale-space domain. Although an
abundance of particles initially slows the particle system, it guarantees
the sampling of all features; the alternative of seeding fewer particles
risks losing features in exchange for speed, a risk that compromises
our ultimate goal of reliable feature extraction.

The mechanics of particle system computation are based on previ-
ous work [70, 48, 46]. Particles are organized into bins that cover the
domain, at least 2σr along each edge in space, and 2σs along scale, en-
suring that all possible neighbors of a particle are found within its own
bin or in a neighboring bin. Each iteration consists of an asynchronous
update of each particle and a reapplication of the feature constraint. A
particle’s update is found by projecting the negative gradient of its en-
ergy−∇Ei onto the approximate local feature tangent T, and finding a
step along −T∇Ei that decreases energy Ei. The important details are
the energy gradients and approximate feature tangents.

The gradient of the energy Ei of particle (xi,si) is

∇Ei =

[

dEi
dxi
dEi
dsi

]

= (1−α)

[

dEi
dxi
dEi
dsi

]

+α
N

∑
j=1

[

dEi j

dxi
dEi j

dsi

]

(24)

= (α−1)γ

[

∂h(x,s)
∂x

(xi,si)
∂h(x,s)

∂ s
(xi,si)

]

+α
N

∑
j=1

[

1
σr

xi−x j

|xi−x j |
∂Φ(r,s)

∂ r
(ri j,si j)

1
σs

∂Φ(r,s)
∂ s

(ri j,si j)

]

.

The partial derivatives of Φ (either Φ1 or Φ2 of Section 3.4) are
known analytically. The partial derivative of strength h(x,s) with re-
spect to s is computed numerically, using central differences with step
smax/1000. For the scale-space crease feature tangent, in the spa-
tial domain we use the approximate crease tangent T defined in Ta-
ble 1, which has worked well even though correct tangents require
third derivatives [16]; others have previously used the same approxi-
mation [3]. Along scale, we assume the feature tangent is (0,1) and
thus bypass computing ∂h(x,s)/∂x. This implies that the crease is ex-
actly stable with respect to scale, which is accurate enough when using
particle-image energy and Φ2 to localize maximal feature strength.

We evaluate the system for population control with a periodicity
of PC iterations (currently PC = 10), traversing the particles once for
deletion and once for addition. A particle is deleted if the total system
energy would be lower without it, or if its strength falls below hmin.
Particles are not deleted if more than half of their neighbors have just
been deleted, to avoid overly aggressive culling of dense samplings.
New particles are tentatively added next to existing particles that have
a markedly asymmetric distribution of neighbors. Each tentative new
particle undergoes PC iterations of updates in isolation, and the parti-
cle is added if the system energy is lower with it included. The neg-
ative potential well in φc(r) (Sect. 3.4) makes this work. If the new
particle moves (during its isolated update) into the potential wells of
existing particles, and thus adds to a good sampling distribution, the
system energy will be lowered by including it.

When using Φ2 to sample maximal strength creases, it is helpful
to run the system until approximate convergence with α = 0.0 and
β = 1.0, turning off all spatial interaction. Once particles are clustered
around the scale of maximal strength, γ can be set with

1

N

N

∑
1

∂ 2Ei

∂ s2
i

=
∂ 2Φ2(r,si j)

∂ s2
i

⇒ −γ
1

N

N

∑
1

∂ 2h(xi,s)

∂ s2
(si) =

1

σ2
s

(25)

⇒ γ =
−1

σ2
s

1
N ∑N

1
∂ 2h(xi,s)

∂ s2 (si)
. (26)

The idea in (25) is to equate the average concavity (second deriva-
tive) along scale of the particle-image energy Ei with the concavity of
inter-particle energy Ei j so that the intuitive setting of α = 0.5 actually
balances the influence of the two energies. The second derivative of
crease strength ∂ 2h(xi,s)/∂ s2 in (26) is computed numerically.

While multiple parameters control the particle system, only a few
need to be tuned depending on sampling goals. If using scale-attractive
inter-particle energy Φ2 to localize sampling along scale, the main
parameters are: α to balance particle-image and inter-particle ener-
gies (Sect. 3.1), β to balance spatial repulsion and scale attraction
(Sect. 3.4), and γ to modulate energy from feature strength (Sect. 3.3),
though γ can be set automatically by (26) above. When using scale-
repulsive inter-particle energy Φ1 to sample the scale extent of fea-
tures, we set α = 1 (no particle-image energy), and β and γ are moot.
The minimum feature strength hmin (Sect. 3.3) prevents particles from
sampling insignificant features in noise. Interactively thresholding
glyph visualizations of particle solutions on small test volumes can
inform setting hmin, though future work may automate setting hmin.
Finally, the particle radii in space σr and scale σs are set based on the
desired sampling density relative to the expected characteristic size
of features. The other system parameters have not been varied for
our different applications, but are listed here for completeness: con-
straint satisfaction convergence threshold εc = 0.001 (Sect. 3.3), well
position w = 0.6 and depth d = −0.002 of univariate potential φc(r),
Butterworth order bord = 20 and cut-off bcut = 0.87 (Sect. 3.4), and
population control periodicity PC = 10 (above).

Glyph-based visualizations are important for inspecting scale-space
particles. Visualizations can be used to debug the system implemen-
tation, observe the computation in progress to assess the appropriate-
ness of the parameter settings, and, as we do in the following figures,
to evaluate the spatial configuration of the solution and its relationship
to cutting planes. While later work will compute geometric models
from the particle solutions for further quantitative study, at this stage,



the visualizations offer evidence that the relevant anatomical structures
are indeed sampled by the particles. Glyphs can be displayed at parti-
cle spatial locations {xi} or, following previous illustrations of scale-
space [68, 41], the scale axis can be mapped to a user-specified unit-
length vector ŝ, with the glyph for (xi,si) placed at xi− (xi · ŝ)ŝ+ρsiŝ,
with some user-specified scaling ρ . Points or other sprites would suf-
fice for depicting the over-all system configuration, but we propose
two types of glyphs, D1 and D2, which usefully reflect aspects of the
eigensystem of the Hessian.

The first glyph D1 depicts Hessian eigenvectors and the relative
magnitude of the eigenvalues. Existing tensor glyphs only express
positive eigenvalues, so from the eigenvalues λi and corresponding
eigenvectors vi we find new positive eigenvalues µi for a tensor D1,
which we visualize with superquadric glyphs [32].

λ ′ = (|λ1|+ |λ2|+ |λ3|)/10 , λ ′′i = 1/max(λ ′, |λi|), (27)

µi = λ ′′i /max(λ ′′1 ,λ
′′
2 ,λ

′′
2 ) , D1 = ∑

i

µivi⊗vi. (28)

By using the reciprocal of the Hessian eigenvalues, the smallest mag-
nitude eigenvalues λi, associated with the eigenvectors that approxi-
mate tangents to the crease feature, become the largest µi, so that the
glyph visualizes the approximate local feature orientation. The glyph
shapes along crease line are thus roughly cylindrical (aligned with the
crease), and crease surfaces are indicated by disc-like glyphs, while
the over-all size is controlled so the maximum µi eigenvalue is one.

The second glyph D2 explicitly indicates a particle’s scale position
si with glyph size along the eigenvectors not associated with the ap-
proximate crease tangent T (Sect. 3.3)

D2 = T+ si(I−T). (29)

The base geometry is a cylinder with the axis of rotation aligned along
either the principal or the minor eigenvector of D2, based on whether
D2 is more linearly or more planarly anisotropic, according to mea-
sures cl and cp [67], as in Fig. 3 of [32]. Narrow cylinders, approxi-
mately tangent to crease lines at small scales, fatten into discs at larger
scales; conversely, thin discs for crease surfaces extend into longer
cylinders at larger scales.

The final component of our particle system visualization is the ex-
traction of “connected” components. Even though there is as yet no
explicit connectivity between particles, they can still be organized into
equivalence classes by (xi,si) ∼ (x j,s j) iff Ei j -= 0. In practice, the
inter-particle energy Ei j is non-zero for any two particles with overlap-
ping support, even though the potential functions have zero-crossings.
Particles are thus “connected” if they are near enough in space and
scale to interact; disjoint features tend to be sampled by particles in
different connected components. This is an imperfect means of iso-
lating features because particles from different features can occasion-
ally interact. We have found the connectivity heuristic, combined with
sorting the components by number of particles, to help inspect the
main image features sampled by the particle computation.

4 RESULTS

Figure 1 demonstrates scale-space particles on a synthetic variable-
width torus (Fig. 1(a)), in which single-scale ridge sampling is clearly
insufficient (Fig. 1(b), second row). Fig. 1(c) extends scale vertically,
showing how the Φ1 inter-particle energy (with zero particle-image
energy) samples the complete feature manifold in scale-space, visu-
alized with D1 glyphs color-mapped with crease strength. Fig. 1(d)
uses α = 1 (no inter-particle energy) to condense all the particles to
the scale of maximal strength. Applying population control with Φ2
and α = β = 0.5, Fig. 1(f) shows the final result with D2 glyphs. Us-
ing linear instead of spline interpolation between scales, with the same
number of pre-computed blurrings, significantly impedes accurate fea-
ture scale localization (Fig. 1(e)).

Fig. 4 illustrates non-scale-space properties of our particle system
with a Möbius strip that emphasizes how crease surfaces are in gen-
eral non-orientable [58]. The right side of Fig. 4 includes a portion of
a cutting plane showing the coarse resolution of the underlying scalar

Fig. 4. Ridge surface sampling of a Möbius strip from a 40× 40× 20
scalar volume demonstrates the shapes of D1 tensor glyphs and the
need for thresholding feature strength (colormapped on glyphs).

data. The D1 glyphs show both the over-all shape of the Möbius strip
and the shape of the Hessian at each particle. Through the middle
of the Möbius strip, the D1 glyphs (28) indicate that the approximate
tangent T (Table 1) seems to accurately reflect the actual surface tan-
gent, which helps justify the constrained gradient ascent or descent
approach of constraint satisfaction in (18). Away from the middle of
the strip, the glyphs diverge most from a circular disc shape, and the
ridge surface strength (indicated by the colormap) decreases. The er-
rant, semi-transparent glyphs in Fig. 4 fell below a user-specified fea-
ture strength threshold. This illustrates how creases can be sampled
even where poorly defined, and it emphasizes the need for strength
thresholding to limit particles to meaningful features.

Valley lines indicating lung airways were sampled in the left lung

of a 0.5mm3 resolution chest CT scan (a 230× 290× 480 subvol-
ume), with eight samples along scale s ∈ [0mm,8mm], using Φ2 with
α = 0.5, β = 0.5, σr = 1.2mm, σs = 2.5mm. Figure 5(a) uses D2
glyphs color-mapped by strength to show the result of 6.4 hours of
processing on 2.8 GHz Intel Core 2 Duo (single-threaded). With
strength thresholding and connected component analysis, the wide
range of scales in the branching structure is shown in Fig. 5(b), which
includes for comparison a region-growing segmentation, shown as a
semi-transparent surface. Note that the glyphs and the segmentation
surface agree in their indication of both the airway location and radius
over the full range of scales. Small airways are difficult to capture by
region-growing methods due to limited resolution, even though they
are especially valuable for quantitative study [28]. Figure 5(b) shows
how particles tend to capture greater extents of the fine-scale airways,
compared to the segmentation, while they also naturally capture even
the widest airways. The cutting plane in 5(c) illustrates the underly-
ing unsegmented data quality and resolution relative to the features
successfully sampled within it.

The scale-repulsive inter-particle energy Φ1 permits visualizing the
complete scale-space extent of a feature. Figure 6(a) shows this for a
single airway vessel segment, while colormapping onto round glyphs
the valley line strength. This type of visualization informed our choice
of inter-particle energy rather than constraint satisfaction for feature
localization along scale, because the visualization showed the high
spatial variability of feature strength. Figure 6(b) uses the scale-
attractive inter-particle energy Φ2 with low values of α and β (so that
particle-image energy dominates inter-particle energy, which is mostly
spatially repelling), to produce what is essentially a plot of the highly
variable scales of maximal strength along the feature. Higher values
of α and β in Fig. 6(d) (i.e. scale-attractive inter-particle energy dom-
inates the particle-image energy) regularize the spatial variability of
scale. There are noticeable but not dramatic improvements in the re-
sulting sampled feature uniformity, shown in Fig. 6(c).

Figure 7 shows single-subject FA ridge surface analysis in a [128×
128× 105] 1.5mm3 resolution DTI scan, sampled six times along
s ∈ [0mm,5mm]. Colormapping by scale illustrates how features near
the cortical surface are better sampled at fine scales, while larger scales
are better for structures deep inside the brain. The computation re-



(a) Full result (b) Strength-thresholded

(c) With cutting plane

Fig. 5. Valley line analysis of lung CT to find airways. The com-
plete result (a) is cleaned up with strength thresholding and connected-
component analysis (b). Cutting plane (c) shows underlying unseg-
mented data relative to sampled features.

quired roughly 8 hours, using Φ2 with α = 0.7, β = 0.5, σr = 2mm,
σs = 2.2mm. Figure 8 demonstrates why scale-space analysis is useful
for brain DTI: the corpus callosum (the thick connection between the
hemispheres) is not reliably represented by an FA ridge surface sam-
pled at a single scale, appropriate for structures closer to the cortical
surface, while its interior shape is well sampled even at the thickest
part by the scale-space particles.

Complementing FA ridge surfaces are the FA ridge lines in Fig. 9,
shown with D2 glyphs that indicate the sampled lines as variable-width
tubes. While we are still understanding which of these lines corre-
spond to major white matter pathways, Fig. 9(b) shows that certain
major tubular pathways, such as the Fornix and Cingulum Bundles,
seem to be well captured. Given the generic nature of scale-space par-
ticles, we feel this represents a useful contribution to brain DTI analy-
sis, given that other methods have been designed specifically to create
models of just these pathways [51].

5 CONCLUSIONS AND DISCUSSION

Scale-space particles combine approaches from graphics, visualiza-
tion, and vision to create a tool for robustly sampling and visualiz-
ing structure in real-world volume datasets. From computer vision,
we leverage Lindeberg’s discrete Gaussian [41] to create a memory-
efficient scale-space reconstruction, and use scale-normalized strength
measures [41] for crease feature [16] localization along scale [69, 35,
66]. The basic mechanics of particle-based feature sampling were
derived from computer graphics [62, 70, 27] and scientific visualiza-
tion [48, 46], and the whole system was debugged, monitored, and
evaluated here with tensor glyph visualizations [32]. Our results sug-

(a) Φ1, mapping strength
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(b) Φ2; α = 0.1, β = 0.2

(c) α,β comparison, mapping scale

s
c
a
le

(d) Φ2; α = 0.9, β = 0.8

Fig. 6. Scale-repelling inter-particle energy Φ1 results in (a), col-
ormapped by strength, provide context for evaluating two samplings (b)
and (d) from different parameters for scale-attractive inter-particle en-
ergy Φ2. 3-D visualization in (c), colormapped by scale, puts results
from settings in (b) above those in (d).

Fig. 7. Whole-brain scale-space FA ridge surfaces, colormapped by
scale (brighter colors for higher scales).

gest that many possible biomedical applications of particle systems
have yet to be explored, and that scientific visualization provides an
effective framework for those explorations. Without being particu-
larly adapted for either lung or brain analysis, our particles capture
airways from CT as well as white matter structure from DTI, due to
the particles’ ability to gracefully handle features that span a contin-
uous range of scales. The increasing resolution of medical scanners
will decrease the lower limit on feature scale, creating more demand
for better feature sampling and visualization methods that, like scale-
space particles, work naturally over a wide range of scales.

There are many possible directions for future research. The re-
finement of particle systems for analyzing the scale-space structure
of non-scalar data is especially exciting. It may be possible to reliably
generate useful models of major white matter pathways solely from
the differential structure of a single diffusion tensor invariant. This is
counter-intuitive, given that we are not analyzing what might seem to
be the most important aspect of the tensor, the principal eigenvector
that is the basis of fiber tractography. On the other hand, we are im-
plicitly taking advantage of significantly more tensor information by
blurring the tensor field and then measuring anisotropy (rather than
vice versa). Exploiting the non-linearity of anisotropy in this way mir-
rors earlier work on measuring tensor field coherence by blurring and
then measuring anisotropy [67]. Future work can explore the non-
linearity of anisotropy with respect to scale in more detail. The system



(a) Without scale-space (b) With scale-space

Fig. 8. The corpus callosum is a particularly large-scale feature that
benefits from scale-space sampling (b) and is not reliably captured by a
ridge at a single scale (a).

(a) FA ridge lines

Cingulum Bundles

Fornix

(b) Fornix, Cingulum Bundles

Fig. 9. FA ridge lines in scale-space (a) capture some white matter
features known to be more tubular, such as the cingulum bundles (b).

described here may in fact be the most practical tool to help explore
the broader question of the precise anatomic relationship between FA
creases extracted in scale-space, and the shape of major pathways as
computed from tractography.

Another direction for future work is the reduction of the number
of particles by tuning the sampling density to local feature properties.
Previous work [45] did this with a medial axis of the closed surface,
but we see no obvious analog to medial axes for creases: crease lines
are codimension-two, and crease surfaces can be non-orientable [58].
It is tempting to make the spatial particle radius vary in proportion
to the scale position (larger particles at higher blurring levels), but
it is unclear whether scale actually puts an upper bound on feature
curvature, especially for creases of non-linear anisotropy measures.

Finally, there are many ways of optimizing our proof-of-concept
implementation. Though we now err on the side of seeding too
many particles, a secondary strength threshold (lower than the hmin
in Sect. 3.3), evaluated at starting seed locations, could accelerate ini-
tialization and reduce the initial population. The current bottleneck
in our system is actually in the later stage of computing particle mo-
tion, after population control has handled feature oversampling. Con-
straining particles to creases is expensive due to the many convolutions
needed to reconstruct values and derivatives (Sect. 3.2). Simply copy-
ing the image values within the kernel support from the volume data
into a convolution buffer accounts for a large part of the cost; it would
be alleviated by more efficient use of the memory hierarchy through
volume bricking [53]. Given the data-parallel nature of convolution
and constraint satisfaction, multi-threading would also be beneficial,
as would a GPU-based approach. Correctly parallelizing inter-particle
interactions in the context of the global data structure used for spatial
binning will require some care.
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