
Interactive Volume Rendering Using Multi-Dimensional Transfer
Functions and Direct Manipulation Widgets

Joe Kniss Gordon Kindlmann Charles Hansen

Scientific Computing and Imaging Institute
School of Computing, University of Utah
jmk gk hansen @cs.utah.edu

1 Abstract
Most direct volume renderings produced today employ one-
dimensional transfer functions, which assign color and opacity to
the volume based solely on the single scalar quantity which com-
prises the dataset. Though they have not received widespread atten-
tion, multi-dimensional transfer functions are a very effective way
to extract specific material boundaries and convey subtle surface
properties. However, identifying good transfer functions is difficult
enough in one dimension, let alone two or three dimensions. This
paper demonstrates an important class of three-dimensional transfer
functions for scalar data (based on data value, gradient magnitude,
and a second directional derivative), and describes a set of direct
manipulation widgets which make specifying such transfer func-
tions intuitive and convenient. We also describe how to use modern
graphics hardware to interactively render with multi-dimensional
transfer functions. The transfer functions, widgets, and hardware
combine to form a powerful system for interactive volume explo-
ration.

CR Categories: I.3.3 [Computer Graphics]— Picture/Image Gen-
eration, Computational Geometry and Object Modeling, Methodol-
ogy and Techniques, Three-Dimensional Graphics and Realism
Keywords: volume visualization, direct volume rendering, multi-
dimensional transfer functions, direct manipulation widgets, graph-
ics hardware

2 Introduction
Direct volume rendering has proven to be an effective and flexi-
ble visualization method for three-dimensional (3D) scalar fields.
Transfer functions are fundamental to direct volume rendering be-
cause their role is essentially to make the data visible: by assigning
optical properties like color and opacity to the voxel data, the vol-
ume can be rendered with traditional computer graphics methods.
Good transfer functions reveal the important structures in the data
without obscuring them with unimportant regions. To date, transfer
functions have generally been limited to one-dimensional (1D) do-
mains, meaning that the 1D space of scalar data value has been the
only variable to which opacity and color are assigned. One aspect
of direct volume rendering which has received little attention is the
use of multi-dimensional transfer functions.
Often, there are features of interest in volume data that are dif-

ficult to extract and visualize with 1D transfer functions. Many
medical datasets created from CT or MRI scans contain a complex
combination of boundaries between multiple materials. This situ-
ation is problematic for 1D transfer functions because of the po-
tential for overlap between the data value intervals spanned by the
different boundaries. When one data value is associated with mul-

tiple boundaries, a 1D transfer function is unable to render them in
isolation. Another benefit of higher dimensional transfer functions
is their ability to portray subtle variations in properties of a single
boundary, such as its thickness.
Unfortunately, using multi-dimensional transfer functions in vol-

ume rendering is complicated. Even when the transfer function
is only 1D, finding an appropriate transfer function is generally
accomplished by trial and error. This is one of the main chal-
lenges in making direct volume rendering an effective visualization
tool. Adding dimensions to the transfer function domain only com-
pounds the problem. While this is an ongoing research area, many
of the proposed methods for transfer function generation and ma-
nipulation are not easily extended to higher dimensional transfer
functions. In addition, fast volume rendering algorithms that as-
sume the transfer function can be implemented as a linear lookup
table (LUT) can be difficult to adapt to multi-dimensional transfer
functions due to the linear interpolation imposed on such LUTs.
While this paper aims to demonstrate the importance and power

of multi-dimensional transfer functions, our main contributions
are two techniques which make volume rendering with multi-
dimensional transfer functions more efficient. To resolve the poten-
tial complexities in a user interface for multi-dimensional transfer
functions, we introduce a set of direct manipulation widgets which
make finding and experimenting with transfer functions an intuitive,
efficient, and informative process. In order to make this process
genuinely interactive, we exploit the fast rendering capabilities of
modern graphics hardware, especially 3D texture memory and pixel
texturing operations. Together, the widgets and the hardware form
the basis for new interaction modes which can guide users towards
transfer function settings appropriate for their visualization and data
exploration interests.

3 Previous Work
3.1 Transfer Functions
Even though volume rendering as a visualization tool is more than
ten years old, only recently has research focused on making the
space of transfer functions easier to explore. He et al. [8] generated
transfer functions with genetic algorithms driven either by user se-
lection of thumbnail renderings, or some objective image fitness
function. The Design Gallery [19] creates an intuitive interface to
the entire space of all possible transfer functions based on auto-
mated analysis and layout of rendered images. A more data-centric
approach is the Contour Spectrum [1], which visually summarizes
the space of isosurfaces in terms of metrics like surface area and
mean gradient magnitude, thereby guiding the choice of isovalue
for isosurfacing, and also providing information useful for trans-
fer function generation. Another recent paper [15] presents a novel
transfer function interface in which small thumbnail renderings are
arranged according to their relationship with the spaces of data val-
ues, color, and opacity.
The application of these methods is limited to the generation

of 1D transfer functions, even though 2D transfer functions were



introduced by Levoy in 1988 [18]. Levoy introduced two styles
of transfer functions, both two-dimensional, and both using gra-
dient magnitude for the second dimension. One transfer function
was intended for the display of interfaces between materials, the
other for the display of isovalue contours in more smoothly varying
data. The previous work most directly related to this paper facil-
itates the semi-automatic generation of both 1D and 2D transfer
functions [13, 26]. Using principles of computer vision edge detec-
tion, the semi-automatic method strives to isolate those portions of
the transfer function domain which most reliably correlate with the
middle of material interface boundaries.
Other scalar volume rendering research that uses multi-

dimensional transfer functions is relatively scarce. One paper dis-
cusses the use of transfer functions similar to Levoy’s as part of
visualization in the context of wavelet volume representation [24].
More recently, the VolumePro graphics board uses a 12-bit 1D
lookup table for the transfer function, but also allows opacity modu-
lation by gradient magnitude, effectively implementing a separable
2D transfer function [25]. Other work involving multi-dimensional
transfer functions uses various types of second derivatives in order
to distinguish features in the volume according to their shape and
curvature characteristics [11, 30].
Designing colormaps for displaying non-volumetric data is a

task similar to finding transfer functions. Previous work has de-
veloped strategies and guidelines for colormap creation, based on
visualization goals, types of data, perceptual considerations, and
user studies [2, 29, 32].

3.2 Direct Manipulation Widgets
Direct manipulation widgets are geometric objects rendered with a
visualization and are designed to provide the user with a 3D inter-
face [4, 10, 28, 31, 34]. For example, a frame widget can be used
to select a 2D plane within a volume. Widgets are typically ren-
dered from basic geometric primitives such as spheres, cylinders,
and cones. Widget construction is often guided by a constraint sys-
tem which binds elements of a widget to one another. Each sub-part
of a widget represents some functionality of the widget or a param-
eter to which the user has access.

3.3 Hardware Volume Rendering
Many volume rendering techniques based on graphics hardware uti-
lize texture memory to store a 3D dataset. The dataset is then sam-
pled, classified, rendered to proxy geometry, and composited. Clas-
sification typically occurs in hardware as a 1D table lookup.
2D texture-based techniques slice along the major axes of the

data and take advantage of hardware bilinear interpolation within
the slice [3]. These methods require three copies of the volume to
reside in texture memory, one per axis, and they often suffer from
artifacts caused by under-sampling along the slice axis. Trilinear in-
terpolation can be attained using 2D textures with specialized hard-
ware extensions available on some commodity graphics cards [5].
This technique allows intermediate slices along the slice axis to be
computed in hardware. These hardware extensions also permit dif-
fuse shaded volumes to be rendered at interactive frame rates.
3D texture-based techniques typically sample view-aligned

slices through the volume, leveraging hardware trilinear interpo-
lation [7]. Other proxy geometry, such as spherical shells, may be
used with 3D texture methods to eliminate artifacts caused by per-
spective projection [17]. The pixel texture OpenGL extension has
been used with 3D texture techniques to encode both data value and
a diffuse illumination parameter which allows shading and classi-
fication to occur in the same look-up [22]. Engel et al. showed
how to significantly reduce the number of slices needed to ade-
quately sample a scalar volume, while maintaining a high quality

rendering, using a mathematical technique of pre-integration and
hardware extensions such as dependent textures [6].
Another form of volume rendering graphics hardware is the

Cube-4 architecture [27] and the subsequent VolumePro PCI graph-
ics board [25]. The VolumePro graphics board implements ray cast-
ing combined with the shear warp factorization for volume render-
ing [16]. It features trilinear interpolation with supersampling, gra-
dient estimation, shaded volumes, and provides interactive frame
rates for scalar volumes with sizes up to .

4 Multi-Dimensional Transfer Functions
The role of the transfer function in volume rendering is to map
the voxel information to renderable properties of opacity and color.
Since generating a volume rendering which clearly visualizes the
features of interest is only possible with a good transfer function,
transfer function specification is a crucial task. Unfortunately, it is
difficult to accomplish. We have identified three reasons for this.
First, the transfer function has an enormous number of degrees of
freedom in which the user can get lost. Even using simple linear
ramps, every control point adds two degrees of freedom. Second,
the usual interfaces for setting transfer functions (based on moving
control points defining a set of linear ramps) are not constrained
or guided by the dataset in question.1 The lack of guidance is
what forces the user into a trial-and-error mode of interaction, in
which the transfer function domain is explored only by observing
changes in the volume rendering as a result of incremental adjust-
ments. Third, transfer functions are inherently non-spatial, in the
sense that their assignment of color and opacity does not includes
spatial position as a variable in their domain. This can be frustrating
if the user is interested in isolating one feature of the volume which
is spatially localized, but not distinguishable, in terms of data value,
from the other regions.
Multi-dimensional transfer functions are interesting because

they address the third problem, while greatly compounding the first
and second problems. Transfer functions can better discriminate
between various structures in the volume data when they have more
variables—a larger vocabulary—with which to express the differ-
ences between them. These variables are the axes of the multi-
dimensional transfer function. However, adding dimensions to the
transfer function greatly exacerbates the already troublesome prob-
lems of unbounded degrees of freedom and lack of user guidance;
these challenges are addressed in the next section. Below, we ex-
plain our choice of axes for multi-dimensional transfer functions by
describing how they enhance the ability to visualize an important
class of volume datasets: those in which the features of interest are
the boundaries between regions of homogeneous value. Of course,
other application areas and visualization goals may imply a differ-
ent set of relevant data variables for the transfer function axes.
For scalar volume datasets, the gradient is a first derivative. As

a vector, it gives the direction of fastest change [21], which moti-
vates its use as the “surface normal” in shaded volume rendering.
The gradient magnitude is another fundamental local property of
a scalar field, since it characterizes how fast values are changing.
Our belief is this: any volume rendering application (medical, in-
dustrial, meteorological, etc.) which benefits from using gradient
direction for shading can benefit from using gradient magnitude in
the transfer function. This does not assume any particular math-
ematical model of how physical quantities are measured or repre-
sented in the volume data; it assumes only that regions of change
tend to be regions of interest. Using gradient magnitude as the sec-
ond dimension in our transfer functions allows structure to be dif-
ferentiated with varying opacity or color, according to the magni-
tude of change. For example, the GE Turbine Blade is a canonical

1The Contour Spectrum is an exception in that it provides information
about scalar value and derivative to assist in setting 1D transfer functions.



volume dataset which has a simple two-material composition (air
and metal), easily rendered with an isosurface or 1D transfer func-
tion. A subtly in the dataset is how air cavities within the blade
have slightly higher values than air outside (perhaps because of to-
mography artifacts), leading to lesser edge strength for the internal
air-metal boundaries. Thus, as seen in Figure 1, this dataset benefits
from 2D transfer functions, which can selectively render the inter-
nal structures by avoiding opacity assignment at regions of high
gradient magnitude.
Our choice for the third axis of the transfer function is more di-

rectly based on principles of edge detection, and is best suited for
application areas concerned with the boundaries or interfaces be-
tween relatively homogeneous materials. Some edge detection al-
gorithms (such as Marr-Hildreth [20]) locate the middle of an edge
by detecting a zero-crossing in a second derivative measure, such
as the Laplacian. In practice, we compute a more accurate but com-
putationally expensive measure, the second directional derivative
along the gradient direction, which involves the Hessian, a matrix
of second partial derivatives. Details on these measurements can be
found in previous work on semi-automatic transfer function genera-
tion [12, 13]. The usefulness of having a second derivative measure
in the transfer function is that it enables more precise disambigua-
tion of complex boundary configurations, such as in the human
tooth CT scan, shown in Figure 2. The different material bound-
aries within the tooth overlap in data value such that the bound-
aries intersect when projected to any two of the dimensions in the
transfer function domain. Thus, 2D transfer functions are unable to
accurately and selectively render the different material boundaries
present. However, 3D transfer functions can easily accomplish this.

(a) 1D transfer function (b) 2D transfer function

Figure 1: A 1D transfer function (a) is emulated by assigning opac-
ity regardless of gradient magnitude (vertical axis in lower frame).
A 2D transfer function (b) giving opacity to only low gradient mag-
nitudes reveals internal structure.

5 Direct Manipulation Widgets
The three reasons for difficulty in transfer function specification,
which were outlined in the previous section, can be considered in
the context of a conceptual gap between the spatial and transfer
function domains. Having intuition and knowledge of both do-
mains is important for creating good transfer functions, but these
two domains have very different properties and characteristics. The
spatial domain is the familiar 3D space for the geometry and vol-
ume data being rendered, but the transfer function domain is more
abstract. Its dimensions (data value and two types of derivative)
are not spatial, and the quantity at each location (opacity and three

(a) 2D transfer function (b) 3D transfer function

Figure 2: In (a), the 2D transfer function is intended to render all
material interfaces except the enamel-background boundary at the
top of the tooth. However, by using a 3D transfer function (b),
with lower opacity for non-zero second derivatives, the previously
hidden dentin-enamel boundary is revealed.

color channels) is not scalar. Thus, a principle of the direct manip-
ulation widgets presented here is to link interaction in one domain
with feedback in another, so as to build intuition for the connec-
tion between them. Also, the conceptual gap between the domains
can be reduced by facilitating interaction in both domains simul-
taneously. We will provide a brief description of how a user might
interact with this system and then describe the individual direct ma-
nipulation widgets in detail.
In a typical session with our system, a user might begin by mov-

ing and rotating a clipping plane through the volume, to inspect
slices of data. The user can click on the clipping plane near a re-
gion of interest (for example, the boundary between two materi-
als). The resulting visual feedback in the transfer function domain
indicates the data value and derivatives at that point and its local
neighborhood. By moving the mouse around, volume query loca-
tions are constrained to the slice, and the user is able to visualize,
in the transfer function domain, how the values change around the
feature of interest. Conversely, the system can track, with a small
region of opacity in the transfer function domain, the data values at
the user-selected locations, while continually updating the volume
rendering. This visualizes, in the spatial domain, all other voxels
with similar transfer function values. If the user decides that an
important feature is captured by the current transfer function, he or
she can effectively “paint” that region into the transfer function and
continue querying and investigating the volume until all regions of
interest have been made visible.
Another possible interaction scenario begins with a pre-

determined transfer function that is likely to bring out some features
of interest. This can originate with an automated transfer function
generation tool [13], or it could be the “default” transfer function
described in Section 7. The user would then begin investigating
and exploring the dataset as described above. The widgets are used
to adapt the transfer function to emphasize regions of interest or
eliminate extraneous information.
The process outlined above for creating higher dimensional

transfer functions is made possible by the collection of direct ma-
nipulation widgets described in the remainder of this section. Em-
bedding the transfer function widget in the main rendering window
(say, below the volume rendering, as has been done for all the fig-
ures in this paper) is a simple way to make interaction in either or



User moves 
probe in 
volume

Region is
temporarily 

set around value
in transfer 
function

Changes 
are observed 
 in rendered 

volume 

Postition is 
queried, and 

values displayed 
in transfer 
function

Queried 
region can be
permanently 
set in transfer 

function 

User sets
transfer function

by hand

(a)

(b) (c)

(d)

(e)

(f)

Figure 3: Dual-Domain Interaction

both domains more convenient. More importantly, our system relies
on event-based inter-widget communication. This allows informa-
tion generated by a widget in the spatial domain to determine the
state of a widget in the transfer function domain, and vice versa.
All widgets are object oriented and derived from a master widget
class which specifies a standard set of callbacks for sending and re-
ceiving events, allowing the widgets to query and direct each other.
Also, widgets can contain embedded widgets, which send and re-
ceive events through the parent widget.

5.1 Dual-Domain Interaction
In a traditional volume rendering system, the process of setting the
transfer function involves moving the control points (in a sequence
of linear ramps defining color and opacity), and then observing the
resulting rendered image. That is, interaction in the transfer func-
tion domain is guided by careful observation of changes in the spa-
tial domain. We prefer a reversal of this process, in which the trans-
fer function is set by direct interaction in the spatial domain, with
observation of the transfer function domain. Furthermore, by al-
lowing interaction to happen in both domains simultaneously, the
conceptual gap between them is significantly lessened. We use the
term “dual-domain interaction” to describe this approach to transfer
function exploration and generation.
Figure 3 illustrates the specific steps of dual-domain interaction.

When a position inside the volume is queried by the user with the
data probe widget (Figure 3a), the values associated with that posi-
tion (data value, first and second derivative) are graphically repre-
sented in the transfer function widget (3b). Then, a small region of
high opacity (3c) is temporarily added to the transfer function at the
data value and derivatives determined by the probe location. The
user has now set a multi-dimensional transfer function simply by
positioning a data probe within the volume. The resulting render-
ing (3d) depicts (in the spatial domain) all the other locations in the
volume which share values (in the transfer function domain) with
those at the data probe tip. If the features rendered are of interest,
the user can copy the temporary transfer function to the permanent
one (3e), by, for instance, tapping the keyboard space bar with the
free hand. As features of interest are discovered, they can be added
to the transfer function quickly and easily with this type of two-
handed interaction. Alternately, the probe feedback can be used to
manually set other types of classification widgets (3f), which are
described later. The outcome of dual-domain interaction is an ef-
fective multi-dimensional transfer function built up over the course
of data exploration. The widget components which participated in
this process can be seen in Figure 4 (on colorplate), which shows
how dual-domain interaction can help volume render the CT tooth
dataset. The remainder of this section describes the individual wid-
gets and provides additional details about dual-domain interaction.

5.2 Data Probe Widget
The data probe widget is responsible for reporting its tip’s position
in volume space and its slider sub-widget’s value. Its pencil-like
shape is designed to give the user the ability to point at a feature
in the volume being rendered. The other end of the widget orients
the widget about its tip. When the volume widget’s position or
orientation is modified the data probe widget’s tip tracks its point in
volume space. The data probe widget can be seen in Figures 4 and 5
(on colorplate). A natural extension is to link the data probe widget
to a haptic device, such as the SensAble PHANTOM, which can
provide a direct 3D location and orientation [23].

5.3 Clipping Plane Widget
The clipping plane widget is a basic frame type widget. It is respon-
sible for reporting its orientation and position to the volume widget,
which handles the actual clipping when it draws the volume. In ad-
dition to clipping, the volume widget will also map a slice of the
data to the arbitrary plane defined by the clip widget, and blend it
with the volume by a constant opacity value determined by the clip
widget’s slider. It is also responsible for reporting the spatial po-
sition of a mouse click on its clipping surface. This provides an
additional means of querying positions within the volume, distinct
from the 3D data probe. The balls at the corners of the clipping
plane widget are used to modify its orientation, and the bars on the
edges are used to modify its position. The clipping plane widget
can also be seen in Figures 5 and 8 (on colorplate).

5.4 Transfer Function Widget
The main role of the transfer function widget is to present a graph-
ical representation of the transfer function domain, in which feed-
back from querying the volume (with the data probe or clipping
plane) is displayed, and in which the transfer function itself can be
set and altered. The transfer function widget is shown at the bottom
of all of our rendered figures. The backbone of the transfer func-
tion widget is a basic frame widget. Data value is represented by
position along the horizontal axis, and gradient magnitude is rep-
resented in the vertical direction. The third transfer function axis,
second derivative, is not explicitly represented in the widget, but
quantities and parameters associated with this axis are represented
and controlled by other sub-widgets. The balls at the corners of the
transfer function widget are used to resize it, as with a desktop win-
dow, and the bars on the edges are used to translate its position. The
inner plane of the frame is a polygon texture-mapped with a slice
through the 3D lookup table containing the full 3D transfer func-
tion. The user is presented with a single slice of the 3D transfer
function for a few reasons. Making a picture of the entire 3D trans-
fer function would be a visualization in itself, and its image would
visually compete with the main volume rendering. Also, since the
goal in our work has primarily been the visualization of surfaces,
the role of the second derivative axis is much simpler than the other
two, so it needs fewer control points.
The data value and derivatives at the position queried in the vol-

ume (either via the data probe or clipping plane widgets) is repre-
sented with a small ball in the transfer function widget. In addition
to the precise location queried, the eight data sample points at the
corners of the voxel containing the query location are also repre-
sented by balls in the transfer function domain, and are connected
together with edges that reflect the connectivity of the voxel cor-
ners in the spatial domain. By “re-projecting” a voxel from the
spatial domain to a simple graphical representation in the trans-
fer function domain, the user can learn how the transfer function
variables (data value and derivatives) are changing near the probe
location. The second derivative values are indicated by colormap-
ping the balls: negative, zero, and positive second derivatives are



represented by blue, white, and yellow balls, respectively. When
the projected points form an arc, with the color varying through
the colormap, the probe is at a boundary in the volume. These
can be seen in Figures 4a, 4c, 5a, and 5c (on colorplate). When
the re-projected data points are clustered together, the probe is in
a homogeneous region, as seen in Figures 4b and 5b. An explana-
tion of the inter-relationships between data values and derivatives
which underly these configurations can be found in [12, 13]. As
the user gains experience with this representation, he or she can
learn to “read” the re-projected voxel as an indicator of the volume
characteristics at the probe location.

5.5 Classification Widgets
In addition to the process of dual-domain interaction described
above, transfer functions can also be created in a more manual fash-
ion by adding one or more classification widgets to the main trans-
fer function window. The opacity and color contributions from each
classification widget sum together to form the transfer function. We
have developed two types of classification widget: triangular and
rectangular.
The triangular classification widget, shown in Figures 2, 5, and

9, is based on Levoy’s “isovalue contour surface” opacity func-
tion [18]. The widget is an inverted triangle with a base point at-
tached to the horizontal data value axis. The horizontal location of
the widget is altered by dragging the ball at the base point, and the
vertical extent is altered by dragging the bar on the top edge. As the
height is modified, the angle subtended by the sides of the triangle
is maintained, scaling the width of the top bar. The top bar can also
be translated horizontally to shear the triangle. The width of the
triangle is modified by moving a ball on the right endpoint of the
triangle’s top bar. The classification can avoid assigning opacity to
low gradient magnitudes by raising a gradient threshold bar, con-
trolled by a ball on the triangle’s right edge. The trapezoidal region
spanned by the widget (between the low gradient threshold and the
top bar) defines the data values and gradient magnitudes which re-
ceive color and opacity. Color is constant; opacity is maximal along
the center of the widget, and it linearly ramps down to zero at the
left and right edges.
The triangular classification widgets are particularly effective for

visualizing surfaces in scalar data. More general transfer functions,
for visualizing data which may not have clear boundaries, can be
created with the rectangular classification widget. This widget is
seen in Figure 1. The rectangular widget has a top bar which trans-
lates the entire widget freely in the two visible dimensions of the
transfer function domain. The balls located at the top right and
the bottom left corners resize the widget. The rectangular region
spanned by the widget defines the data values and gradient magni-
tudes which receive opacity and color. Like the triangular widget,
color is constant, but the opacity is more flexible. It can be constant,
or fall off in various ways: quadratically as an ellipsoid with axes
corresponding to the rectangle’s aspect ratio, or linearly as a ramp,
tent, or pyramid.
For both types of classification widget (triangular and rectangu-

lar), additional controls are necessary to use the third dimension
of the transfer function domain: the second derivative of the scalar
data. Because our research has focused on visualizing boundaries
between material regions, we have consistently used the second
derivative to emphasize the regions where the second derivative
magnitude is small or zero. Specifically, maximal opacity is always
given to zero second derivative, and decreases linearly towards the
second derivative extremal values. How much the opacity changes
as a function of second derivative magnitude is controlled with a
single slider, called the “boundary emphasis slider.” Because the
individual classification widgets can have various sizes and loca-
tions, it is easiest to always locate the boundary emphasis slider on
the top edge of the transfer function widget. The slider controls

the boundary emphasis for whichever classification widget is cur-
rently selected. With the slider in its left-most position, zero opacity
is given to extremal second derivatives; in the right-most position,
opacity is constant with respect to the second derivative.
While the classification widgets are usually set by hand in the

transfer function domain, based on feedback from probing and re-
projected voxels, their placement can also be somewhat automated.
This further reduces the difficulty of creating an effective higher
dimensional transfer function. The classification widget’s location
and size in the transfer function domain can be tied to the distribu-
tion of the re-projected voxels determined by the data probe loca-
tion. For instance, the rectangular classification widget can be cen-
tered at the transfer function values interpolated at the data probe’s
tip, with the size of the rectangle controlled by the data probe’s
slider. Or, the triangular classification widget can be located hori-
zontally at the data value queried by the probe, with the width and
height determined by the horizontal and vertical variance in the re-
projected voxel locations.

5.6 Shading Widget
The shading widget is a collection of spheres which can be ren-
dered in the scene to indicate and control the light direction and
color. Fixing a few lights in view space is generally effective for
renderings, therefore changing the lighting is an infrequent opera-
tion.

5.7 Color Picker Widget
The color picker is an embedded widget which is based on the hue-
lightness-saturation (HLS) color space. Interacting with this wid-
get can be thought of as manipulating a sphere with hues mapped
around the equator, gradually becoming black at the top, and white
at the bottom. To select a hue, the user moves the mouse hori-
zontally, rotating the ball around its vertical axis. Vertical mouse
motion tips the sphere toward or away from the user, shifting the
color towards white or black. Saturation and opacity are selected
independently using different mouse buttons with vertical motion.
While this color picker can be thought of as manipulating this HLS
sphere, it actually renders no geometry. Rather, it is attached to a
sub-object of another widget. The triangular and rectangular clas-
sification widgets embed the color picker in the polygonal region
which contributes opacity and color to the transfer function domain.
The shading widget embeds a color picker in each sphere that rep-
resents a light. The user specifies a color simply by clicking on
that object, then moving the mouse horizontally and vertically until
the desired hue and lightness are visible. In most cases, the desired
color can be selected with a single mouse click and gesture.

6 Hardware Considerations
While this paper is conceptually focused on the matter of setting
and applying higher dimensional transfer functions, the quality of
interaction and exploration described would not be possible without
the use of modern graphics hardware. Our implementation relies
heavily on an OpenGL extension known as pixel textures, or de-
pendent textures. This extension can be used for both classification
and shading. In this section, we describe our modifications to the
classification portion of the traditional hardware volume rendering
pipeline. We also describe a multi-pass/multi-texture method for
adding interactive shading to the pipeline.
The volume rendering pipeline utilizes separate data and shading

volumes. The data volume, or “VGH” in Figures 6 and 7, encodes
data value (“V”), gradient magnitude (“G”), and second derivative
(“H”, for Hessian) in the color components of a 3D texture, using
eight bits for each of these three quantities. The quantized normal
volume, or “QN” in Figure 6, encodes normal direction as a 16-bit



unsigned short in two eight-bit color components of a 3D texture.
The “Normal” volume in Figure 7 encodes the normal in a scaled
and biased RGB texture, one normal component per color channel.
Conceptually, both the data and shading/normal volumes are spa-
tially coincident. A slice through one volume can be represented
by the same texture coordinates in the other volume.

6.1 Pixel Texture
Pixel texture is a hardware extension which has proven useful in
computer graphics and visualization [6, 9, 22, 33]. Pixel texture
and dependent texture are names for operations which use color
fragments to generate texture coordinates, and replace those color
fragments with the corresponding entries from a texture. This op-
eration essentially amounts to an arbitrary function evaluation via
a lookup table. The number of parameters is equal to the dimen-
sion of components in the fragment which is to be modified. For
example, if we were to pixel texture an RGB fragment, each chan-
nel value would be scaled to between zero and one, and these new
values would then be used as texture coordinates into a 3D texture.
The color values for that location in the 3D texture replace the orig-
inal RGB values. Nearest neighbor or linear interpolation can be
used to generate the replacement values. The ability to scale and
interpolate color channel values is a convenient feature of the hard-
ware. It allows the number of elements along a dimension of the
pixel texture to differ from the number of bit planes in the compo-
nent that generated the texture coordinate. Without this flexibility,
the size of a 3D pixel texture would be prohibitively large.

6.2 Classification
Each voxel in our data volume contains three values. We there-
fore require a 3D pixel texture to specify color and opacity for a
sample. It would be prohibitively expensive to give each axis of
the pixel texture full eight-bit resolution, or 256 entries along each
axis. We feel that data value and gradient magnitude variation war-
rants full eight-bit resolution. Because we are primarily concerned
with the zero crossings in a second derivative, we choose to limit
the resolution of this axis. Since the second derivative is a signed
quantity, we must maintain the notion of its sign (with a scale and
bias) in order to properly interpolate this quantity. We can choose
a limited number of control points for this axis and represent them
as “sheets” in the pixel texture. Specifically, we can exert linear
control over the opacity of second derivative values with three con-
trol points: one each for negative, zero, and positive values. The
opacity on the center sheet, representing zero second derivatives,
is directly controlled by the classification widgets. The opacity on
the outer sheets, representing positive and negative second deriva-
tives, is scaled from the opacity on the central sheet according to
the boundary emphasis slider. It is important to note here that if a
global boundary emphasis is desired, i.e., applying to all classifica-
tion widgets equally, one could make this a separable portion of the
transfer function simply by modulating the output of a 2D transfer
function with the per-sample boundary emphasis value.

6.3 Shading
Shading is a fundamental component of volume rendering because
it is a natural and efficient way to express information about the
shape of structures in the volume. However, much previous work
with texture-memory based volume rendering lacks shading. We
include a description of our shading method here not because it is
especially novel, but because it dramatically increases the quality
of our renderings with a negligible increase in rendering cost.
Since there is no efficient way to interpolate normals in hardware

which avoids redundancy and truncation in the encoding, normals

Figure 6: Octane2 Volume Rendering pipeline. Updating the shade
volume (right) happens after the volume has been rotated. Once
updated, the volume would then be re-rendered.

Figure 7: GeForce3 Volume Rendering pipeline. Four-way multi-
texture is used. The textures are: VGH, VG Dependant Texture, H
Dependant texture, and the Normal texture (for shading). The cen-
tral box indicates the register combiner stage. The Blend VG&H
Color stage is not usually executed since we rarely vary color along
the second derivative axis. The Multiply VG&H Alpha stage, how-
ever, is required since we must compose our 3D transfer function
separably as a 2D 1D transfer function.

are encoded using a 16-bit quantization scheme, and we use nearest-
neighbor interpolation for the pixel texture lookup. Quantized nor-
mals are lit using a 2D pixel texture since there is essentially no dif-
ference between a 16-bit 1D nearest neighbor pixel texture and an
eight-bit per-axis 2D nearest neighbor pixel texture. The first eight
bits of the quantized normal can be encoded as the red channel and
the second eight bits are encoded as the green channel. We currently
generate the shading pixel texture on a per-view basis in software.
The performance cost of this operation is minimal. It, however,
could easily be performed in hardware as well. Each quantized
normal could be represented as a point with its corresponding nor-
mal, rendered to the frame buffer using hardware lighting, and then
copied from the frame buffer to the pixel texture. Some hardware
implementations, however, are not flexible enough to support this
operation.

6.4 Hardware Implementation
We have currently implemented a volume renderer using multi-
dimensional transfer functions on the sgi Octane 2 with the V se-
ries graphics cards, and the nVidia GeForce3 series graphics adap-
tor. The V series platform supports 3D pixel texture, albeit only
on either a glDrawPixels() or glCopyPixels() operation. Since pixel
texture does not occur directly on a per-fragment basis during ras-
terization, we must first render the slice to a buffer, then pixel tex-
ture it using a glCopyPixels() operation. Our method requires a
scratch, or auxiliary, buffer since each slice must be rendered in-
dividually and then composited. If shading is enabled, a match-



ing slice from a shading volume is rendered and modulated (mul-
tiplied) with the current slice. The slice is then copied from the
scratch buffer and blended with previously rendered slices in the
frame buffer. A key observation of this volume rendering process
is that when the transfer function is being manipulated or changed,
the view point is static, and vice versa. This means that we only
need to use the pixel texture operation on the portion of the vol-
ume which is currently changing. When the user is manipulating
the transfer function, the raw data values (VGH) are used for the
volume texture, and a pre-computed RGBA shade volume is used.
The left side of Figure 6 illustrates the rendering process. The

slices from the VGH data volume are first rendered (1) and then
pixel textured (2). The “Shade” slice is rendered and modulated
with the classified slice (3), then blended into the frame buffer (4).
When the volume is rotated, lighting must be updated (shown on
the right side of Figure 6). For interactive efficiency, we only up-
date the shade volume once a rotation has been completed. A new
quantized normal pixel texture (for shading) is generated and each
slice of the quantized normal volume is rendered orthographically
in the scratch buffer (1) and then pixel textured (2). This slice is
then copied from the scratch buffer to the corresponding slice in the
shade volume (3). The volume is then re-rendered with the updated
shade volume. Updating the shade volume in hardware requires that
the quantized normal slices are always smaller than scratch buffer’s
dimensions.
The GeForce3 series platform supports dependent texture reads

on a per-fragment basis as well as 4-way multi-texture, see Figure 7.
This means that the need for a scratch buffer is eliminated, which
significantly improves rendering performance by avoiding several
expensive copy operations. Unfortunately, this card only supports
2D dependent texture reads. This constrains the 3D transfer func-
tions to be a separable product of a 2D transfer function (in data
value and gradient magnitude) and a 1D transfer function (in second
derivative), but it also allows us to take full advantage of the eight-
bit resolution of the dependent texture along the second derivative
axis. The second derivative axis is implemented with the nVidia
register combiner extension. Shading can either be computed as
described above, or using the register combiners.

7 Discussion
Using multi-dimensional transfer functions heightens the impor-
tance of densely sampling the voxel data in rendering. With each
new axis in the transfer function, there is another dimension along
which neighboring voxels can differ. It becomes increasingly likely
that the data sample points at the corners of a voxel straddle an
important region of the transfer function (such as a region of high
opacity) instead of falling within it. Thus, in order for the bound-
aries to be rendered smoothly, the distance between view-aligned
sampling planes through the volume must be very small. Most of
the figures in this paper were generated with sampling rates of about
6 to 10 samples per voxel. At this sample rate, frame updates can
take nearly two seconds on the Octane2, and nearly a second on
the GeForce3. For this reason, we lower the sample rate during
interaction, and re-render at the higher sample rate once an action
is completed. During interaction, the volume rendered surface will
appear coarser, but the surface size and location are usually read-
ily apparent. Thus, even with lower volume sampling rates during
interaction, the rendered images are effective feedback for guiding
the user in transfer function exploration.
One benefit of using our 3D transfer functions is the ability to

use a “default” transfer function which is produced without any
user interaction. Given our interest in visualizing the boundaries
between materials, this was achieved by assigning opacity to high
gradient magnitudes and low-magnitude second derivatives, regard-
less of data value, while varying hue along the data value. This de-

fault transfer function is intended only as a starting point for further
modification with the widgets, but often it succeeds in depicting the
main structures of the volume, as seen in Figure 8 (on colorplate).
Other application areas for volume rendering may need different
variables for multi-dimensional transfer functions, with their own
properties governing the choices for default settings.
Dual-domain interaction has utility beyond setting multi-

dimensional transfer functions. Of course, it can assist in setting
1D transfer functions, as well as isovalues for isosurface visualiza-
tion. Dual-domain interaction also helps answer other questions
about the limits of direct volume rendering for displaying specific
features in the data. For example, the feedback in the transfer func-
tion domain can show the user whether a certain feature of interest
detected during spatial domain interaction is well-localized in the
transfer function domain. If re-projected voxels from different po-
sitions, in the same feature, map to widely divergent locations in
the transfer function domain, then the feature is not well-localized,
and it may be hard to create a transfer function which clearly visu-
alizes it. Similarly, if probing inside two distinct features indicates
that the re-projected voxels from both features map to the same lo-
cation in the transfer function domain, then it may be difficult to
selectively visualize one or the other feature.
A surprising variety of different structures can be extracted with

multi-dimensional transfer functions, even from standard datasets
which have been rendered countless times before. For instance,
Figure 9 shows how using the clipping plane and probing makes
it easy to detect and then visualize the surface of the the frontal
sinuses (above the eyes) in the well-known UNC Chapel Hill CT
Head dataset, using a 3D transfer function. This is a good example
of a surface that can not be visualized using isosurfacing or 1D
transfer functions.

(a) Clipping plane with probe (b) Showing frontal sinuses

Figure 9: A clipping plane cuts through the region above the eyes.
Probing in the area produces a re-projected voxel with the charac-
teristic arc shape indicating the presence of a surface (a). A simi-
larly placed triangular classification widget reveals the shape of the
sinus (b).

8 Future Work
One unavoidable drawback to using multi-dimensional transfer
functions is the increased memory consumption needed to store all
the transfer function variables at each voxel sample point. This
is required because a hardware-based approach can not compute
these quantities on the fly. Combined with the quantized normal
volume (which takes three bytes per voxel instead of two, due to
pixel field alignment restrictions), we require six bytes per voxel



to represent the dataset. This restricts the current implementation
with 104 MB of texture memory to 256 256 128 datasets. Future
work will expand the dataset size using parallel hardware rendering
methods [14].
Utilizing multi-dimensional transfer functions opens the possi-

bility of rendering multi-variate volume data, such as a fluid flow
simulation or meteorological data. One challenge here is determin-
ing which quantities are mapped to the transfer function axes, and
whether to use data values directly, or some dependent quantity,
such as a spatial derivative.
Future commodity graphics cards will provide an avenue for ex-

panded rendering features. Specifically, both the nVidia and ATI
graphics cards support a number of per-pixel operations which can
significantly enhance the computation of diffuse and specular shad-
ing (assuming a small number of light sources). These features,
however, come at the expense of redundancy and truncation in nor-
mal representation. Pixel texture shading, on the other hand, allows
arbitrarily complex lighting and non-photorealistic effects. The
trade-off between these two representations is normal interpolation.
Quantized normals do not easily interpolate; vector component nor-
mals do. Vector component normals, however, do require a normal-
ization step after component-wise interpolation if the dot product is
for accurately computing the diffuse and specular lighting compo-
nent. This normalization step is not yet supported by these cards.
Direct manipulation widgets and spatial interaction techniques

lend themselves well to immersive environments. We would like to
experiment with dual-domain interaction in a stereo, tracked, envi-
ronment. We speculate that an immersive environment could make
interacting with a 3D transfer function more natural and intuitive.
We would also like to perform usability studies on our direct ma-
nipulation widgets and dual-domain interaction technique, as well
as perceptual studies on 2D and 3D transfer functions for volume
rendering.

9 Acknowledgments
This research was funded by grants from the Department of
Energy (VIEWS 0F00584), the National Science Foundation
(ASC 8920219, MRI 9977218, ACR 9978099), and the Na-
tional Institutes of Health National Center for Research Resources
(1P41RR12553-2). The authors would like to thank sgi for their
generous Octane2 equipment loan.

References
[1] Chandrajit L. Bajaj, Valerio Pascucci, and Daniel R. Schikore. The Contour

Spectrum. In Proceedings IEEE Visualization 1997, pages 167–173, 1997.
[2] Lawrence D. Bergman, Bernice E. Rogowitz, and Lloyd A. Treinish. A Rule-

based Tool for Assisting Colormap Selection. In Proceedings Visualization 1995,
pages 118–125. IEEE, October 1995.

[3] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated Volume Rendering and
Tomographic Reconstruction Using Texture Mapping Hardware. In ACM Sym-
posium On Volume Visualization, 1994.

[4] D. Brookshire Conner, Scott S. Snibbe, Kenneth P. Herndon, Daniel C. Robbins,
Robert C. Zeleznik, and Andries van Dam. Three-Dimensional Widgets. In
Proceedings of the 1992 Symposium on Interactive 3D Graphics, pages 183–
188, 1992.

[5] C.Rezk-Salama, K.Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive Volume
Rendering on Standard PC Graphics Hardware Using Multi-Textures and Multi-
Stage Rasterization. In Siggraph/Eurographics Workshop on Graphics Hardware
2000, 2000.

[6] Klaus Engel, Martin Kraus, and Thomas Ertl. High-Quality Pre-Integrated
Volume Rendering Using Hardware-Accelerated Pixel Shading. In Sig-
graph/Eurographics Workshop on Graphics Hardware 2001, 2001.

[7] Allen Van Gelder and Kwansik Kim. Direct Volume Rendering with Shading
via Three-Dimensional Textures. In ACM Symposium On Volume Visualization,
pages 23–30, 1996.

[8] Taosong He, Lichan Hong, Arie Kaufman, and Hanspeter Pfister. Generation
of Transfer Functions with Stochastic Search Techniques. In Proceedings IEEE
Visualization 1996, pages 227–234, 1996.

[9] Wolfgang Heidrich, Rudiger Westermann, Hans-Peter Seidel, and Thomas Ertl.
Applications of Pixel Textures in Visualization and Realistic Image Synthesis. In
Proceedings of the 1999 Symposium on Interacive 3D Graphics, 1999.

[10] Kenneth P. Hernandon and Tom Meyer. 3D Widgets for Exploratory Scientific
Visualization. In Proceedings of UIST ’94 (SIGGRAPH), pages 69–70. ACM,
November 1994.

[11] Jiřı́ Hladůvka, Andreas König, and Eduard Gröller. Curvature-Based Transfer
Functions for Direct Volume Rendering. In Bianca Falcidieno, editor, Spring
Conference on Computer Graphics 2000, volume 16, pages 58–65, May 2000.

[12] Gordon Kindlmann. Semi-Automatic Generation of Transfer Functions for Di-
rect Volume Rendering. Master’s thesis, Cornell University, Ithaca, NY, January
1999.

[13] Gordon Kindlmann and JamesW. Durkin. Semi-Automatic Generation of Trans-
fer Functions for Direct Volume Rendering. In IEEE Symposium On Volume
Visualization, pages 79–86, 1998.

[14] Joe Kniss, Patrick S. McCormick, Allen McPherson, James Ahrens, Jamie
Painter, Alan Keahey, and Charles Hansen. Interactive Texture-Based Volume
Rendering for Large Data Sets. IEEE Computer Graphics and Applications,
21(4):52–61, July/August 2001.

[15] Andreas König and Eduard Gröller. Mastering Transfer Function Specification
by Using VolumePro Technology. In Tosiyasu L. Kunii, editor, Spring Confer-
ence on Computer Graphics 2001, volume 17, pages 279–286, April 2001.

[16] Philip Lacroute and Marc Levoy. Fast Volume Rendering Using a Shear-Warp
Factorization of the Viewing Transform. In ACM Computer Graphics (SIG-
GRAPH ’94 Proceedings), pages 451–458, July 1994.

[17] Eric LaMar, Bernd Hamann, and Kenneth I. Joy. Multiresolution Techniques for
Interactive Texture-Based Volume Visualization. In Proceedings Visualization
’99, pages 355–361. IEEE, October 1999.

[18] Marc Levoy. Display of Surfaces from Volume Data. IEEE Computer Graphics
& Applications, 8(5):29–37, 1988.

[19] J. Marks, B. Andalman, P.A. Beardsley, and H. Pfister et al. Design Galleries: A
General Approach to Setting Parameters for Computer Graphics and Animation.
In ACMComputer Graphics (SIGGRAPH ’97 Proceedings), pages 389–400, Au-
gust 1997.

[20] D. Marr and E. C. Hildreth. Theory of Edge Detection. Proceedings of the Royal
Society of London, B 207:187–217, 1980.

[21] Jerrold E. Marsden and Anthony J. Tromba. Vector Calculus, chapter 2.6, 4.2.
W.H. Freeman and Company, New York, 1996.

[22] Michael Meissner, Ulrich Hoffmann, and Wolfgang Strasser. Enabling Classi-
fication and Shading for 3D Texture Mapping based Volume Rendering using
OpenGL and Extensions. In IEEE Visualization 1999, pages 207–214, 1999.

[23] Timothy Miller and Robert C. Zeleznik. The Design of 3D Haptic Widgets. In
Proceedings 1999 Symposium on Interactive 3D Graphics, pages 97–102, 1999.

[24] Shigeru Muraki. Multiscale Volume Representation by a DoG Wavelet. IEEE
Trans. Visualization and Computer Graphics, 1(2):109–116, 1995.

[25] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler. The VolumePro
Real-Time Ray-Casting System . In ACM Computer Graphics (SIGGRAPH ’99
Proceedings), pages 251–260, August 1999.

[26] Hanspeter Pfister, Chandrajit Bajaj, Will Schroeder, and Gordon Kindlann. The
Transfer Function Bake-Off. In Proceedings IEEE Visualization 2000, pages
523–526, 2000.

[27] Hanspeter Pfister and Arie E. Kaufman. Cube-4 - A Scalable Architecture for
Real-Time Volume Rendering. In IEEE Symposium On Volume Visualization,
pages 47–54, 1996.

[28] James T. Purciful. Three-Dimensional Widgets for Scientific Visualization and
Animation. Master’s thesis, University of Utah, June 1997.

[29] Penny Rheingans. Task-Based Color Scale Design. In Proceedings Applied
Image and Pattern Recognition. SPIE, October 1999.

[30] Yoshinabu Sato, Carl-Fredrik Westin, and Abhir Bhalerao. Tissue Classification
Based on 3D Local Intensity Structures for Volume Rendering. IEEE Transac-
tions on Visualization and Computer Graphics, 6(2):160–179, April-June 2000.

[31] Paul S. Strauss and Rikk Carey. An Object-Oriented 3D Graphics Toolkit . In
ACM Computer Graphics (SIGGRAPH ’92 Proceedings), pages 341–349, July
1992.

[32] Colin Ware. Color Sequences for Univariate maps: Theory, Experiments, and
Principles. IEEE Computer Graphics and Applications, 8(5):41–49, September
1988.

[33] Rudiger Westermann and Thomas Ertl. Efficiently Using Graphics Hardware in
Volume Rendering Applications. In ACM Computer Graphics (SIGGRAPH ’98
Proceedings), pages 169–176, August 1998.

[34] R. C. Zeleznik, K. P. Herndon, D. C. Robbins, N. Huang, T. Meyer, N. Parker,
and J. F Hughes. An Interactive Toolkit for Constructing 3DWidgets. Computer
Graphics, 27(4):81–84, 1993.



(a) Pulp-dentin Boundary (b) Dentin Interior (c) Dentin Boundary

Figure 4: Probing and
Dual-Domain Interaction:
(a) shows probe at the
pulp-dentin boundary. No-
tice the arc formed by the
re-projected voxel in the
transfer function widget.
(b) shows the probe passing
through the dentin interior.
The boundary between
dentin and background
is shown in (c); the re-
projected voxel again forms
the arc characteristic of a
clean boundary. In (a) and
(c) dual-domain interaction
allowed “painting” localized
regions of opacity.

(a) Bone emphasized (b) Probe in Soft Tissue (c) Skin emphasized

Figure 5: Direct Manipu-
lation Widgets: bone sur-
face in (a) is visualized us-
ing a triangular classifica-
tion widget, skin is cap-
tured using the data probe
at the boundary between air
and skin, while a clipping
plane exposes a slice of the
data and the interior of the
skull. In (b), the probe is
within the soft tissue interior.
The transfer function in (c)
demonstrates the results of
dual domain interaction us-
ing the surface of the clip-
ping plane for probing.

(a) Whole volume (b) With cutting plane

Figure 8: Results of using
the “default” 3D transfer
function. The skin and sur-
rounding material are visi-
ble in (a); the cutting plane
in (b) shows that the skull
and teeth were also empha-
sized. Changing hue lin-
early with data value helps
distinguish between differ-
ent material boundaries.


