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Abstract. We introduce a framework for computing geometrical prop-
erties of white matter fibres directly from diffusion tensor fields. The key
idea is to isolate the portion of the gradient of the tensor field correspond-
ing to local variation in tensor orientation, and to project it onto a co-
ordinate frame of tensor eigenvectors. The resulting eigenframe-centered
representation makes it possible to define scalar geometrical measures
that describe the underlying white matter fibres, directly from the diffu-
sion tensor field and its gradient, without requiring prior tractography.
We define two new scalar measures of (1) fibre dispersion and (2) fibre
curving, and we demonstrate them on synthetic and in-vivo datasets. Fi-
nally, we illustrate their applicability in a group study on schizophrenia.

1 Introduction

Despite the advent of high angular resolution diffusion imaging techniques, dif-
fusion tensor (DT) data continues to be commonly acquired and utilized in a
variety of studies in neuroscience and medicine, in particular in clinical set-
tings. Empirically established connections between biological tissue properties
and diffusion tensor measures exist. Such tensor measures include e.g. fractional
anisotropy (FA), orientation etc., and have been the topic of several studies (e.g.
[1,2]). However, few methods consider the differential structure of tensor prop-
erties, as introduced in e.g. [3]. In this article we focus on tensor orientation,
and perform a differential analysis of diffusion tensor fields which leads to novel
methods for the recovery of a variety of white matter geometrical measures, or
indices. By isolating the portion of the gradient of the tensor field corresponding
to local variation in tensor orientation, and by projecting it onto a coordinate
frame of tensor eigenvectors, we achieve an eigenframe-centered representation
of local tensor field configurations. Given that the principal eigenvector generally
represents the dominant orientation of the underlying fibre population [4], this
allows us to define measures of fibre curving and fibre dispersion. The advantage
of this approach is the recovery of fibre geometry measures directly from the
tensor field, without requiring prior tractography as in e.g. [5].

As scalar measures, these indices can be used to study local fibre organisa-
tion in the context of population studies. As a proof-of-concept, we carry out a
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group study which finds certain differences in local fibre geometry between pa-
tients with schizophrenia and normal controls. Other potential applications, to
be pursued in future work, include their use in tractography (e.g. as geometrical
priors), as well as in a context of registration as geometrical landmarks.

2 Mathematical Model

2.1 Rotation Tangents: Background

Our method is based on the mathematical framework developed in [6]. Let F :
R3 !→ Sym3 be a diffusion tensor field, such that F (x) = D. Here Sym3 denotes
the set of symmetric tensors (D = D⊤) in R3⊗R3. Consider the tensor rotation
function ψ which rotates D with rotation matrix R ∈ SO3, the group of rotations
on R3:

ψ(R, D) = RDR⊤ . (1)

In [6], the rotation tangent Φi(D) associated with eigenvector ei of diffusion
tensor D is defined as the change of tensor value due to infinitesimal rotations
around ei:

Φi(D) =
∂ψ(Rei(φ), D)

∂φ

∣∣∣
φ=0

, (2)

where Rei(φ) denotes rotation by angle φ around ei. The rotation tangent Φi(D)
is a second order gradient tensor onto which the tensor field gradient can be
projected, in order to obtain three spatial gradients of orientation [6]:

∇φ̂i(x) = Φ̂i(F (x)) : ∇F (x) . (3)

Here “:” is the tensor contraction operator (analogous to the vector dot product),
Φ̂i are unit-norm rotation tangents, and ∇φ̂i are vectors that indicate in R3 the
direction in which the tensor orientation around eigenvector ei varies the fastest.
In our work, we compute tensor field gradients as described in [6], by convolving
the tensor field with partial derivative kernels of a uniform cubic B-spline.

2.2 Scalar Geometric Measures

The work presented in [7] argues for the representation of white matter fibre
geometry (and that of sets of 3D curves in general) in terms of local coordinate
frames. The idea is to capture the differential geometry of 3D curves by mea-
suring changes in the tangent vector orientation in three mutually orthogonal
directions provided by the tangent, normal and bi-normal vectors of a local coor-
dinate frame. The projection of the change of tangent vector orientation in these
three directions results in three curvature functions which characterize locally
the differential geometry of 3D curve sets.

Motivated by this approach, in this paper we consider the projection of the
three ∇φ̂i (3) into the local coordinate frame provided by the tensor eigenvectors.
One can form a total of nine such projections ∇φ̂i · ej , i, j ∈ {1, 2, 3}. We
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(a) ∇bφ2 · e1 (b) ∇bφ3 · e1 (c) ∇bφ2 · e2 (d) ∇bφ2 · e3 (e) ∇bφ3 · e2

Fig. 1. Examples of local tensor field configurations that are characterized by a par-
ticular projection of the form ∇φ̂i · ej

choose the eigenframe as a projection basis due to the biological significance
of tensor eigenvectors. It is commonly accepted that the principal eigenvector is
aligned with the underlying white matter fibre tract in voxels where the diffusion
anisotropy is strong enough (e.g. [4]). We can thus relate patterns of tensor
organisation to the geometry of white matter fibres.

Given the assumption that e1 represents the local fibre tangent direction, one
can establish correspondences between observed tensor configurations and local
fibre configurations. For example, ∇φ̂2 ·e1 and ∇φ̂3 ·e1 measure tangential change
in tensor orientation (i.e. change in the tensor field seen by an observer displacing
locally in the direction parallel to e1), which is analogous to the classical Frenet
curvature, or the tangential curvature [7], of the underlying fibre. On the other
hand, the projection of ∇φ̂2 and ∇φ̂3 in the plane spanned by e2 and e3 measures
fibre orientation changes in directions orthogonal to e1. This is analogous to the
normal and bi-normal curvatures of [7]. Finally, tensor rotations around e1,
captured by ∇φ̂1, would correspond to fibre twist.

Figure 1 illustrates a variety of local tensor configurations characterized by ori-
entation change, consisting in tensor rotation around an eigenvector ei observed
in the direction of another eigenvector ej . For each example configuration, the
projection ∇φ̂i · ej will result in a high value (the specific values for i and j are
indicated for each case).

Figure 2 illustrates these projections on a 2D synthetic diffusion tensor field
with gradients in tensor orientation. Note that the projections are dependent
on tensor shape. For instance, rotations around e1 do not result in significant
change with nearly cylindrical tensors (i.e. λ2 = λ3), hence ∇φ̂1 ·e1 gives smaller
values in the bottom left part of Fig. 2(b) as the tensors become more cylindrical.
Similarly, as the tensors approach a disk shape (i.e. λ2 = λ3), rotation around
e3 loses any effect, and ∇φ̂3 and its eigenframe projections go to zero, as can be
seen in the upper right part of Fig. 2(d).

We formalize the above observations by defining a local scalar index of fibre
curving, C, and a local scalar index of fibre dispersion, D:

Fibre curving: C(D, x) =
√(

∇φ̂2∇φ̂⊤2 + ∇φ̂3∇φ̂⊤3
)

:
(
e1e⊤

1

)
(4)

Fibre dispersion: D(D, x) =
√(

∇φ̂2∇φ̂⊤2 + ∇φ̂3∇φ̂⊤3
)

:
(
e2e⊤

2 + e3e⊤
3

)
(5)
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(a)

(b) i = 1 (c) i = 2 (d) i = 3 (e) C (f) D

Fig. 2. (a) A 2D synthetic diffusion tensor field. (b,c,d) Results of projecting ∇φ̂i onto

the local tensor eigenframe. Red: ∇φ̂i · e1. Green: ∇φ̂i · e2. Blue: ∇φ̂i · e3. (e) Curving
index. (f) Dispersion index. In (b)-(f), pixel intensity is proportional to index value.

The indices in (4) and (5) combine the rotation tangents ∇φ̂2 and ∇φ̂3 into a
single second order tensor (∇φ̂2∇φ̂⊤2 + ∇φ̂3∇φ̂⊤3 ), which is then projected onto
another second order tensor that represents the fibre tangent direction in the
case of the curving measure (4), or the plane orthogonal to that direction in the
case of (5). The use of outer products and tensor contractions sidesteps the sign
ambiguity inherent in both the eigenvectors and the rotation tangents of [6].

In this paper, we do not consider measures involving ∇φ̂1. Unlike the geometry
captured by ∇φ̂2 and ∇φ̂3, tensor rotations around e1 do not reflect a change in
the fibre tangent direction. Rather, they capture rotations of the diffusion profile
around the fibre tangent. Such rotations may be particularly sensitive to noise,
and their biological meaning is not immediately clear. We thus leave their study
for future work.

3 Experiments and Results

3.1 Synthetic Data Validation

We computed the curving (4) and dispersion (5) indices on the synthetic dataset
shown in Fig. 2(a). It is divided in three vertical regions of rotation, one for each
eigenvector. Eigenvalue mean and variance are constant throughout the field,
and mode [6] increases smoothly from top to bottom. The results are shown in
Fig. 2(e,f). As expected, the fanning tensor configurations in the central and
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(a) (b)

(c) (d)

Fig. 3. Streamline DT tractography colored by dispersion index (a,c) and curving
index (b,d). Red indicates high index values. The T2-weighted image is shown in the
background for reference. Note the consistent behaviour of the pre-computed dispersion
and curving indices with respect to the tractography results. The regions in the green
boxes are discussed further in the text. Some of the strong dispersion regions in the
internal capsule (c) are due to fibre fanning orthogonal to the image plane.

right-hand side vertical bands have a high dispersion index. The immediately
adjacent regions exhibit a high curving index, which is consistent with the un-
derlying geometry. Note that the two measures are not mutually exclusive, and
some locations can have both high dispersion and high curving indices.

3.2 In-vivo Data Validation

Diffusion-weighted images were acquired on a 3T scanner (General Electric Com-
pany, Milwaukee, WI, USA) using an echo planar imaging (EPI) sequence, with
a double echo option to reduce eddy-current related distortions. To reduce the
impact of EPI spatial distortion, an 8 Channel coil and ASSET with a SENSE-
factor of 2 were used. The acquisition consisted in 51 directions with b=900, and
8 baseline images with b=0. The scan parameters were: TR=17000 ms, TE=78
ms, FOV=24 cm, 144 × 144 encoding steps, 1.7 mm slice thickness. A total of
85 axial slices covering the whole brain were acquired.

The geometric indices were computed only in voxels where the FA value was
above 0.2, in order to avoid tensors with uncertain eigenvector directions, and
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(a) (b)

Fig. 4. Sagittal slices through a patient’s right hemisphere, with the ROIs overlaid on
an FA map. The results reported in Fig. 5(a,b) pertain to the frontal corona radiata
ROI, shown in light green in (a). Those presented in Fig. 5(c,d) pertain to a segmen-
tation of the uncinate, which combines the light and dark green ROIs in (b). Note the
ROIs are 3D volumes, only a slice through which is visible here.

CSF or grey matter voxels. Prior to computation of the geometrical indices,
tensors were normalized by dividing by tensor norm (see e.g. [6] for a definition
of tensor norm). After computation of the indices, standard streamline tractog-
raphy [8] was run to help visualize in three dimensions the behaviour of the
indices relative to well-known fibres. The resulting tracts were colored with the
pre-computed scalar indices, as shown in Fig. 3. Note how the dispersion in-
dex captures the local fanning of fibres passing through the internal capsule in
Fig. 3 (a). The fibres run parallel in the bottom part of the green box in Fig.
3(c) and the dispersion index is low. In the upper part of the box, however,
the fibres fan, which is characterized by higher index values. While assessing
visually these results, it is important to remember that fibre dispersion is a 3D
phenomenon.

Note how the curving index results in Fig. 3(b,d) are consistent with the
geometry of the recovered fibre tracts. An exception is seen in the small region
enclosed by a green box in (b), where the low index values do not appear to match
the geometry of the strongly curved fibre. It appears here that the tractography
algorithm wrongly “jumped” onto the cingulum after initially following a callosal
fibre. This example shows how our geometrical indices could potentially be used
as priors to direct tractography and remove incorrect paths.

3.3 Group Study on Schizophrenia

Diffusion MRI data from 20 normal controls (NC) and 23 schizophrenic patients
(SZ) was acquired and preprocessed as described in Section 3.2. The deep white
matter structures were segmented in regions of interest (ROI) by registering the
ICBM-DTI-81 atlas [9] with the diffusion baseline of each subject using non-
linear registration [8].

We computed the dispersion (5) and curving (4) indices in ROIs that segment
the frontal part of the corona radiata (CR), as well as the uncinate fasciculus
(UN), in both hemispheres. A slice through each ROI in one patient is illustrated
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(d) Curving, uncinate.

Fig. 5. Comparison between NC and SZ through scatter plots of mean index value for
each individual. Top row: results from the frontal part of the corona radiata. Bottom
row: results from the uncinate fasciculus. Left column: dispersion index. Right column:
curving index. Blue: NC. Red: SZ. Horizontal black lines: population mean. The error
bars indicate ± 1 standard deviation. L: left hemisphere. R: right hemisphere. The
p-values are computed with a paired-value T-test, and those that satisfy a significance
threshold of 0.05 are given in red font.

in Fig. 4. The CR is characterized by dispersion, whereas the UN is a curving
tract. We thus hypothesized that the dispersion index in the CR case and the
curving index in the UN case may reveal certain population differences. The
results are presented in Fig. 5. The difference between the NC and SZ populations
is significant in the case of the dispersion values in the frontal CR, shown in Fig.
5(a). The curving index comparison in Fig. 5(b,d) shows a trend towards the
SZ group having higher index values in the UN, and lower values in the CR.
Thus, the population differences are reflected mainly in the dispersion index in
the frontal CR. As for the curving index, it reveals an interesting left vs. right
asymmetry in the UN.

These results are preliminary, and further study is required before clinical
significance claims can be made. For instance, a better ROI definition scheme
may be required. Nevertheless, these results serve as a proof of concept and
demonstrate that geometrical indices can recover population trends.
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4 Conclusion

This paper introduced novel scalar indices of white matter dispersion and curv-
ing. Since they are computed directly from the tensor field, without requiring
prior tractography, these indices simplify the geometrical analysis of white mat-
ter and make it insensitive to possible tractography errors. Traditionally, clinical
DTI studies focus on anisotropy, but our results demonstrate that geometrical
measures may also be important. Clearly, our region-based comparison results
depend on the quality of white matter segmentation. We will address this issue
as part of future clinical comparison studies. In work not reported here, we ex-
perimented with in-vivo datasets where all tensors with anisotropy higher than a
threshold were transformed to a cylindrical shape, by assigning the same eigen-
values to all such tensors, with the idea of removing the influence of tensor shape
on the geometrical index values. The results were surprisingly similar to those
reported here, and will be discussed in future extensions of this work. Finally, we
intend to address applications in fibre tractography and DT image registration,
as well as the extension of our indices to a multi-scale framework.
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