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Abstract

Although direct volume rendering is a powerful tool for visualizing
complex structures within volume data, the size and complexity of
the parameter space controlling the rendering process makes gener-
ating an informative rendering challenging. In particular, the speci-
fication of the transfer function — the mapping from data values to
renderable optical properties — is frequently a time-consuming and
unintuitive task. Ideally, the data being visualized should itself sug-
gest an appropriate transfer function that brings out the features of
interest without obscuring them with elements of little importance.
We demonstrate that this is possible for a large class of scalar vol-
ume data, namely that where the regions of interest are the bound-
aries between different materials. A transfer function which makes
boundaries readily visible can be generated from the relationship
between three quantities: the data value and its first and second di-
rectional derivatives along the gradient direction. A data structure
we term the histogram volume captures the relationship between
these quantities throughout the volume in a position independent,
computationally efficient fashion. We describe the theoretical im-
portance of the quantities measured by the histogram volume, the
implementation issues in its calculation, and a method for semi-
automatic transfer function generation through its analysis. We
conclude with results of the method on both idealized synthetic data
as well as real world datasets.

1 Introduction

1.1 The Task of Finding Transfer Functions

Transfer functions make a volume dataset visible by assigning ren-
derable optical properties to the numerical values which comprise
the dataset. The most general transfer functions are those that as-
sign opacity, color, and emittance [12]. Useful renderings can of-
ten be obtained, however, from transfer functions which assign just
opacity, with the color and brightness derived from simulated lights
which illuminate the volume according to some shading model. We
use the term opacity functions to refer to this limited subset of trans-
fer functions. During the rendering process, the sampled and in-
terpolated data values are passed through the opacity function to
determine their contribution to the final image. Since the opacity
function does not normally take into account the position of the
region being rendered, the role of the opacity function is to make
opaque those data values which consistently correspond, across the
whole volume, to features of interest. This paper addresses only
the problem of setting opacity functions, as this is a non-trivial yet
manageable problem whose solution is pertinent to more general
transfer function specification issues.
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Finding a good transfer function is critical to producing an infor-
mative rendering, but even if the only variable which needs to be set
is opacity, it is a difficult task. Looking through slices of the vol-
ume dataset allows one to spatially locate features of interest, and a
means of reading off data values from a user-specified point on the
slice can help in setting an opacity function to highlight those fea-
tures, but there is no way to know how representative of the whole
feature, in three dimensions, these individually sampled values are.
User interfaces for opacity function specification typically allow the
user to alter the opacity function by directly editing its graph, usu-
ally as a series of linear ramps joining adjustable control points.
This interface does not itself guide the user towards a useful set-
ting, as the movement of the control points is unconstrained and
unrelated to the underlying data. Thus finding a good opacity func-
tion tends to be a slow and frustrating trial and error process, with
seemingly minor changes in an opacity function leading to drastic
changes in the rendered image. This is made more confusing by the
interaction of other rendering parameters such as shading, lighting,
and viewing angle.

1.2 Direct Volume Rendering of Boundaries

A significant assumption made in this paper is that the features of
interest in the scalar volume are the boundary regions between ar-
eas of relatively homogeneous material1. For instance, this is often
true of datasets from medical imaging. But if the goal is to render
the boundaries of objects, why use direct volume rendering, and not
isosurface rendering? Although this question itself deserves inves-
tigation, it is widely accepted that direct volume rendering avoids
the binary classification inherent in isosurface rendering — either
the isosurface passes through a voxel or not [11]. To the extent that
an object’s surface is associated with a range of values, an opacity
function can make a range of values opaque or translucent. This be-
comes especially useful when noise or measurement artifacts upset
the correlation between data value and material type.

As a quick illustration of this, consider a dataset generated from
limited angle tomography [6], where there are often streaks and
blurriness in the data caused by the unavailability of projections at
some range of angles. This type of data is studied in the Collab-
oratory for Microscopic Digital Anatomy[19], an ongoing project
aimed at providing remote, networked access to sophisticated mi-
croscopy resources. Fig. 1 shows two renderings of a mammalian
neuron dataset, using the same viewing angle, shading, and light-
ing parameters, but rendered with different algorithms: a non-
polygonal ray-cast isosurface rendering and a shear-warp direct vol-
ume rendering produced with the Stanford VolPack rendering li-
brary [10]. Towards the bottom of the direct volume rendered im-
age, there is some fogginess surrounding the surface, and the sur-
face itself is not very clear. As can be confirmed by looking directly
at slices of the data itself, this corresponds exactly to a region of the

1 We use boundary to refer, not to an infinitesimally thin seperating sur-
face between two areas of disparate data value, but to the thin region wherein
the data value transitions from one material value to the other.



dataset where the material boundary is in fact poorly defined. The
surface rendering, however, shows as distinct a surface here as ev-
erywhere else, and in this case the poor surface definition in the
data is manifested as a region of rough texture. This can be mis-
leading, as there is no way to know from this rendering alone that
the rough texture is due to measurement artifacts, and not a feature
on the dendrite itself.

(a) Isosurface Rendering (b) Direct Volume Rendering

Figure 1: Two renderings of a spiny dendrite from a cortical pyra-
midal neuron. The volume dataset was reconstructed from images
of a 2 micron thick section acquired with an intermediate high volt-
age electron microscope at the National Center for Microscopy and
Imaging Research, San Diego, California, using single-tilt axis to-
mography. Specimen kindly provided by Prof. K. Hama of the Na-
tional Institute for Physiological Sciences, Okazaki, Japan.

2 Related Work

Two methods have been proposed for assisting the user in the ex-
ploration of possible transfer functions. He et al. [7] use genetic
algorithms to breed a good transfer function for a given dataset.
Judging from small thumbnail renderings, the user picks desirable
transfer functions from an automatically generated population, until
the iterative process of image selection and transfer function inter-
combination converges. Alternatively, the system can run automat-
ically by using some user-specified objective function (entropy, en-
ergy, or variance) to evaluate rendered images. Marks et al. [13]
address the problem of “parameter tweaking” in general, with ap-
plications including light placement for rendering, motion control
for articulated figure animation, as well as transfer functions in di-
rect volume rendering. The goal is to create a visual interface to
the complex parameter space by using an image difference metric
to arrange renderings from a wide variety of transfer functions into
a “design gallery”, from which the user selects the most appeal-
ing rendering. While both of these methods reportedly succeed in
finding useful transfer functions, and while they both allow the user
to inspect the transfer function behind a rendering, the systems are
fundamentally designed for finding good renderings, not for finding
good transfer functions. Both processes are entirely driven by anal-
ysis of rendered images, and not of the dataset itself. Rather than
having an high-level interface to control the transfer function, the
user has to choose a transfer function from among those randomly
generated, making it hard to gain insight into what makes a transfer
function appropriate for a given dataset.

Other visualization tools have been described which are more
driven by the data itself. Bergman et al. [3] describe a percep-
tually informed rule-based method for colormap selection which
takes into account the data’s spatial frequency characteristics and
the purpose of the visualization. Closer to the goal of the current
paper is the contour spectrum, described by Bajaj et al. [1], which
helps the user find isovalues for effective isosurface volume visual-
izations of unstructured triangular meshes. By exploiting the math-
ematical properties of the mesh, important measures of an isosur-
face such as surface area and mean gradient magnitude can be com-
puted with great efficiency, and the results of these measurements
are integrated into the same interface which is used to set the iso-
value. By providing a compact visual representation of the metrics
evaluated over the range of possible isovalues, the user can readily
decide, based on their rendering goals, which isolevel to use. The
importance to the current paper is that the contour spectrum is a
good example of how an interface can use measured properties of
the data to guide the user through the parameter space controlling
the rendering.

3 Ideal Boundary Characterization

3.1 Boundary Model

Since our particular goal is the visualization of material boundaries,
we have chosen a model for what constitutes an ideal boundary and
developed methods around that. We assume that at their boundary,
objects have a sharp, discontinuous change in the physical property
measured by the values in the dataset, but that the measurement
process is band-limited with a Gaussian frequency response, caus-
ing measured boundaries to be blurred by a Gaussian. Fig. 2 shows
a step function representing an ideal boundary prior to measure-
ment, the Gaussian which performs the band-limiting by blurring,
and the resulting measured boundary (prior to sampling). The re-
sulting curve happens to be the integral of a Gaussian, which is
called the error function [9]. Actual measurement devices band-
limit, so they always blur boundaries somewhat, though their fre-
quency response is never exactly a Gaussian, since this has infinite
support. Although certain mathematical properties of the Gaussian
are exploited later, we have not found the inexact match of real-
world sampling to the Gaussian ideal to limit application of our
technique. A final assumption made for the purposes of this analy-
sis is that the blurring is isotropic, that is, uniform in all directions.
Again, our methods will often work even if a given dataset does
not have this characteristic, but results may be improved if it is pre-
processed to approximate isotropic blurring.

(a) Step function

!

(b) Gaussian

=

(c) Measured bound-
ary prior to sampling

Figure 2: Boundaries are step functions blurred by a Gaussian.

3.2 Directional Derivatives along the Gradient

Although it was suggested in Section 1.2 that isosurfaces are not
always sufficient for visualizing objects in real world volume data,
the method presented in this paper still indirectly employs them
as an indicator of object shape. That is, based on the mathemati-
cal property that the gradient vector at some position always points



perpendicular to an isosurface through that position, we use the gra-
dient vector as a way of finding the direction which passes perpen-
dicularly through the object boundary. Even though isosurfaces do
not always conform to the local shape of the underlying object, if
we average over the whole volume, the gradient vector does tend to
point perpendicular to the object boundary. We rely on the statisti-
cal properties of the histogram to provide the overall picture of the
boundary characteristics.

The directional derivative of a scalar field f along a vector v,
denoted Dvf , is the derivative of f as one moves along a straight
path in the v direction. This paper studies f and its derivatives as
one cuts directly through the object boundary — moving along the
gradient direction — in order to create an opacity function. Be-
cause the direction along which we are computing the directional
derivative is always that of the gradient, we employ a mild abuse of
notation, using f ′ and f ′′ to signify the first and second directional
derivative along the gradient direction, even though these would

be more properly denoted by D∇̂f
f and D

2

∇̂f
f , where ∇̂f is the

gradient direction. We treat f as if it were a function of just one
variable, keeping in mind that the axis along which we analyze f

always follows ∇̂f , which constantly changes orientation depend-
ing on position. Fig. 3 shows how the gradient direction changes
with position to stay normal to the isosurfaces of a simple object.

(a) f(x) (b) Isosurfaces of f (c) ∇f

Figure 3: ∇f is always normal to f ’s isosurfaces.

Fig. 4 analyzes one segment of the cross-section of this same
object. Shown are plots of the data value and the first and second
derivatives as one moves across the boundary. Because of band-
limiting, the measured boundary is spread over a range of positions,
but an exact location for the boundary can be defined with either
the maximum in f ′, or the zero-crossing in f ′′. Indeed, two edge
detectors common in computer vision, Canny [4] and Marr-Hildreth
[14], use the f ′ and f ′′ criteria, respectively, to find edges.

x

f(x)f ′(x)f ′′(x)

Figure 4: Measuring f , f ′, and f ′′ across boundary.

3.3 Relationship Between f , f ′, and f ′′

As our goal is to find functions of data value which highlight bound-
ary regions, our problem is rather different than that addressed
by edge detectors. Because the opacity function will be applied
throughout the volume irrespective of position, we must locate the
boundary not in the spatial domain, but in the range of data values.
In contrast, edge detectors locate boundaries in the spatial domain.
Yet, we still want to borrow from computer vision the notion that
boundaries are somehow associated with a maximum in f ′ and/or
a zero-crossing in f ′′. To see how this is possible, consider just the
relationship between f and f ′. As both of these are functions of
position, they can be plotted with a three-dimensional graph, as in
Fig. 5. The three-dimensional curve can be projected downward to
form the plot of data value versus position, and projected to the right
to show first derivative versus position. Projecting the curve along
the position axis, however, eliminates the position information, and
reveals the relationship between data value and first derivative. Be-
cause the data value increases monotonically, there is a (non-linear)
one-to-one relationship between position and data value, so the first
derivative f ′, which had been a function of position x, can also
be expressed as a function of data value f . This is what the third
projection in Fig. 5 depicts.

x

x

f(x)

f(x)

f ′(x)

f ′(x)

Figure 5: f , f ′ and position x.

The same projections can be done for data value and its second
derivative, as seen in Fig. 6. Projecting the curve downward or to
the right produces the graphs of data value or second derivative ver-
sus position (first seen in Fig. 4), while projecting along the posi-
tion axis reveals the relationship between data value and its second
derivative.

Finally, having “projected out” position information, one can
make a three-dimensional graph of the first and second derivatives
as functions of data value, as seen in Fig. 7. The significance of this
curve is that it provides a basis for automatically generating opacity
functions. If a three dimensional record of the relationship between
f , f ′ and f ′′ for a given dataset contains curves of the type shown
in Fig. 7, we can assume that they are manifestations of boundaries
in the volume. With a tool to detect those curves and their posi-
tion, one could generate an opacity function which makes the data
values corresponding to the middle of the boundary (indicated with
cross-hairs in Fig. 7) the most opaque, and the resulting rendering
should show the detected boundaries. Short of that, one could use a
measure which responds to some specific feature of the curve (say,
the zero crossing in f ′′) and base an opacity function on that. This
is what the current paper seeks to do.
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Figure 6: f , f ′′ and position x.

f(x)

f(x)

f ′(x)

f ′(x)

f ′′(x)

f ′′(x)

Figure 7: The underlying relationship of f , f ′, and f ′′.

4 The Histogram Volume

4.1 Histogram Volume Structure

To measure the relationship between the data value and its deriva-
tives described in the last section, we use a three-dimensional his-
togram we term a histogram volume. There is one axis for each of
the three quantities f , f ′, and f ′′, and each axis is divided into some
number of (one-dimensional) bins, causing the interior volume to
be divided into a three-dimensional array of bins. The histogram
volume has two defining characteristics:

1. Each bin in the histogram volume represents the combination
of a small range of values in each of the three variables f , f ′,
and f ′′.

2. The value stored in each bin signifies the number of voxels in
the original volume within that same combination of ranges
of these three variables.

4.2 Histogram Volume Creation

Fig. 7 illustrated the position-independent relationship between f ,
f ′, and f ′′ that characterized an ideal boundary. To find that rela-
tionship, however, we afforded ourselves the luxury of first know-

ing where the boundary was in the idealized dataset. For instance,
Fig. 4 was produced with knowledge of where to place a path so
as to cross through the boundary. In the case of real volume data,
however, the positions of the boundaries are not known, but the
same relationship between f , f ′ and f ′′ needs to be revealed by
some measurement technique.

f(x)

f(x)

f ′(x) f ′′(x)

(a) Continuous linear sampling

f(x)

f(x)

f ′(x) f ′′(x)

(b) Dense linear sampling

f(x)

f(x)

f ′(x) f ′′(x)

(c) Sampling at gridpoints

Figure 8: Sampling the boundary: from continuous to discrete.

It is sufficient to measure f , f ′, and f ′′ at each point of a uniform
lattice. Fig. 8(a) shows a boundary being sampled continuously to
produce smooth graphs of f ′ and f ′′ versus f . In Fig. 8(b), the
sampling is along the same path, but is now discrete. The smooth
graphs have been replaced by scatterplots, but the sequence of mea-
surements traces out the same curves as before, indicating that dis-
crete sampling and the resulting scatterplots are sufficient to illu-
minate the important relationships between f and its derivatives.
Finally, in Fig. 8(c), the boundary is sampled everywhere on a uni-
form grid. Though now the points are distributed differently —
many more hits have accumulated along where f ′ and f ′′ are near
zero — the scatterplots trace out the save curves as before. By sam-
pling everywhere, we no longer require knowledge of boundary lo-
cation, and the “global” derivative characteristics of the boundary
have been measured. This is precisely the sort of information rele-
vant to opacity function generation.

The approach taken in this paper is to measure f and its di-
rectional derivatives exactly once per voxel, at the original sample
points of the dataset. One might be concerned that sampling merely
at the original data points is not a sufficient sampling density to pro-
duce the curves seen in Figs. 7 and 8. However, with real volume
data this will not be a problem, since the band-limiting in data ac-
quisition assures there will always be some blurring, and since the
boundaries of real objects tend to assume a variety of positions and
orientations relative to the sampling grid.



4.3 Implementation

One implementation issue in the histogram volume creation is how
many bins to use. There is a trade-off between storage and pro-
cessing requirements versus having sufficient resolution in the his-
togram volume to discern the patterns from which we generate
the opacity functions. In our experiments, good results were ob-
tained with histogram volumes of sizes between 803 and 2563 bins,
though there is no reason that the histogram volumes need to have
equal resolution on each axis. Also, we have found it sufficient
to use only 8 bits to represent the values in the histogram volume,
scaling and/or clipping the number of hits to the range 0–255 if
necessary.

A more subtle issue is what range of values to include along each
axis. Obviously, for the data value axis, the full range should be in-
cluded, since we intend to capture all the values at which boundaries
might occur. But along the axes for first and second derivative, it
makes sense to include something less than the full range. Since
derivative measures are by nature sensitive to noise, including the
full range of derivative values in the histogram volume may cause
the important and meaningful sub-range of values to be compressed
to a smaller number of bins, thereby hampering the later step of de-
tecting patterns in the histogram volume. We do not have an a priori
knowledge of the meaningful ranges of derivatives values, so cur-
rently the derivative value ranges are set with an educated guess.
This is a matter in need of further research and automation.

The most significant implementation issue is the method of mea-
suring the first and second directional derivatives. The first deriva-
tive is actually just the gradient magnitude. From vector calculus
[15] we have:

Dvf = ∇f · v, (1)

thus

D∇̂f
f = ∇f · ∇̂f = ∇f · ∇f

‖∇f‖
= ‖∇f‖. (2)

Unfortunately there is no similarly compact formula for D2

∇̂f
f , the

second directional derivative along the gradient direction. Twice
applying Eqn. 1 gives:

D
2

∇̂f
f = D∇̂f

(‖∇f‖) = ∇(‖∇f‖) · ∇̂f

=
1

‖∇f‖
∇(‖∇f‖) ·∇f (3)

Or, using the Taylor expansion of f along ∇̂f [5] gives:

D
2

∇̂f
f =

1
‖∇f‖2

(∇f)T Hf ∇f (4)

where Hf is the Hessian of f , a 3 × 3 matrix of second partial
derivatives of f [15]. Alternatively, we can use the Laplacian ∇2f
to approximate D

2

∇̂f
f :

D
2

∇̂f
f ≈ ∇2f =

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
(5)

The approximation is exact only where the isosurfaces have zero
mean surface curvature [5].

These three expressions for D2

∇̂f
f each suggest different imple-

mentations for the second derivative measure. Although this would
benefit from more detailed study, we can still make useful obser-
vations regarding the comparative merits of each. While we have
found the Hessian method to be the most numerically accurate, the
others have proven sufficiently accurate in practice to make them
appealing by virtue of their computation efficiency. The Lapla-
cian computation is direct and inexpensive, but the most sensitive to
quantization noise. The gradient of the gradient magnitude (Eqn. 3)

is better, and its computational expense is lessened if the gradient
magnitude has already been computed everywhere for the sake of
volume rendering (e.g., as part of shading calculations).

By measuring the derivatives only at the original data points, the
calculation of the first and second partial derivatives required in
the above expressions is greatly facilitated by the use of discrete
convolution masks applied at the data points; we have used stan-
dard central differences. Thus, our task is somewhat distinct from
the usual problem of derivative measurement in volume rendering,
where a primary concern is continuity of the derivative between
sample points to allow for correct shading of interpolated data val-
ues [2, 16].

The general algorithm for creating the histogram is straight-
forward:

1. Initialize the histogram volume to all zeroes.

2. Make one pass through the volume looking for the highest
values of f ′ and f ′′, and the lowest value of f ′′; assume zero
for the lowest value of f ′. Set ranges on the histogram volume
axes accordingly.

3. On a second pass through the volume,

3a. Measure f , f ′, and f ′′ at each voxel,

3b. Determine which bin in the histogram volume corre-
sponds to the measured combination of f , f ′, and f ′′,
and

3c. Increment the bin’s value.

4.4 Histogram Volume Inspection

It is possible to gain some insight into the object boundaries of the
original dataset by simple visualization of the histogram volume
after it has been calculated. One may be tempted to simply volume
render the histogram volume from arbitrary views, but this usually
turns out to be unrevealing due to the speckled and noisy nature
of the histogram volume. A better way is to use summed-voxel
projections of the histogram volume, projecting along either the f ′

or the f ′′ axis, to produce scatterplots of f ′′ versus f or f ′ versus
f , respectively. This allows testing of the premise in Section 3.3
— if there are boundaries in the original dataset that conform to the
boundary model, there should be curves like that of Fig. 7 in the
histogram volume.

(a) Cylinder

(b) Nested Cylinders

Figure 9: Dataset Slice, f ′ versus f , and f ′′ versus f .

Fig. 9 shows cross-sections and scatterplots for two synthetic
datasets. The curves in the scatterplots are exactly the form seen



(a) Turbine Blade

(b) Head

(c) Engine Block

Figure 10: Dataset Slice, f ′ versus f , and f ′′ versus f .

in Fig. 8, and one can see an important property of the histogram
volume — for each pair of materials that share a boundary, there
is a curve in the histogram volume. This property is again visible
in Fig. 10, wherein various computed tomography datasets are be-
ing analyzed. Though the scatterplots are noisier, it clear that the
histogram volume is successfully capturing information about the
materials and their boundaries.

It should be noted that a related technique has been used in com-
puter vision for feature identification. Panda and Rosenfeld [18]
use two-dimensional scatterplots of data value and gradient mag-
nitude to perform image thresholding for night vision applications.
They, however, do not assume a boundary model, instead limiting
their analysis of the scatterplot to identifying particular distribu-
tions within regions of low and/or high gradient magnitude.

5 Opacity Function Generation

5.1 Mathematical Boundary Analysis

In order to develop a method for opacity function generation that
uses our boundary model and the information stored in the his-
togram volume, it is helpful to look at the equation we have used to
describe the ideal boundary data value as a function of position:

v = f(x) = vmin + (vmax − vmin)
1 + erf( x

σ
√
2
)

2
(6)

Just as we have taken “position” to always be along an axis point-
ing in the gradient direction, we define zero to always be the posi-
tion of the inflection point in the boundary. vmin and vmax are the
data values of the materials on either side of the boundary. As erf()
ranges from −1 to 1, v ranges from vmin to vmax. The parame-
ter controlling the amount of boundary blurring is σ. The first and

second derivatives of f are as follows:

f ′(x) =
vmax − vmin

σ
√
2π

exp(− x2

2σ2
) (7)

f ′′(x) = −x(vmax − vmin)

σ3
√
2π

exp(− x2

2σ2
) (8)

Our choice of boundary parameterization means that f ′(x) is
a Gaussian, with σ being the usual standard deviation. Since the
Gaussian has inflection points at ±σ, this is where f ′′(x) attains
its extrema. The same positions can serve as artificial delimiters
for the extent of the boundary — we define the “thickness” of the
boundary to be 2σ. Note that the thickness of a boundary can be
recovered if the maximum values of f ′ and f ′′ are known:

f ′(0)
f ′′(−σ)

= σ
√
e (9)

More importantly, once σ is known, we can recover the position
x knowing only the values of f ′ and f ′′:

f ′′(x)
f ′(x)

= − x

σ2
(10)

5.2 Opacity functions of data value

Before using Eqn. 10 as the basis for opacity function generation,
we define some important functions of data value: g(v) is the av-
erage first directional derivative of f over all the positions x at
which f(x) = v, and h(v) is likewise the average second direc-
tional derivative at value v. These two functions can be obtained
from the histogram volume by slicing it at data value v, and finding
the centroid of the scatterplot of f ′ and f ′′ at that value. The f ′

axis coordinate of the centroid is g(v), and the f ′′ axis coordinate
is h(v).

Knowing g(v) and h(v) for all v, one can find the ratio of their
maxima to recover σ with Eqn. 9, assuming that g attains its max-
ima at f(0), and that h attains its maxima at f(−σ). With this
information, we define a mapping p(v) from data value to an ap-
proximate position along a boundary:

p(v) =
−σ2h(v)
g(v)

(11)

≈ −σ2f ′′(f−1(v))
f ′(f−1(v))

= x

Roughly speaking, p(v) tells us on which side of the nearest
boundary a data value v tends to fall. For values closer to vmin,
p(v) will be negative; for values closer to vmax, p(v) will be pos-
itive. In practice, we have found it useful to modify Eqn. 11 to
account for the fact that the gradient magnitude at the interior of
materials is rarely exactly zero. Knowing how it differs from zero
is again a matter of experience, but assuming one can find a gthresh
which approximates the ambient gradient magnitude, Eqn. 11 is re-
formulated, with a slight loss of mathematical accuracy, as

p(v) =
−σ2h(v)

max(g(v)− gthresh, 0)
(12)

The user supplies the last piece of information needed: a func-
tion b(x) we term the boundary emphasis function, which maps
from position along a boundary to opacity. As the intent is to make
only boundaries visible in the rendering, b(x) should be non-zero
only near zero. For this reason, we have not been especially care-
ful to prevent p(v) from attaining infinite values due to a low g(v);
such a data value v should not contribute to the final image. With



b(x), the user can directly control whether rendered boundaries will
appear thick or thin, sharp or fuzzy, and the proximity of the ren-
dered boundary to the object interior. The final opacity function
α(v) is then defined as

α(v) = b(p(v)) (13)

Instead of exploring the parameter space of all possible opac-
ity functions, the user explores the parameter space of b(x) and
lets the information from the histogram volume, embodied in p(v),
constrain the search to those opacity functions which display ob-
ject boundaries. Defining opacity as a function of position within
a boundary then becomes a more intuitive task than defining opac-
ity as a function of data value, as there is a more predictable re-
lationship between changes made to the boundary emphasis func-
tion and the corresponding change in rendered results. As there
is a potential for inaccuracy in the calculation of σ from Eqn. 9,
the user may need to experiment with different scalings in the do-
main of b(x). Fig. 11 shows how the choice of boundary emphasis
function affects the opacity function and the rendered image, for a
synthetically created dataset containing two concentric spheres at
distinct data values. It should be stressed that the user does not
set the location of the peaks in α(v), since this is determined by
the information in p(v), but the user can influence the location, as
well as the width, height, and shape of the peaks. This is the main
benefit of this method: if the histogram volume has successfully
captured information about the boundaries in the dataset, the user
enjoys high-level control over the character of the rendered bound-
aries without having to worry about the exact specification of α(v).
Yet, the α(v) so generated is sensible enough that it could be edited
by hand if desired. For example, since this technique will attempt
to make all boundaries opaque, a useful supplement to the interface
would be a feature which allows supression of the peaks in α(v) for
one or more boundaries.

Even though we have made some strong assumptions about the
boundary characteristics in the volume dataset, the technique de-
scribed here typically works well even if the material boundaries are
not “ideal”. Essentially, by taking the ratio of the second and first
derivatives, and by having b(x) assign opacity to positions around
zero, we are more apt to make opaque those data values associated
with both low second derivatives and high first derivatives. Or, even
if p(v) is not a perfect indicator of “position relative to boundary”,
the sign change in f ′′ around its zero-crossing affords us some con-
trol over whether we want to emphasize regions closer to or further
from the object’s interior. Fig. 12 on the accompanying colorplate
shows a rendering of an MRI dataset which does not have ideal
boundaries but for which this technique still works.

5.3 Opacity functions of data value and gradient
magnitude

So far the opacity functions under consideration have assigned
opacity based on data value alone. Higher quality renderings can
sometimes be obtained, however, if the opacity is assigned as a
function of both data value and gradient magnitude. Defining these
two-dimensional opacity functions by hand is especially challeng-
ing because there are even more degrees of freedom than in one-
dimensional, value-based opacity functions. Fortunately, the ideas
presented so far easily generalize to allow semi-automatic genera-
tion of two-dimensional opacity functions.

Analogous to the definition of h(v), we define h(v, g) to be av-
erage second derivative over all locations where the data value is v
and the gradient magnitude is g; this is also easily calculated from
the histogram volume. We similarly define a new position function,
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Figure 11: Relationship between b(x), α(v), and the rendered re-
sult.

and from that an opacity function:

p(v, g) =
−σ2h(v, g)

max(g − gthresh, 0)
(14)

α(v, g) = b(p(v, g)) (15)

σ is calculated as before; the ratio of the extremum of the aver-
age first and second derivatives. The benefit of this kind of opac-
ity function is that it can distinguish between boundaries that have
overlapping ranges of values. For instance, the nested cylinders vol-
ume in Fig. 9 and the engine block volume in Fig. 10 each have one
boundary which overlaps the two other boundaries in data value,
spanning from the higher of the two material values to the back-
ground value. Selectively rendering this single boundary is impos-
sible with a value-based opacity function, but because the boundary
has a distinct curve in the plot of data value versus first derivative, it
is possible to create an opacity function which selects only the vox-
els comprising this boundary. As it did in the case of value-based
opacity functions, the technique presented here will generate two-
dimensional opacity functions which make all detected boundaries
opaque; a simple “lasso” tool could then be used to select differ-
ent regions in the two-dimensional opacity function to render one
boundary at a time. In Fig. 13 on the colorplate, the feet of the



female Visible Human CT dataset [17] are rendered with four dif-
ferent two-dimensional opacity functions. Using a modification of
an automatically generated opacity function, one rendering shows
almost exclusively the registration cord laced around the body prior
to scanning.

The lower right rendering in Fig. 13 demonstrates another ad-
vantage of two-dimensional opacity functions — the ability to ac-
curately render the surface of a material which attains a wide range
of data values, as is the case for the bone tissue in this same CT
scan. Different parts of the bone surface are more radio-opaque than
others, leading to a wide range of data values associated with bone,
which in turn causes a wide range of gradient magnitudes within the
boundary region between bone and soft tissue. Knowing the aver-
age second derivative for each location in (v, g) space, we can make
opaque only those voxels near the middle of the boundary (near the
zero-crossing in f ′′), regardless of the bone data value. As is visi-
ble in the opacity function generated with Eqn. 14, this implies that
as gradient magnitude increases, there is an upward shift in the data
values which should be made most opaque. This kind of careful
opacity assignment is not possible with a simple value-based opac-
ity function, though it is reminiscent of the two-dimensional opacity
functions described by Levoy [11]. Although space does not permit
a detailed comparison between our approach and Levoy’s, the main
difference is that (ideally) the measured first and second derivative
information serves to constrain the opacity function generation so
as to only show boundaries, while in Levoy’s method the user still
has to experiment to find the right parameter settings.

6 Conclusions and Future Work

We have shown that semi-automatic generation of opacity functions
is possible for datasets where the regions of interest are bound-
aries between materials of relatively constant data value. The his-
togram volume structure presented here captures information about
the boundaries present in the volume and facilitates a high-level
interface to opacity function creation. The user controls which por-
tions of the boundary are to be made opaque, without having to
know the data values that occur in the boundary.

Given that boundaries in the volume are always manifested by a
curve of a particular shape in the histogram volume, it makes sense
to apply computer vision object recognition techniques to the his-
togram volume. We are investigating the feasibility of using the
Hough transform to detect the curves in the histogram volume and
measure their intensity [8]. Also, it may be possible to adapt the
methods to non-scalar data, such as comes from multi-echo MRI.
Finally, as mentioned before, we are interested in performing per-
ceptual studies to validate the claim that direct volume rendering
can, unlike isosurface rendering, accurately convey surface quality
or measurement uncertainty to the viewer.
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Figure 12: Analysis of a magnetic resonance image of a portion of the brain. On the left is a scatterplot of data value and gradient
magnitude; no clear boundaries are evidenced. In the middle is an automatically generated opacity function of data value, and on
the right is the rendered image. The goal of the visualization was to find the aneurysm; it is the large round shape visible in the
lower half of the image.

Figure 13: Renderings of the feet in the female Visible Human dataset. Inset in each rendered image is the two-dimensional opacity
function used to generate it. At the upper-left is the initial automatically generated opacity function and rendering. Editing out a
small region of opacity at low data value and low gradient magnitude removed the surrounding material from the rendering (upper-
right). Careful selection in the opacity function allows imaging of the registration cord (lower-left). Finally, the bones are visualized
by selecting the right-most portion of the opacity function (lower-right).
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