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Summary. Second-order tensors may be described in terms of shape and orienta-
tion. Shape is quantified by tensor invariants, which are fixed with respect to coor-
dinate system changes. This chapter describes an anatomically-motivated method of
detecting edges in diffusion tensor fields based on the gradients of invariants. Three
particular invariants (the mean, variance, and skewness of the tensor eigenvalues)
are described in two ways: first, as the geometric parameters of an intuitive graphical
device for representing tensor shape (the eigenvalue wheel), and second, in terms
of their physical and anatomical significance in diffusion tensor MRI. Tensor-valued
gradients of these invariants lead to an orthonormal basis for describing changes in
tensor shape. The spatial gradient of the diffusion tensor field may be projected onto
this basis, producing three different measures of edge strength, selective for different
kinds of anatomical boundaries. The gradient measures are grounded in standard
tensor analysis, and are demonstrated on synthetic data.

12.1 Background and Notation

As described in Chap. 5 by Alexander, fields of water diffusion tensors may
be measured in vivo with magnetic resonance imaging (MRI), providing a
valuable tool for assessing the organization of tissue microstructure. A dif-
fusion tensor D is numerically estimated by its matrix representation in the
orthonormal laboratory frame L = {b1,b2,b3} associated with the MRI scan-
ner [1]:

[D]L =

⎡

⎣

⎡⎡
D11 D12 D13

D12 D22 D23

D13 D23 D33

⎤

⎦

⎤⎤

.

Unit-length eigenvectors ei can be found to form an orthonormal principal
frame E = {e1, e2, e3}, in which the matrix representation of D has the eigen-
values λi along the diagonal:

[D]E =

⎡

⎣

⎡
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦

⎤

⇒ [D]L = R

⎡

⎣

⎡
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦

⎤

Rt .
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Column i of rotation matrix R is unit-length eigenvector representation [ei]L.
Diagonalizing a matrix representation of D into eigenvalues and eigenvec-
tors separates the tensor into shape and orientation information, respectively.
Herein, tensor ‘shape’ refers to the unordered set of three eigenvalues.

12.2 From Principal Invariants to Eigenvalues

The eigenvalues of a symmetric tensor D are computed by solving its cubic
characteristic polynomial:

det(λI − D) = 0

The determinant of λI − D may be computed in the laboratory frame:

det(λI − [D]L) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λ − D11 −D12 −D13

−D12 λ − D22 −D23

−D13 −D23 λ − D33

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= λ3 − J1JJ λ2 + J2JJ λ − J3JJ ;

J1JJ = D11 + D22 + D33

J2JJ = D11D22 + D11D33 + D22D33 − D2
12 − D2

13 − D2
23

J3JJ = 2D12D13D23 + D11D22D33 − D2
13D22 − D11D2

23 − D2
12D33

(12.1)

On the other hand, evaluating det(λI − D) in the principal frame E gives:

J1JJ = λ1 + λ2 + λ3 ; J2JJ = λ1λ2 + λ1λ3 + λ2λ3 ; J3JJ = λ1λ2λ3 (12.2)

J1JJ , J2JJ , J3JJ are the principal invariants [2], with coordinate free expression:

J1JJ = tr(D) ; J2JJ =
tr(D)2 − tr(D2)

2
; J3JJ = det(D) (12.3)

Equation (12.1) is how the principal invariants are computed in practice, based
on the matrix components of the tensor represented in the laboratory frame.
Equation (12.2) shows how JiJJ are functions of λi alone.

Another useful invariant J4JJ is computed from the principal invariants:

J4JJ = tr(DtD) = J2
1JJ − 2J2JJ

= D2
11 + 2D2

12 + 2D2
13 + D2

22 + 2D2
23 + D2

33

= λ2
1 + λ2

2 + λ2
3

J1JJ and J4JJ both describe tensor size, either by the sum of the eigenvalues,
or their squares, respectively. Much of the DT-MRI literature has noted the
utility of the JiJJ invariants as measures of tensor shape that do not require
diagonalization [1, 3, 4]. Computing eigenvalues, however, is simply arithmetic
combination of principal invariants to create new invariants. The standard
formulas for solving cubic polynomials define [5, 6]:
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Q =
J2

1JJ − 3J2JJ

9
; R =

−9J1JJ J2JJ + 27J3JJ + 2J3
1JJ

54
; Θ =

1
3

cos−1

(
R√
Q3

)
(12.4)

With these, the three eigenvalues (themselves invariants) are:

λ1 = J1JJ /3 + 2
√

Q cos(Θ)
λ2 = J1JJ /3 + 2

√
Q cos(Θ − 2π/3)

λ3 = J1JJ /3 + 2
√

Q cos(Θ + 2π/3)
(12.5)

J1JJ /3 λ1λ2λ3

2
√√

Q

Θ

Fig. 12.1. Characteristic polynomial in gray, eigenvalues λi, and wheel parameters
J1, Q, Θ

12.3 Eigenvalue Wheel

The structure of (12.5) suggests a geometric analogy, shown in Fig. 12.1 [7].
A wheel with three equally placed spokes is centered on the real number line
at J1JJ /3. The radius of the wheel is 2

√
Q, and Θ measures the orientation.

The eigenvalues are the projection of the spoke ends onto the horizontal axis.
The wheel geometry can be expressed in terms of statistics of the unsorted
eigenvalues, starting with their central moments µ1, µ2, µ3:

µ1 = ⟨λi⟩ = J1JJ /3
µ2 = ⟨(λi − µ1)2⟩ = 2Q
µ3 = ⟨(λi − µ1)3⟩ = 2R

(12.6)

The eigenvalue mean, variance and standard deviation are µ1, µ2, and σ =√
µ2, respectively. The skewness of the eigenvalues α3 is defined as [5]1:

1 ‘Skewness’ can also refer to µ3, as in Chap. 5.
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Fig. 12.2. Visualizations of shape variations associated with changing eigenvalue
mean µ1 (wheel location), variance µ2 (wheel radius) and skewness α3 (spoke angle)

α3 =
µ3

σ3
=

R√
2Q3

=
cos(3Θ)√

2
⇒ Θ =

1
3

cos−1(
√

2 α3) (12.7)

Note that the eigenvalue statistics determine the wheel parameters. The
geometric intuition that the wheel’s location, radius, and orientation may be
varied in isolation is grounded in the statistical property that mean, variance,
and skewness are orthogonal. That is, viewing µ1, µ2, and α3 as scalar func-
tions over the space of unsorted eigenvalue triples (λ1,λ2,λ3), and letting ∇λ∇∇ J
be the gradient of scalar invariant J over (λ1,λ2,λ3), one finds:

∇λ∇∇ µ1 ·∇λ∇∇ µ2 = 0 ; ∇λ∇∇ µ1 ·∇λ∇∇ α3 = 0 ; ∇λ∇∇ µ2 ·∇λ∇∇ α3 = 0 . (12.8)

The orthogonality of µ1, µ2, α3 was described by Bahn [8] with cylindrical
coordinates for (λ1,λ2,λ3) space. Previous work in continuum mechanics de-
fined related orthogonal measures with the mean, variance, and skewness of
the logarithms of the strain tensor eigenvalues [9]. Figure 12.2 illustrates the
orthogonal invariants with eigenvalue wheels and superquadric glyphs [10].
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12.4 Anatomical Significance of Eigenvalue Statistics

The measures described in the previous sections take on physical meaning
when interpreted in the context of a particular application domain, such as
diffusion tensor imaging. The diffusion tensor eigenvalues are the apparent
diffusion coefficients (ADCs) along the eigenvectors [1]. Eigenvalue mean µ1 is
the bulk mean diffusivity [11], the average of ADC over all possible directions.
This readily distinguishes the cerebral spinal fluid (CSF) of the ventricles
(high µ1) from the white and gray matter (lower µ1). An important empirical
fact is that µ1 is essentially constant across white and gray matter [11, 12, 13].
Isolating this degree of freedom permits µ2 and α3 to better characterize the
brain tissue features that DT-MRI is uniquely capable of detecting.

The variance of the eigenvalues µ2 measures the directional dependence of
the ADC, which indicates anisotropic microstructure. As described in Chap. 5,
anisotropy is generally low in gray matter, and high in white matter, due
in part to myelinated axon sheaths [14]. Basser and Pierpaoli defined the
fractional and relative anisotropy measures with µ2 [15]:

FA =
√

3
2
∥D − µ1I∥

∥D∥ = 3
√

µ2

2J4JJ
; RA =

∥D − µ1I∥
∥µ1I∥

=
√

µ2

µ2
1

. (12.9)

The empirical constancy of µ1 in brain tissue helps compensate for the un-
fortunate property (visible in Fig. 12.2(a)) that varying µ1 separately from
µ2 and α3 effectively changes the anisotropy defined by FA or RA. This as-
sumes, however, that CSF can be masked out with µ1, which can be somewhat
challenging given the limited spatial resolution of DT-MRI.

Eigenvalue skewness α3 isolates the variation between anisotropic tensors
which are ‘planar’ (large in two axes and small in the other) versus ‘linear’
(large along one axis, small in the others). This shape variation is not mea-
sured by the usual anisotropy metrics: from (12.8) and (12.9), skewness is in
fact orthogonal to FA and RA. There are two related aspects to the anatomical
significance of eigenvalue skewness. The phenomenon of partial voluming is a
basic characteristics of discretely sampled medical images, in which the sample
value records a measurement over some spatial extent related to the spacing
between samples. Previous analysis of partial voluming in DT-MRI demon-
strated a bias towards planar anisotropy caused by measurement mixing of
adjacent regions of linear anisotropy along orthogonal orientations [16, 17].
Planar anisotropy can also arise in more complex configurations. For example,
previous work in visualizing regions of significant planar anisotropy character-
ized locations where populations of differently-oriented fibers apparently mix
at a fine scale, far below that of the image resolution [18]. A location with
this configuration is the intersection of the medial-lateral tracts of the corpus
callosum and inferior-superior tracts of the corona radiata, as confirmed by
high-angular resolution diffusion imaging in [19].



220 G. Kindlmann

12.5 Edge Detection with Invariant Gradients

One strategy for image processing on diffusion tensor data is to locally decom-
pose the space of tensor values (at each tensor sample) into shape changes and
orientation changes, enabling a more anatomically driven approach to edge
and feature detection. Measuring spatial changes in eigenvalue mean µ1 could
isolate the boundary of the cerebral spinal fluid. Rapid changes in µ2 might
indicate the transition from gray matter to white matter, as well as structural
variations within white matter. Changes in α3 might signal the partial vo-
luming between regions of orthogonally oriented white matter structures. In
all cases, disregarding changes in tensor orientation may reduce the chance of
falsely identifying structural boundaries. Implementing this strategy involves
the gradients of eigenvalue statistics. This generalizes previous work decom-
posing tensor changes into changes in the isotropic component, and changes
in anisotropy and orientation (the deviator) [20].

Some elements of tensor analysis are reviewed herein [2]. Though a diffu-
sion tensor D is often identified with its matrix components in the laboratory
frame, D is in fact an element of L(R3, R3), the set of linear transforms from
R3 to R3 (see Chap. 1 by Hagen and Garth). L(R3, R3) is a vector space [21],
so every tensor is also a vector. Though potentially confusing, recognizing
L(R3, R3) as a vector space grounds the tensor analysis below on our geomet-
ric intuition about bases, projections, and gradients from vector calculus. The
double contraction C:D = tr(CtD) endows L(R3, R3) with an inner (or dot)
product. The tensor norm is defined as ∥D∥ =

√
D:D. The tensor product of

vectors u⊗v is defined by (u⊗v)x = u(v ·x) for all vectors x. The Kronecker
delta δij is 1 if i = j and 0 otherwise. The coordinate-free spectral decompo-
sition of a symmetric tensor D into eigenvalues and unit-length eigenvectors
is:

D =
∑

iλiei ⊗ ei (12.10)

Just as invariants characterize tensor shape, gradients of invariants char-
acterize changes in tensor shape. Herein, ‘invariant gradient’ denotes differen-
tiation with respect to the tensor value (in L(R3, R3)), rather than differenti-
ation with respect to the spatial domain of the image (R3). The tensor-valued
gradient of a scalar invariant J is notated here with ∇J (rather than ∇J):

∇J : L(R3, R3) )→ L(R3, R3) ; ∇J =
∂J

∂D
; ([∇J ]L)ij =

∂J

∂Dij

By differentiating the spectral decomposition (12.10), one finds ∇λi = ei⊗ei,
and thus ∇λi :∇λj = δij . That is, {∇λ1,∇λ2,∇λ3} is an orthonormal basis
for shape change around a given tensor value. However, this basis lacks the
immediate anatomical significance associated with the eigenvalue statistics
(described in the previous section), and the gradients of sorted eigenvalues
are not defined when two or more eigenvalues are equal.

To address this, an alternative orthonormal basis for shape change is pro-
posed, based on the (tensor-valued) gradients of µ1, µ2, and α3. From the
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first-order Taylor expansion of J around D, J(D+ϵ) = J(D)+ϵ :∇J +O(ϵ2),
the gradients of the JiJJ invariants can be computed as [2]:

∇J1J (D) = I ∇J2JJ (D) = tr(D)I − D
∇J3JJ (D) = det(D)D−1 ∇J4JJ (D) = 2D (12.11)

Expressions for ∇µ1, ∇µ2, and ∇α3 may then be built up from (12.4), (12.6),
(12.7), and (12.11), using the standard rules of vector calculus. The spectral
decomposition (12.10) allows the double contraction of the gradients of in-
variants J and K to be reduced to a simple three-dimensional vector dot
product:

∇J :∇K = (
∑

i∂J/∂λi ei ⊗ ei) : (
∑

j∂K/∂λj ej ⊗ ej)
=

∑
i,j(∂J/∂λi)(∂K/∂λj)δij

=
∑

i(∂J/∂λi)(∂K/∂λi)
= ∇λ∇∇ J ·∇λ∇∇ K

Then, (12.8) establishes the mutual orthogonality of ∇µ1, ∇µ2, and ∇α3.
Where defined, the eigenvalue gradients ∇λi have constant unit magni-

tude. ∥∇̂µ1∥ = 1/3 is also constant, but the gradients of µ2 and α3 have
varying magnitude, because their ranges are bounded. ∇µ2 vanishes when all
eigenvalues are equal (µ2 at minimum), and ∇α3 vanishes when two eigen-
values are equal (α3 at extremum). Still, the space of shape changes is always
three-dimensional, so some scheme is required to ‘fix’ the {∇µ1,∇µ2,∇α3}
basis to consistently span the space of shape variation. Developing this scheme
is a focus of ongoing work. One inelegant approach is to, at each tensor sam-
ple in an image being processed, slightly perturb the tensor values if there is
equality between eigenvalues, so that ∇µ2 and ∇α3 become non-zero.

Normalized invariant gradients are then defined by:

∇̂J = ∇J/∥∇J∥ ; J = µ1, µ2,α3

12.6 Application to Diffusion Tensor Images

The tensor field is assumed to be a continuous and differentiable function D :
R3 )→ Sym3, as is ensured by the band-limited nature of MRI measurements.
The gradient of D is a third-order tensor, described by Pajevic et al. [20]:

∇D : R3 )→ Sym3
3 ; ∇D =

∂D
∂x

; ([∇D]L)ijk =
∂Dij

∂xk

The double contraction of a second-order tensor with a third-order tensor is a
first-order tensor – a vector. Double contracting invariant gradient ∇J with
field gradient ∇D creates a vector ∇J , measuring spatial changes of J in the
tensor field D. This is simply the chain rule applied to J(D(x)):

∇J∇∇ : R3 )→ R3 ; ∇J∇∇ (x) = ∇J∇∇ (D(x)) :∇D(x) ; ([∇J∇∇ (x)]L)k =
∑

i,j

∂J

∂Dij

∂Dij

∂xk
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Fig. 12.3. Synthetic tensor image for testing gradient measures. Superquadric
glyphs are shown in (a). Eigenvalue statistics are shown in grayscale in (b), (c),
and (d)

Note that |∇J | is effectively scaled by ∥∇J∥. This has implications for how
spatial changes (edges) in shape are detected. Because ∥∇λi∥ = 1, the spatial
eigenvalue gradients ∇λi will collectively indicate any and all shape changes
in a tensor field, while ∇µ2 and ∇α3 fail in this respect. For example, ∇µ2

does not detect changes in anisotropy around a field location with an isotropic
tensor. This motivated the definition of {∇̂µ1, ∇̂µ2, ∇̂α3} – an anatomically
relevant orthonormal basis for tensor shape change. With this in mind, a novel
‘equi-sensitive’ spatial gradient of invariant J is defined as:

∇̂J : R3 )→ R3 ; ∇̂J(x) = ∇̂J(D(x)) :∇D(x)

Note that ∇̂J ̸= ∇J/|∇J |. Rather, ∇̂J = ∇J/∥∇J∥, assuming ∥∇J∥ > 0.
The spatial gradients are demonstrated with a two-dimensional synthetic

dataset shown in Fig. 12.3. There are four types of materials (isotropic
low diffusivity, isotropic high diffusivity, planar anisotropic, and linear
anisotropic), with boundaries between every material pair. Eigenvalue sta-
tistics are evaluated at each tensor sample and shown in Figs. 12.3(b),
12.3(c), and 12.3(d). The gradient measurement results are shown in Fig. 12.4.
Figure 12.4(a) shows a measure of both shape and orientation gradients,
∥∇D∥ =

√∑
ijk(∂Dij/∂xk)2 [20]. However, note that Figs. 12.4(b) and 12.4(c)

indicate shape changes only, and with equal sensitivity, as intended. Finally,
Figs. 12.4(d), 12.4(e), and 12.4(f) show how the edges in the three degrees
of freedom in shape can be detected in isolation.
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(a) D (b)
√

|∇λ∇∇ 1|2+|∇λ∇∇ 2|2+|∇λ∇∇ 3|2 (c)
√

|∇∇∇µ∇∇ 1|2+|∇∇∇µ∇∇ 2|2+|∇∇∇α∇∇ 3|2

(d) |∇∇∇µ1| (e) |∇∇∇µ2| (f) |∇∇∇α3|

Fig. 12.4. Gradient magnitudes of synthetic data, shown with inverted grayscale

12.7 Discussion

This chapter describes a method for detecting changes (edges) in tensor shape
within diffusion tensor fields. A particular set of three tensor invariants (the
eigenvalue statistics µ1, µ2, α3) was leveraged for both its orthogonality and
its relevance to anatomical feature detection. Tensor analysis was used to cre-
ate a tensor-valued orthonormal basis for shape change, against which the
spatial gradient of the tensor field is measured. Various aspects of this work
require further development, most importantly the robust and efficient com-
putation of the invariant-based orthonormal basis for shape change, since this
must be calculated anew at every tensor value. Ongoing work is validating the
utility of this approach on real data, as well as assessing the impact of noise in
the MRI measurements. In the interests of space, the practical details of effi-
ciently measuring the derivatives of the tensor components (for ∇D) have not
been explored here, though continuous tensor field models from convolution
or splines (see Chap. 18) provide a natural basis for this.
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