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Abstract

Diffusion-weighted magnetic resonance imaging is a relatively new
modality capable of elucidating the fibrous structure of certain types
of tissue, such as the white matter within the brain. Volume render-
ing is one tool for interpreting this data, because volume rendering
permits the visualization of three-dimensional structure without a
prior segmentation process. In order to use volume rendering, how-
ever, we must develop methods for assigning opacity and color to
the data, and create a method to shade the data to improve the legi-
bility of the rendering. Previous work introduced three such meth-
ods: barycentric opacity maps, hue-balls (for color), and lit-tensors
(for shading). The current paper expands on and generalizes these
methods, describing and demonstrating further means of generat-
ing opacity, color, and shading from the tensor information. We
also propose anisotropic reaction-diffusion volume textures as an
additional tool for visualizing the structure of diffusion data. The
patterns generated by this process can be visualized on their own,
or they can be used to supplement the volume rendering strategies
described in the rest of the paper. Finally, because interpolation be-
tween data points is a fundamental issue in volume rendering, we
conclude with a discussion and evaluation of three distinct interpo-
lation methods suitable for diffusion tensor MRI data.

1 Introduction

A fundamental property of biological tissue is the ability of wa-
ter molecules to move within it by the action of Brownian motion.
Rather than being one fixed velocity, this movement, called diffu-
sion, is often anisotropic – happening faster in some directions than
others. To a good approximation, the diffusion rate’s directional
dependence can be represented with a 3× 3 real-valued symmetric
matrix. This matrix representation of the diffusion tensor can be
calculated from a sequence of diffusion-weighted MRI images.

To provide a feel for measured diffusion tensor data, a slice of a
human brain dataset is portrayed in Figure 1. Each sub-image in the
matrix of images is a gray-scale representation of the corresponding
component of the tensor matrix, with medium gray representing
zero. In the brain interior, the on-diagonal components of the tensor
matrix are positive, while the off-diagonal components can be either
positive or negative. This method of portraying the raw tensor data
is not novel, nor is it a very intuitive way to display the orientation
and shape of the diffusion tensors (in the same way that looking at
the individual components of a vector field gives a poor sense of the
field’s structure).

All 3 × 3 real-valued symmetric matrices have three real eigen-
values and three real-valued orthogonal eigenvectors [29]. The
diffusion tensor matrix enjoys the additional constraint of having
non-negative eigenvalues, implying it can be unambiguously repre-
sented as an ellipsoid. The ellipsoid’s major, medium, and minor
axes are along the tensor’s eigenvectors, with the scalings along the
axes being the eigenvalues. Such an ellipsoid is the image of the
unit sphere under the linear transform induced by the tensor’s ma-
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Figure 1: Matrix of images showing the individual tensor compo-
nents within one dataset slice.



trix representation1.
The ellipsoid provides a concise and elegant way to visualize the

tensor because it has a simple shape, and it has just as many degrees
of freedom as the diffusion tensor. As such, we will use the ellipsoid
representation for demonstration purposes in figures. Also, previ-
ous work in diffusion tensor visualization has used arrays of ellip-
soids to depict the tensor field within a two dimensional region.
Another tensor visualization method, hyperstreamlines, succeeds
in faithfully depicting the tensor along one-dimensional paths in a
volume dataset. These methods are useful because they produce a
means of visually decoding all the tensor’s degrees of freedom at
some set of locations in the field.

We believe that in this context, however, the most informative
visualizations do not necessarily come from striving to pack many
dimensions of information into one image. Rather, it may be de-
sirable to create renderings of tensor datasets by displaying only
some of the information, but everywhere within a volume. The goal
of this research is creating an understanding of the fibrous struc-
ture of white matter throughout the brain. Because the white matter
fiber tracts connect major regions of the brain, a detailed under-
standing of their structure could foster advances in neuroanatomy,
in surgical planning, and cognitive science [20, 7, 19]. Fortunately,
developments in magnetic resonance imaging have made it possi-
ble to accurately measure the water diffusion tensor within living
brain tissue [2]. The white matter fiber tracts can be distinguished
from their surroundings based on properties of the measured dif-
fusion tensor, such as its anisotropy. Visualizing the fiber tracts is
inherently a three-dimensional problem because of their curving,
intricate structure. A technique that allows us to visualize the large
scale patterns across the entire dataset is ideal.

Since this has historically been the goal of direct volume ren-
dering for scalar data, we have explored the use of direct volume
rendering for diffusion tensor visualization. To make this possible,
the various ingredients of the direct volume rendering algorithm
need to be supplied from the tensor data. The barycentric opacity
map, lit-tensor, and hue-ball techniques introduced in [17] are spe-
cific approaches to performing three tasks fundamental to volume
rendering: determining opacity, calculating shading and assigning
material color.

In the current paper, we generalize our previous techniques to
offer more choices in how to accomplish the basic tasks of volume
rendering. While barycentric opacity maps can control which types
of anisotropy appear in the final image, barycentric color maps
can add information about how anisotropy varies across structures.
Hue-balls can take the role of assigning color, but the underlying
principle of deflection can also be used to assign opacity with a de-
flection opacity map. Lit-tensors are one method of shading, but
a more simplistic method based on the gradient of opacity is also
described, as well as mixtures of the two shading approaches. For
simplicity, we have taken a ray casting approach to volume render-
ing tensor fields. After interpolating the tensor information at each
sample point along a ray cast through the volume, we apply any of
the various methods described in this paper to determinine opacity,
color, and shading. We then composite the results to determine the
pixel color.

In addition, we describe a new method for visualizing diffu-
sion tensor fields. By simulating a reaction-diffusion process be-
tween two interacting chemicals, on a domain effectively warped
by the underlying tensor data, we are able to produce a volumetric
solid texture that follows the structure of the diffusion tensor field.
The texture is composed of a large number of pseudo-ellipsoidal
“spots”, each of which reflect the magnitude and orientation of the

1This is not the only unambiguous ellipsoidal representation. One could
also represent the tensor with the unit sphere’s pre-image, or, for a tensor M
one could also use the set of points x such that xTMx = 1, as is done by
Strang [29].

eigenvectors in a local neighborhood. This texture can then be
mapped onto the surfaces generated by a diffusion tensor volume
rendering, or it can be inspected as a stand-alone visualization.

We finish with a brief discussion of an issue highly relevant to
the task of volume rendering: interpolation. With scalar data, the
matter of interpolation usually becomes a choice among the wide
variety of available reconstruction kernels– trilinear, tricubic, win-
dowed sinc, etc. In all cases it is obvious that the original sampled
data values are the quantity to be interpolated. With diffusion tensor
data, there is still the same choice of reconstruction kernel, but there
is the independent question of which tensor-related quantity should
be interpolated. One can interpolate the raw diffusion-weighted im-
ages acquired by the MRI scanner, the individual components of
the tensor matrix calculated from them, or a quantity derived from
the diffusion tensor, such as an eigenvector. We discuss and an-
alyze three distinct interpolation schemes based on these different
options.

2 Previous Work

Much previous work in tensor visualization has started by simpli-
fying the data to a scalar or vector field, to which established visu-
alization techniques can be applied. That is, the tensor is viewed
only in terms of some salient scalar or vector characteristic. For
example, tensor field lines allow one to see the patterns in the vec-
tor fields composed of the eigenvectors of a tensor matrix [12]. In
the medical community there is much interest in visualizing two-
dimensional slices of MR diffusion tensor data by colormapping the
direction of the principal eigenvector (the eigenvector associated
with the largest eigenvalue) [23, 15, 26, 8]. One tool for visualizing
general (non-symmetric) second order tensor fields [5] proceeds by
multiplying a fixed user-specified vector by the tensor field as sam-
pled on some restricted domain (such as a plane) which acts as a
probe to query specific regions of the field. Surface deformations
or other vector visualization techniques are used to visualize the
resultant vector field.

When the tensor visualization is not accomplished by showing
only some of the information at all locations, it is often done by
showing all the tensor information in a restricted subset of loca-
tions. A natural choice has been the ellipsoid representation of
the tensor [25, 28, 16, 34], though rectangular prisms (with ge-
ometry determined by the eigensystem) also work very well [39].
A recent advance along these lines was inspired by artists who
vary the characteristics of discrete brush strokes to convey infor-
mation [18]. Through a carefully designed mapping from tensor at-
tributes to brush stroke qualities, a two-dimensional MR diffusion
tensor dataset can be rendered as an image with rich information
content. Furthermore, the image can be understood at a range of
scales, showing both the overall shape of the anisotropic regions,
as well as the degree and direction of anisotropy at one particular
location.

Another method of tensor visualization by explicit representa-
tion is hyperstreamlines [10, 11]. Streamlines are advected through
a vector field of one of the eigenvectors, but instead of simply draw-
ing a line to indicate the path, a surface is formed whose cross-
section indicates the orientation of the other two eigenvectors and
their associated eigenvalues. As with the ellipsoids, this type of rep-
resentation must be unobstructed to be interpreted, so the density of
hyperstreamlines in the volume must be low in order to avoid visual
cluttering. Also, as with any scheme in which high-dimensional in-
formation is carefully packed into a single image, it can take some
time to learn how to “read” these visualizations.

One could argue that density of visual information is what limits
the number of hyperstreamlines that can go into a single visualiza-
tion, or prevents a stack of ellipsoid-based two-dimensional visual-
izations from being readily composited to form a volume rendering.



However, volume rendering is precisely what is needed for our ap-
plication. Three-dimensional rendering of tensor fields will almost
certainly require the elision of some of the tensor information; the
challenge is to choose which tensor characteristics to display and
how to do so.

3 Methods

3.1 Barycentric Mapping

In volume rendering scalar data, the domain of the transfer function
is nearly always the range of scalar data values. In volume render-
ing three-dimensional diffusion tensor data, however, it makes little
sense to use the data values as the domain of the transfer function,
since they live in a six-dimensional space: a 3 × 3 symmetric ma-
trix has six degrees of freedom. From the tensor data, we can derive
a simpler quantity living in a lower dimensional space, then spec-
ify transfer functions that map from this space to color and opacity.
Therefore, the derived quantity has to vary significantly between the
regions of interest and the regions that would only serve to obscure
or cloud a visualization.

In the context of visualizing the shape of the white matter tracts
in the human brain, such a quantity is anisotropy, since the fibers
have anisotropy distinct from the isotropic gray matter that sur-
rounds them. Assigning opacity to regions with high anisotropy
while assigning low or no opacity to isotropic regions helps visual-
ize the fiber tracts and ignore the gray matter on the exterior of the
brain.

The literature provides various metrics for anisotropy
based on the tensor matrix’s three sorted eigenvalues
λ1 ≥ λ2 ≥ λ3 [33, 37, 25]. We have chosen to use the
ones by Westin et al. due to the simple geometric motivation be-
hind them. Metrics for three different kinds of anisotropy are given:

cl =
λ1 − λ2

λ1 + λ2 + λ3
(1)

cp =
2(λ2 − λ3)

λ1 + λ2 + λ3
(2)

cs =
3λ3

λ1 + λ2 + λ3
(3)

It can be shown that all the metrics fall in the range [0, 1], and that
they sum to unity: cl + cp + cs = 1. The ellipsoids drawn next
to the anisotropy metrics indicate the shape of diffusion tensor for
which that metric will be high; it will be near zero for the other
two shapes. Where only cl is high, the tensor field is said to be lin-
early anisotropic; where only cp is high, the tensor field is planarly
anisotropic. The last metric, cs is actually for isotropy; cs = 1 only
when all the eigenvalues are equal. Therefore, a single anisotropy
metric called the “anisotropy index” is defined as:

ca = 1 − cs = cl + cp =
λ1 + λ2 − 2λ3

λ1 + λ2 + λ3
(4)

To see how the anisotropy can vary in measured data, Figure 2
shows the metrics cl, cp, and ca evaluated over the same dataset
slice seen in previous figures, with brighter areas indicating higher
anisotropy.

In light of the normalization built into cl, cp, and cs, we propose
the use of barycentric coordinates to depict the space of possible
anisotropies, as shown in Figure 3. For every point in the triangle,
there is a corresponding ellipsoid for which the anisotropy measures

(a) cl (b) cp (c) ca

Figure 2: Different anisotropy metrics on a slice.

cs = 1

cl = 1 cp = 1

cs = 0, ca = 1

cl = 0cp = 0

Figure 3: Barycentric space of anisotropies.



(cl, cp, and cs) evaluate to the point’s barycentric coordinates. In
the figure, the three ellipsoids accompanying the corners of the tri-
angle are representative of the ellipsoids that correspond to those
corners. At each vertex of the triangle, one of the anisotropy mea-
sures is one, while the two others are both zero. Along the sides of
the triangle, one of the anisotropy measures is zero, and the other
two measures sum to one.

cl cp

cs

cl cp

cs

cl cp

cs

cl cp

cs

Figure 4: Examples of barycentric opacity maps and resulting vol-
umes.

Barycentric opacity functions use this barycentric space of
anisotropy as their domain, assigning an opacity between 0.0 and
1.0 to each location inside the triangle (or to each entry in a two-
dimensional lookup table that represents the triangle). During ren-
dering, a given sample point’s opacity is found by looking up the
opacity at the location determined by the anisotropy of the diffusion
tensor at that point.

Figure 4 demonstrates some barycentric opacity maps. Each
opacity map is depicted by gray-scale representation: brighter re-
gions in the triangle correspond to higher opacity assignment. For

the purposes of this figure, the effect of the opacity map is demon-
strated by applying the map to the the tensor dataset, resulting in
a scalar volume of opacity values. This new scalar volume is vi-
sualized with a linear opacity function, and shaded according to
the gradient of opacity values. One can see that, analogous to Fig-
ure 2, appropriately chosen opacity functions allow one to see the
form of structures in the dataset that have one predominant type of
anisotropy.

Because of its expressive power, the barycentric space also
makes sense as the domain of the color function, which assigns
color to each sample point in the volume rendering according to
its anisotropy. Most importantly, different kinds of anisotropy re-
ceiving equal opacity can be disambiguated by assigning different
colors. Also, to the extent that various classes of white-matter tissue
are found to have a characteristic anisotropy throughout the volume,
they can be color-coded with an appropriate barycentric color map.
Volume renderings made with both barycentric opacity and color
maps allow an extra dimension of information about the diffusion
tensor to be represented in the volume rendering. Figure 5 shows
two examples of these.

3.2 Lit-Tensors

Streamlines used in vector visualization are sometimes hard to in-
terpret because they lack the shading cues that we are accustomed to
seeing on surfaces. However, illuminated streamlines (“lit-lines”)
have shading and highlights that give information about their direc-
tion and curvature, creating the appearance of shiny filaments [40].
In the case of diffusion tensor visualization, we have made ten-
sors opaque and colored based on their anisotropy, but we lacked a
means of shading tensors in the presence of a virtual light source.
We designed a shading technique termed lit-tensors which can in-
dicate the type and orientation of anisotropy, by following certain
constraints:

1. In regions of complete linear anisotropy, the lighting model
should be identical to that of illuminated streamlines. Com-
plete linear anisotropy means movement by diffusion is con-
strained to one dimension, so it is sensible for the light-
ing model to degenerate to one already developed for vector
fields.

2. In regions of complete planar anisotropy, the lighting model
should be the same as with traditional surface rendering.
The obvious choice for the “surface normal” for a planar
anisotropic tensor is the third eigenvector, perpendicular to
the plane formed by the span of the first two eigenvectors (as-
sociated with the largest two eigenvalues).

3. There has to be a smooth interpolation between these two
extremes. Since tensor data can exhibit a wide variety of
anisotropies, allowing small variations in anisotropy to lead
to large changes in shading will probably create a more con-
fusing image.

This can be seen as a problem of how to interpolate illumination
between different codimensions. The codimension of the diffusion
tensor’s representative ellipsoid is two in the linear anisotropy case,
and one with planar anisotropy. Previous work [1] has rigorously
developed illumination methods for general manifold dimension
and codimension, but did not cover cases part-way between differ-
ent codimensions. Unlike that work, no claim to physical accuracy
or plausibility is made for the model presented here; it is just one
simple way of satisfying the constraints above.
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Figure 5: Examples of barycentric color maps and resulting render-
ings.

3.2.1 Lit-Tensor Formulation

We take as our starting point the Blinn-Phong lighting model [4]:

I = Iambient + Idiffuse + Ispecular

= kaAλOλ + Iλ(kdOλL · N + ks(H · N)n) (5)

ka, kd, and ks control the contributions of ambient, diffuse, and
specular reflection to the final image. Following Foley et al. [13],
we add the subscript λ to those variables which vary according to
color. For example, there are separate values Ir, Ig, Ib, for the red,
green, and blue components of the directional light source. The am-
bient light color is Aλ. Instead of representing the intrinsic object
color with different ka and kd for red, green, and blue, we use Oλ

for object color and keep ka and kd as separate controls. In our
case, the intrinsic object color is determined by any of the methods
described in this paper (barycentric maps, hue-balls, or reaction-
diffusion textures). L is the vector pointing towards the directional
light source, V points towards the eye, and N is the surface normal.
Note that instead of using (V · R)n for the specular component,
where R is the reflection of L across N, we are using the “half-
way” vector H in (H ·N)n. H is the normalized average of L and
V, and n is the shininess exponent.

Because a streamline is one-dimensional, at any given point
along it there is an infinite set of normals, all perpendicular to the
tangent direction T, radiating outwards in a circle. If naively us-
ing Equation 5 to illuminate a streamline, one must find the normal
which is in the plane spanned by L and T to evaluate L · N. Sim-
ilarly, another specific normal must be found to evaluate H · N.
The insight which makes lit-lines simple is that one does not need
to actually find a specific normal in order to evaluate a dot product
with it. With the Pythagorean theorem, the dot product with N can
be expressed in terms of the tangent T:

U · N =
√

1 − (U · T)2 (6)

where U is either L or H, for the diffuse and specular terms, re-
spectively.

The relevant property of Equation 6 is that the lighting calcula-
tion depends on a tangent vector T that gives the object’s direction,
instead of its surface normal N. The direction and orientation of a
diffusion tensor is determined by not one, but two vectors: the first
and second eigenvectors2. Both of these could be interpreted as tan-
gents, but their relative importance is determined by the magnitudes
of the corresponding eigenvalues. To control the relative impor-
tance of the first two eigenvectors in determining the tensor’s ori-
entation, we introduce a parameter cθ that characterizes anisotropy
type. Assuming that the eigenvalues are ordered λ1 ≥ λ2 ≥ λ3,
we define

cθ =
π

2

cp

ca
=

π(λ2 − λ3)

λ1 + λ2 − 2λ3
(7)

As anisotropy varies from completely linear (cl = 1; cp = 0) to
completely planar (cl = 0; cp = 1), cθ varies from 0 to π

2
. The

role of cθ is to control how much the second eigenvector contributes
to the lighting of the diffusion tensor. In the linear case, only the
first eigenvector determines the tensor orientation, and in the planar
case, both the first and second eigenvectors matter equally.

The expression to be used in lieu of dot products with N is:

“U · N” =
√

1 − (U · e1)2 − (U · e2 sin(cθ))2 (8)

In the case of linear anisotropy, sin(cθ) = sin(0) = 0, so the
contribution from e2 vanishes, and the expression reduces to the

2Because the eigenvectors always form an orthogonal basis, and because
we are adopting two-sided lighting, the third eigenvector does not contribute
any additional information.



formula for lit-lines (Equation 6), with the principal eigenvector
e1 taking the role of the tangent T. This is appropriate, since in
linear anisotropy, the principal eigenvector points in the direction
of movement, as does a streamline’s tangent vector.

In planar anisotropy, sin(cθ) = sin(π
2
) = 1, and the contribu-

tions of the two dot products are equal. This means that for any
other vector W such that

(W · e1)
2 + (W · e2)

2 = (U · e1)
2 + (U · e2)

2 (9)

Equation 8 will have the same value. Therefore, in planar
anisotropy the lighting model is rotationally symmetric around e3.
Rotational symmetry in this case is actually an important feature
of the lighting model. In planar anisotropy, the diffusion tensor el-
lipsoid degenerates to a disc, and any vector in the plane spanned
by the disc is an eigenvector. Because of this numerical instability,
the calculated directions of the first and second eigenvectors will
be essentially random. The illumination should not be sensitive to
this arbitrary orientation, and should only be a function of the third
eigenvector. In fact, one can use the Pythagorean theorem to show
that if cθ = π

2
, Equation 8 gives an exact formula for U · e3. Inter-

preting both e1 and e2 as surface tangents, then the surface normal
N is aligned along e3. Therefore the model contains standard sur-
face shading as a special case.

Figure 6: Sequence of volumes of differing anisotropy, rendered
with lit-tensors. Anisotropy varies gradually between the nine vol-
umes, going in scanline order.

To demonstrate lit-tensors, Figure 6 shows nine different syn-
thetic diffusion tensor datasets that were direct volume rendered
with a fixed viewpoint and light. The anisotropy index ca of the
sphere is also constant in every case, but cθ is changing. The dataset
in the upper left has complete linear anisotropy in a concentric cir-
cular pattern (along lines of latitude). The dataset in the middle has
complete planar anisotropy (and hence looks just like a standard
surface rendering). The dataset in the lower left has complete linear
anisotropy along lines of longitude, going from pole to pole. The
images provide a convincing sense of surface anisotropy, which is
not a typical trait in direct volume renderings.

Figure 7: Lit-tensor model shading whole brain, with same opacity
and light direction as the first image in Figure 5.

3.2.2 Lit-Tensors mixed with Opacity Gradient Shading

The spheres shown in Figure 6 have well-behaved anisotropy in the
following sense: the changes in the orientation of anisotropy are
directly correlated to the changes in the orientation of the sphere’s
surface normal. Experience has shown that measured diffusion ten-
sor data is generally not so well-behaved, so that still images created
using lit-tensors tend to be confusing3. The underlying problem is
that lit-tensors were designed to indicate anisotropy type and di-
rection, not the shape of the structure made opaque by the opacity
function. On a complex structure with significant self occlusion, the
lack of surface shape cues can lead to a rather ambiguous, water-
color effect, as seen in Figure 7.

Our current solution to this problem is to perform a separate (and
significantly simpler) shading calculation, using standard Phong
shading with the normalized gradient of opacity serving as the sur-
face normal. This is accomplished by a two-step pre-process: the
opacity at each data point is determined, and then the gradient of
the opacity field is calculated. The normalized negative gradient of
opacity is stored at each sample point. During volume rendering,
these directions are interpolated to determine a surface normal at
every point along the ray. The interpolated surface normal is used
in the Phong shading equation. This results in an image in which
shading is entirely determined by the opacity assignment and the
shape of the opaque structures selected by it.

However, it is also possible to arbitrarily mix the results of lit-
tensor shading and opacity gradient shading, as shown in Figure 8.
Both shading calculations are performed, and then the results are
mixed on a per-voxel basis by a user-defined parameter. This sort
of mixing is quite different than varying the anisotropy type as was
done in Figure 6. Instead of one specular highlight changing shape
gradually, there are two different specular highlights which cross-
blend.

The range of possibilities illustrated by Figure 8 demonstrates an
important difference between scalar and tensor volume rendering.
In scalar volume rendering, opacity is nearly always determined
as a function of the (scalar) data value, hence the opacity gradi-
ent is always aligned with the gradient of original data value. This
means that the data value gradient can be computed only once per
dataset and used to shade the output of any opacity function. Unfor-
tunately, such a pre-process is not possible with tensor data under

3Animations that vary viewpoint location can disambiguate surface
shape while enhancing the effect of lit-tensors by showing motion of the
specular highlights.



Figure 8: Mixing between lit-tensor and opacity gradient shading,
for a synthetic sphere (left), and a portion of brain data (right). Go-
ing from top to bottom, the contribution of lit-tensors is 1.00, 0.66,
0.33, and 0.00.

barycentric opacity maps, as the domain of the opacity function is
a multi-dimensional space which varies non-linearly with the ten-
sor matrix component values. On the other hand, given the overall
computational expense of tensor volume rendering, we have found
the cost of having to compute the opacity gradient once per opacity
function to be acceptable.

3.3 Hue-balls and Deflection Mapping

3.3.1 Deflection caused by Tensors

The idea underlying hue-balls is that the mapping from tensors to
color should not first reduce the tensor to a vector, such as one of
its eigenvectors. The intent is to maximize the continuity of the
mapping across the range of possible anisotropies. Color deter-
mined by the direction of the principal eigenvector, for instance, is
discontinuous in regions of low anisotropy, and even high planar
anisotropy. Hue-balls color tensors according to their action as a
linear operator. At all locations in the tensor field, a single user-
specified input vector is multiplied by the diffusion tensor matrix to
create an output vector. The tensor is assigned color by using the
direction of the output vector as the lookup into a smoothly varying
spherical colormap. We use the term hue-ball to describe a spheri-
cal colormap used in this way. Throughout a region of high spatial
coherence in the tensor field, multiplying by the tensor will tend to
give the same result, and the assigned color will be nearly uniform.
Discerning coherent structures in the tensor field becomes a task of
visually detecting color coherence in the rendered image. A closely
analogous approach in vector visualization uses a two dimensional
hue-saturation colormap on the sphere to visualize perturbation ve-
locity in an application of direct volume rendering to computational
fluid dynamics [35].

The properties of the tensor’s matrix representation are impor-
tant for understanding how the hue-ball functions. It is useful to
consider the input vector in the basis formed by the eigenvectors.
Given a tensor matrix M with unit-length eigenvectors e1, e2, and
e3, an input vector v can be expressed as

v = (v ·e1)e1 + (v ·e2)e2 + (v ·e3)e3

= (v ·e1,v ·e2,v ·e3) (10)

Then the output vector Mv can be expressed as

Mv = M(v ·e1)e1 + M(v ·e2)e2 + M(v ·e3)e3

= λ1(v ·e1)e1 + λ2(v ·e2)e2 + λ3(v ·e3)e3

= (λ1v ·e1, λ2v ·e2, λ3v ·e3) (11)

where λi is the eigenvalue corresponding to eigenvector ei. The co-
ordinates of the output vector in the eigenvector basis are the input
vector’s coordinates, scaled by the corresponding eigenvalues. We
term the change in direction between the input and output vectors
the deflection caused by the tensor.

Equation 11 indicates that the vector is always deflected towards
the principal eigenvector, since the coordinate of the input vector in
the principal eigenvector direction will by definition grow propor-
tionally larger than the components along the other eigenvectors.
There is also a relationship between the amount of deflection and
the tensor’s anisotropy. Because the anisotropy of a tensor is in
general related to the disparity among its three eigenvalues, multi-
plying a vector by a tensor with high anisotropy will cause a greater
relative change among its coordinates, and hence a greater deflec-
tion. However, since the diffusion tensor matrix has non-negative
eigenvalues, multiplying by it cannot change the sign of any of the
vector’s coordinates. Both the input and output vectors will be in
the same octant of the eigenvector basis, so the angle between input
and output vectors cannot exceed 90 degrees.



3.3.2 Hue-ball Color Mapping

(a) Hue-ball (b) Slice mapped by hue-
ball

(c) Volume colored by hue-ball

Figure 9: Hue-ball acting on one slice of a dataset, and as used in
volume rendering.

The free parameters in the hue-ball method of assigning colors to
tensors are the color assignment on the sphere, and the input vector
to use for multiplication with the diffusion tensor matrix. For the
sake of simplicity we have used only the hue-ball mapping shown
in Figure 9(a). The sphere has a band of saturated colors around
its equator, with saturation decreasing to the top and bottom poles,
which are a medium gray. All the colors have the same “lightness”
in the HSL color space [13], since for the sake unambiguous vi-
sualization, it is less confusing if the hue-ball varies only in color,
letting the shading model control intensity4. All the hues appear
twice on the hue-ball so as to create 180 degree rotational symme-
try.

To illustrate how the hue-ball colors measured tensor data, the
same dataset slice which was shown in Figure 1 has been mapped
by the HSL hue-ball described above and is shown in Figure 9(b).
Some previous techniques for colormapping diffusion tensor data
assign color based on the direction of the principle eigenvector, and
then modulate the color by some scalar anisotropy measure, so that
isotropic regions are suppressed. Using an appropriately chosen
hue-ball mapping, with the input vector pointing to a neutral color,
this happens automatically, so no anisotropy calculation is needed.
Finally, a full volume rendering is shown with hue-ball coloring in
Figure 9(c).

4If one is seeking a truly constant luminance colormap, HSL colorspace
is too simplistic.

3.3.3 Deflection Opacity Mapping

Figure 10: Assigning opacity based on deflection, with hue-ball
coloring. Next to each image is a hue-ball image which indicates its
orientation, and the direction of the input vector. Maximum opacity
was assigned for deflection angles around six degrees and higher.

Based on the discussion in Section 3.3.1 about the relationship
between anisotropy and deflection, we have also explored assigning
opacity based on the amount of deflection. This opacity assignment
is controlled by two user parameters– the input vector to use, and
a simple (scalar) mapping from the amount of deflection to opac-
ity. Assuming the regions of interest are anisotropic, the mapping
should give no opacity if there was no deflection, and increase opac-
ity with the amount of deflection. Figure 10 shows how the direc-
tion of the input vector emphasizes different features according to
their anisotropy orientation. Because these images use the hue-ball
for coloring, their rendering did not require solving for any eigen-
systems. They represent the quality of image possible with most
numerically inexpensive methods.



3.4 Reaction-Diffusion Textures

3.4.1 Introduction

Our goal in this section is to use reaction-diffusion textures as a
means of visualizing three-dimensional diffusion tensor data. We
start by describing a simple model of reaction-diffusion texture that
works in two and three dimensions, and then discuss how to mod-
ify its calculation to make the texture reflect measured diffusion
tensor data. Then, we describe how to render the three-dimensional
textures as a stand-alone method for diffusion tensor visualization,
as well as how to integrate them into the rendering methods de-
scribed in previous sections. The use of reaction-diffusion tex-
tures for this purpose is closely related to previous work which
tuned spot noise to portray local characteristics of scalar and vector
fields [36], or which used three-dimensional line integral convolu-
tion of spot noise to perform flow visualization of volumetric vector
data [14, 27, 6]. In our case, instead of tuning noise, we are tuning
what emerges as a well-organized pattern. The pattern closely cor-
responds to a field of ellipsoids, the traditional means of diffusion
tensor visualization.

The origin of reaction-diffusion textures is a paper by Alan Tur-
ing [30] that sought to mathematically model the formation of the
immense variety of growth and pigmentation patterns found in the
animal kingdom. Turing’s paper describes a pair of non-linear
partial differential equations modeling the reactions between two
chemicals (called “morphogens”), which diffuse at different rates
and interact according to certain rules of activation and inhibition.
Reaction-diffusion became a popular method in computer graph-
ics for generating textures with the development of methods for
normalizing the density of texture on parameterized surface and
polygonal models, and for generating a rich variety of texture pat-
terns [31, 38]. Reaction-diffusion textures have been applied to a
wide variety of other contexts as well [22].

The reaction-diffusion equations Turing proposed are quite sim-
ple. The concentrations of the two morphogens are represented by
a and b, and the differential equations tell how to increment a and
b as function of their reaction and diffusion. The initial condition at
t = 0 is that a = b = 4 everywhere.

∂a

∂t
= s(k(16 − ab) + da∇2a) (12)

∂b

∂t
= s(k(ab − b − 12 + β) + db∇2b)

The scaling factor k controls the size of the reaction terms of
the equations relative to the diffusion terms, determining the size of
the emergent patterns. Larger values produce patterns that stabilize
more quickly, but have smaller characteristic size. The diffusion
rates da and db control how fast the two chemicals can spread in
the medium. The overall speed of the pattern’s emergence is con-
trolled by s: higher values make the system run faster, but values
too large can lead the system into divergent instability. The remain
ingredient is β, a pattern of uniformly distributed random values in
a small interval centered around 0. It is this pattern that pushes the
system away from the unstable equilibrium of the initial conditions,
and towards the final texture. In practice, these reaction-diffusion
systems are simulated on a regular two-dimensional discrete grid,
in which case the Laplacian ∇2 of a chemical c can be measured
with a discrete convolution mask L:

∇2c = L ∗ c =




0 1.0 0
1.0 −4.0 1.0
0 1.0 0


 ∗ c (13)

Figure 11 shows a simple two-dimensional texture that was gener-
ated using the equation above and the indicated parameter settings.

s = 1.0

k = 0.0125

da = 0.125

db = 0.03125

β ∈ [−0.1, 0.1]
# iter. = 30000

Figure 11: Amount of chemical a in solution to Equation 12 on a
100 × 100 grid with indicated parameter settings; black is about
3.0, white is about 7.5.

An important property of Equation 12 is that they are general
with respect to dimension. Specifically, they work equally well to
create a volumetric solid texture [24]. Such a texture can be cal-
culated once and then mapped onto any surface placed within the
volume. Or, in the context of volume rendering, the texture vol-
ume value can modulate the material color calculated at each sam-
ple point. The only implementation change is that the Laplacian is
now measured with a three-dimensional convolution mask, shown
in Figure 12.
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Figure 12: Three-dimensional convolution mask L for measuring
Laplacian ∇2c.

The result of running the three-dimensional reaction-diffusion
equation is shown in Figure 13. Note that none of the simulation
parameters have changed, and the resulting texture is a close three-
dimensional analog to what was seen in Figure 11 (though some of
the spots have joined together into more distended blobs).

3.4.2 Tuning the Texture with Tensor Data

Suppose we have a single chemical c in an isotropic medium with
diffusivity d (a scalar). The rate of change in c due to non-steady-
state diffusion is governed by Fick’s second law [21]:

∂c

∂t
= ∇ · (d∇c) (14)

= d∇2c



s = 1.0

k = 0.0125

da = 0.125

db = 0.03125

β ∈ [−0.1, 0.1]
# iter. = 30000

Figure 13: Amount of chemical a in solution to Equation 12 on a
100 × 100 × 100 grid with indicated parameter settings, volume
rendered with colored lights and depth cueing.

Equation 14 says that the amount of chemical c changes accord-
ing to the divergence of its concentration gradient, and the diffusiv-
ity d. Since the diffusion is isotropic, the scalar d can be brought
outside the divergence, and we get the ∇2c factor which appears in
Equation 12. In an anisotropic medium, however, d is replaced by
the diffusion tensor matrix D, which transforms how the gradient
of concentration ∇c determines flux. D is the matrix calculated
from the measured diffusion-weighted MRI images; it comprises
the diffusion tensor field we wish to visualize by volume render-
ing. Generalizing Equation 14 by replacing d with D, we derive a
convolution mask M that makes calculating the reaction-diffusion
simulation simple.

∂c

∂t
= ∇ · (D∇c)

= ∇ ·






Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz







∂c
∂x
∂c
∂y
∂c
∂z







= ∇ ·




Dxx
∂c
∂x

+ Dxy
∂c
∂y

+ Dxz
∂c
∂z

Dxy
∂c
∂x

+ Dyy
∂c
∂y

+ Dyz
∂c
∂z

Dxz
∂c
∂x

+ Dyz
∂c
∂y

+ Dzz
∂c
∂z




= Dxx
∂2c

∂x2
+ Dyy

∂2c

∂y2
+ Dzz

∂2c

∂z2
+ (15)

2Dxy
∂2c

∂x∂y
+ 2Dxz

∂2c

∂x∂z
+ 2Dyz

∂2c

∂y∂z

= M ∗ c

Equation 15 should be viewed as the linear combination of six
different derivatives of the concentration c, each of which can be
implemented with a convolution mask defined on the same 3×3×3
grid seen in Figure 12. Using a combination of first and second
central differences to evaluate the derivatives, we arrive at the mask
M shown in Figure 14. This mask is different at each location
in the field because it is built directly from the components of the
diffusion tensor matrix.

Simply substituting the position-independent L of Figure 12 in
Equation 12 with the position-dependent M shown in Figure 14
creates a reaction-diffusion texture that visualizes anisotropic diffu-
sion tensor data. Depending on the magnitudes of values in D, one
may have to adjust the s and k parameters in Equation 12 in order
to produce a simulation that converges on spots of an appropriate
size. Instead of having approximately spherical spots, the spots will
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Figure 14: Three-dimensional convolution mask M for measuring
∇ · (D∇c) to determine amount of diffusion. tr(D) is the trace of
D, Dxx + Dyy + Dzz .

be stretched into ellipsoids that reflect the diffusion tensor data in
their local neighborhood.

This simple substitution, however, is not exactly what we want.
The random-walk nature of diffusion dictates that if we drop some
ink into an anisotropic medium at a location where the diffusion
tensor matrix has eigenvalues λ1, λ2, and λ3, then the shape of
the ink spot as it grows over time will approximate an ellipsoid
whose axes are proportional to

√
λ1,

√
λ2, and

√
λ3 [21]. That

is, the ellipsoid discussed in previous sections– the image of the
unit sphere under the tensor matrix– is not the same as the ellipsoid
produced by running a diffusion simulation on an initial point of
dye in a uniformly anisotropic medium. Because of this, we must
run the reaction-diffusion simulation on a different tensor field, one
in which the diffusion tensor matrix with eigenvalues λ1, λ2, λ3 is
replaced by a matrix with eigenvalues λ2

1, λ
2
2, λ2

3 (the eigenvectors
are unchanged). This way the ellipsoids appearing in the results of
the reaction-diffusion simulation will have the correct aspect ratio.

The above discussion also holds for the simpler case of two-
dimensional diffusion tensor data. Instead of the whole convolu-
tion mask shown in Figure 14, we use its slice at z = 0. Figure 15
demonstrates how well two-dimensional reaction diffusion textures
can represent diffusion tensor data. There are two major advan-
tages to the use of reaction diffusion textures over a regular grid of
ellipses. The first advantage is that the texture spots are packed to-
gether according to their size. Unlike with the ellipse arrays, there
are no large gaps in which the tensor data is not visualized, nor do
the texture spots ever overlap. While it is certainly the case that
an algorithm could be developed for intelligently placing ellipses
on the field, the benefit of using these textures is that the pack-
ing of texture spots arises automatically from the reaction-diffusion
simulation. This benefit applies equally well to three-dimensional
reaction-diffusion textures.

The second advantage of the reaction-diffusion textures is that
the ellipses created in them are placed stochastically in a way that



(a) Ellipse Array (b) Reaction-Diffusion

Figure 15: Comparison of regular array of ellipses (a) with
anisotropic reaction-diffusion textures (b) for both a synthetic
dataset (top row) and a portion of measured diffusion tensor data
in the human brain (bottom row). Only 2 × 2 sub-matrices of the
3 × 3 diffusion tensor matrices were used to steer the textures in
column (b).

better allows the natural structure of the data to be seen. The
reaction-diffusion texture facilitates visually tracking curved, twist-
ing features more easily than on a regular grid. This issue is also
addressed by research into how to position streamlines for the most
effective flow visualization [32]. Because the ellipses are elongated,
if they are placed in a way such that they approximately line up end
to end (as happens in the circular synthetic dataset in Figure 15,
column (a)), a non-existent linear structure spanning multiple el-
lipses is perceived, which accentuates the placement scheme of the
ellipses, rather than the orientation of the underlying data.

3.4.3 Visualizing the Reaction-Diffusion Texture

Visualizing a three-dimensional texture generated from diffusion
tensor data would be most useful if we had a way of removing the
texture spots that occur in isotropic regions so that they do not ob-
scure our view of the more interesting features. Fortunately, re-
moving isotropic spots is a relatively easy operation to perform.
Because of the uniform boundary and brightness of all the texture
spots, it is trivial to choose a threshold for making the texture into
a binary image in which all the spots are separated from each other.
Next, we perform connected component analysis, defining adja-
cency by face neighbors. Since the spots are generally convex and
thicker than a single voxel, each spot is correctly detected as one
connected component. Then, we can determine the average value
of a barycentric opacity map inside each spot, since we have defined
the texture pattern as overlaying the tensor data. Finally, spots with
average opacity below 0.5 are removed from the texture.

Figure 16 shows a small texture volume before and after seg-
menting out the isotropic spots, as well as structures that were se-
lected by the barycentric opacity map. Renderings of segmented
textures are useful visualizations in their own right, since as a

(a) Unsegmented Texture (b) Segmented Texture

(c) Underlying Surface

Figure 16: Sample reaction-diffusion for three-dimensional tensor
data. The texture is shown before (a) and after (b) segmenting. (c)
shows a rendering using the same barycentric opacity map which
was used for spot segmentation. The image in (b) shows both the
structures of (c) and the structures’ anisotropy orientation.

whole, they can show the shape of the anisotropic structures in a
flexible way, while the individual spots in the structure represent
the local properties of the diffusion tensor field.

Figure 17(a) shows a segmented texture for half of the brain
dataset shown in previous figures, and Figure 17(b) shows the (un-
segmented) texture applied to a volume rendering of the tensor data.
For this volume rendering, applying the texture was a simple mat-
ter of modulating the calculated material color at each point by the
corresponding value in the texture volume; a more sophisticated
technique like bump-mapping is not as straight-forward to accom-
plish. The benefit of texture-mapping the reaction-diffusion pattern
onto the surface is that now the direction of anisotropy is indicated
on what would be an otherwise isotropic surface.

4 Diffusion Tensor Interpolation

One important decision to make when rendering and manipulating
datasets is the method of interpolation. In scalar volume rendering,
the usual technique is to resample data values by trilinear interpo-
lation, and then map them through the transfer function. One could
also resample vectors by interpolating the vector data component-
wise. It is less clear, however, how best to interpolate diffusion ten-
sor data for direct volume rendering. This is because sometimes,
as in the case of barycentric maps or lit-tensors, the underlying ten-
sor matrix is not required for rendering, only some quantity derived
from its eigensystem. In these cases, it would seem best to interpo-
late pre-computed eigenvalues or eigenvectors.

Other approaches are possible. It is extremely convenient and
simple to interpolate the 3×3 diffusion tensor matrices component-
wise; this is useful for cases where the eigensystem is not required
(as with hue-balls and deflection opacity maps). On the other hand,



(a) Segmented Texture

(b) Texture mapped onto to surface rendering

Figure 17: Texture-mapping with reaction-diffusion texture.

it is worth noting that the tensor matrix itself is not actually mea-
sured directly by the MRI machine– it is computed from a set of
measured “diffusion-weighted” images. Since we are accustomed
to interpolating measured scalar CT or MRI data as part of volume
rendering it, one could argue that interpolating the raw diffusion-
weighted images is the most defensible choice – previous work has
followed this path [7]. We believe the issue of tensor interpolation
deserves more research, and we present our initial investigation into
three different schemes for tensor interpolation.

Working at the lowest level of representation in the tensor data,
we can interpolate the measured diffusion-weighted images which
come off the MRI machine; we call this approach channel interpo-
lation. Our tensor data was derived from a seven measured images
(“channels”), notated Ai, i = 0 . . . 6. Each channel corresponds to
a pair of gradient encoding directions used during the scan acquisi-
tion. In channel interpolation, values from these seven images are
stored at each sample point in the volume. These values are interpo-
lated to produce image values at intermediate points in the volume,
from which the diffusion tensor is calculated [3]. First, knowing the
direction-independent diffusion weighting b (about 900 sec/mm2)
we calculate a set of log image values Ii, i = 1 . . . 6:

Ii =
ln(Ai) − ln(A0)

b
(16)

From these, the diffusion tensor D is calculated:

Dxx = −I1 − I2 + I3 + I4 − I5 − I6 (17)

Dxy = −I5 + I6

Dxz = −I1 + I2

Dyy = +I1 + I2 − I3 − I4 − I5 − I6

Dyz = −I3 + I4

Dzz = −I1 − I2 − I3 − I4 + I5 + I6

While this approach to interpolation has the benefit of working
with the original measured data, there is considerable computa-
tional expense associated with evaluating the natural logs in the
calculation of Ii. Avoiding this expense is achieved with matrix
interpolation, wherein the tensor matrix D is calculated once per
sample point, and then interpolated component-wise to produce a
tensor at intermediate locations. Were the components of the ten-
sor matrix simply linear combinations of the measured channels,
then matrix interpolation would be equivalent to channel interpo-
lation. However, they are different because of the non-linearities
introduced by Equation 16.

As mentioned above, it is also conceivable that rather than in-
terpolate channels or matrices, we interpolate the necessary infor-
mation derived from them, such as eigenvalues or eigenvectors, a
process we term eigensystem interpolation. In our work, this has
immediate relevance for the barycentric map methods of assigning
color and shading, and the lit-tensor shading model. This style of
interpolation has the tremendous benefit of doing all the eigensys-
tem calculations once as a pre-process, and storing the results at
each dataset point.

Despite its obvious benefits, there is a subtle issue of correspon-
dence, which complicates eigensystem interpolation. Given a set of
three eigenvectors at one sample point x1, and another three eigen-
vectors at a second sample point x2, we do not immediately know
the correspondence between the two sets of eigenvectors. However,
it is necessary to define some correspondence between the eigen-
systems at the two sample points in order to perform eigenvector
interpolation. Knowing the continuous tensor field from which the
discrete dataset is sampled, we could possibly learn the “correct”
correspondence. As the tensor field is sampled continuously on a
path between x1 and x2, we could determine if (for example) the
principal eigenvector at x1 smoothly becomes the principal eigen-
vector at x2 . An analogous correspondence problem complicates



eigenvalue interpolation. Efficiently determining the “correct” cor-
respondence from the measured data, and characterizing those situ-
ations where the “correct” correspondence may be undefined (such
as passing through a region of total or nearly total isotropy), is a
topic of our current research.

We have evaluated one specific form of eigensystem interpola-
tion that makes an assumption about the sampling density of the
data. In eigenvalue interpolation, we interpolate eigenvalues based
on the correspondence induced by sorting. Thus, the largest eigen-
values at two sample points are assumed to correspond, and are in-
terpolated with standard scalar interpolation; likewise for the mid-
dle and smallest eigenvalues5. Because we learn the association
between eigenvalues and eigenvectors as part of the eigensystem
calculation, we note that the correspondence induced by eigen-
value sorting also determines a correspondence between eigenvec-
tors (useful for lit-tensors), although such a correspondence could
also be determined by a more complicated analysis of similarities
in eigenvector orientation.

The “correct” eigenvalue correspondence is undefined if we
know a priori there is a point (called a critical point [9]) be-
tween the two samples where two eigenvalues are equal (one of the
anisotropy measures cl or cp are zero). This means the magnitudes
of two eigenvalues crossed paths and changed sorting order. The
eigenvectors associated with the (double) eigenvalue are also not
uniquely defined at critical points. Fortunately, none of the methods
presented in this paper crucially depend on non-unique eigenvec-
tors or eigenvalues. For instance, the lit-tensor shading model (Sec-
tion 3.2.1) becomes insensitive to eigenvector direction precisely
when the direction is ill-defined, and the barycentric anisotropy co-
ordinates vary continuously across critical points in continuous ten-
sor data.

Thus, the sampling density assumption made in eigenvalue inter-
polation is that any important feature located near the critical point
is also represented by neighboring sample points. More generally,
the anisotropy properties that identify a feature need to be present at
nearby sample points, instead of falling between them. We justify
this assumption by noting that the features we are interested in vi-
sualizating tend to have characteristic size larger than the sampling
grid resolution of the tensor data.

4.1 Evaluation

Figure 18: Interpolation path between cingulum bundle and corpus
callosum. Anisotropy at 100 points along this path was evaluated
using the three different interpolation methods.

One way to appreciate the difference between the three different
interpolation methods described is to use them to interpolate along

5This explanation implies the use of an interpolation kernel that overlaps
only two samples at a time. Using a larger kernel would require determining
the simultaneous correspondence over a larger set of eigensystems.
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Figure 19: Interpolated paths between the cingulum bundle and the
corpus callosum, as measured in barycentric anisotropy space.

a path between two features of interest, and watch how a quantity
derived from the tensor varies along the path. Because of the im-
portance of barycentric anisotropy in our methods, we have plotted
the variation in anisotropy along a path. The path we chose runs
from the cingulum bundle down to the corpus callosum, as shown
in Fig 18. The first point is in the cingulum bundle, an anatomic
structure with linear anisotropy along the y-axis. The second point
lies just seven voxels away in the corpus callosum, an anatomic
structure with linear anisotropy along the x-axis. Between these two
points is a region of low linear anisotropy, and somewhat higher pla-
nar anisotropy. The paths in barycentric anisotropy space shown in
Figure 19 were traced by interpolating 100 uniformly spaced points
in the tensor field on the line between the two points. Note that the
channel and matrix interpolants follow very similar curved paths,
while eigenvalue interpolation follows a straighter, simpler path.
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Figure 20: Interpolation between two non-neighboring voxels.

Figure 20 demonstrates the consequences of violating the sam-
pling density assumption of eigenvalue interpolation. It shows the
paths in barycentric anisotropy space for interpolating directly be-
tween the two endpoints in Figure 18, without sampling any data
in the intervening field. While there is linear anisotropy at both
endpoints, the direction of the principal eigenvector varies by 90
degrees, passing through a region in the dataset where cl is near
zero, so the eigenvalue correspondence induced by sorting is incor-
rect. The paths for channel and matrix interpolation methods do
correctly veer towards low cl anisotropy (albeit at a higher value of
cp), while the path for eigenvalue interpolation stays strictly within
the space of high linear anisotropy.

From this evaluation, we conclude that channel and matrix inter-
polation tend to track each other closely, and that eigenvalue inter-



polation can work well as long as there is sufficient sampling den-
sity. Thus, we plan to incorporate better handling of eigenvalue in-
terpolation in future versions of our rendering system. However, for
the purposes of experimenting with the different rendering strate-
gies presented here, some of which require the underlying tensor
matrix, we have found it simplest (though by no means fastest) to
perform matrix interpolation. All the volume rendered figures in
this paper were created this way, with any necessary eigensystem
calculation being done after interpolation.
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