

Symmetric Tensor Representations

$$\mathbf{D} = \begin{pmatrix} 3.08 & 1.21 & 0.77 \\ 1.21 & 3.85 & 1.98 \\ 0.77 & 1.98 & 5.06 \end{pmatrix} \qquad \mathbf{D} = \mathbf{D} \quad [Kindlmann \ 2004]$$
$$\mathbf{D} = \begin{pmatrix} -0.33 & -0.74 & 0.59 \\ -0.59 & -0\mathbf{R}^3 & -0.74 \\ -0.74 & 0.59 & 0.33 \end{pmatrix} \begin{pmatrix} 7 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} -0.33 & -0.59 & -0.74 \\ -0.74 & -\mathbf{R}^{53} & 0.59 \\ 0.59 & -0.74 & 0.33 \end{pmatrix}$$
$$\uparrow$$

Eigenvalues tell us about
Positive Definiteness

Symmetric Tensor Representations

$$\mathbf{D} = \begin{pmatrix} 2.03 & 2.52 & 0.19 \\ 2.52 & 2.22 & 2.71 \\ 0.19 & 2.71 & 4.74 \end{pmatrix} \qquad \mathbf{D} = ? \qquad \text{Topic of this talk}$$
$$\mathbf{D} = \begin{pmatrix} -0.33 & -0.74 & 0.59 \\ -0.59 & -0\mathbf{R} & -0.74 \\ -0.74 & 0.59 & 0.33 \end{pmatrix} \begin{pmatrix} 7 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -0.33 & -0.59 & -0.74 \\ -0.74 & -\mathbf{R}^{53} & 0.59 \\ 0.59 & -0.74 & 0.33 \end{pmatrix}$$
$$\uparrow \qquad \text{Tensor is indefinite}$$

Why care about indefinite tensors?

Indefinite Symmetric Tensors arise in many fields:

- Hessians
- Stress Tensors
- Rate-of-deformation Tensors
- Geometry Tensors

- Faithful and expressive visualization requires:
- Preservation of Symmetry: Glyph should have same symmetries as the tensor

 $\mathbf{D} = \mathbf{T}\mathbf{D}\mathbf{T}^{-1} \iff G(\mathbf{D}) = \mathbf{T}G(\mathbf{D})$

• Continuity:

 $\mathbf{D}_1 \approx \mathbf{D}_2 \iff \operatorname{appearance}(G(\mathbf{D}_1)) \approx \operatorname{appearance}(G(\mathbf{D}_2))$

• Disambiguity:

 $\mathbf{D}_1 \neq \mathbf{D}_2 \iff \operatorname{appearance}(G(\mathbf{D}_1)) \neq \operatorname{appearance}(G(\mathbf{D}_2))$

Principles for Tensor Glyph Design

Natural for a wide range of applications:

Invariance under scaling:

$$G(\mathbf{D}) = s(\|\mathbf{D}\|) B\left(\frac{\mathbf{D}}{\|\mathbf{D}\|}\right)$$

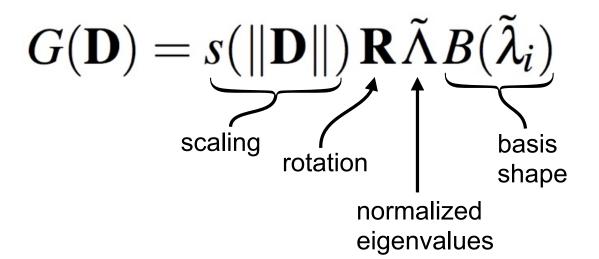
Invariance under projection to eigenplanes:

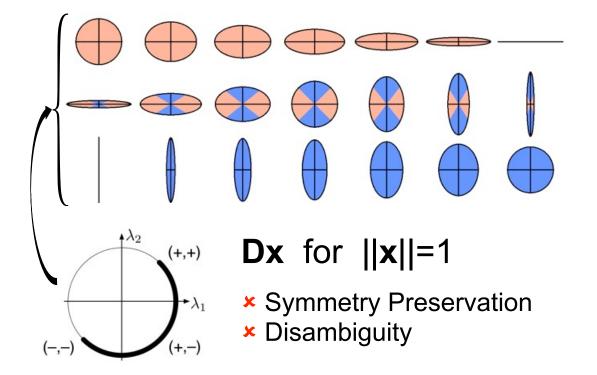
$$G(\mathbf{P}\mathbf{D}\mathbf{P}^{\mathrm{T}}) = \mathbf{P}\,G(\mathbf{D})$$

We color each point **x** on the glyph by

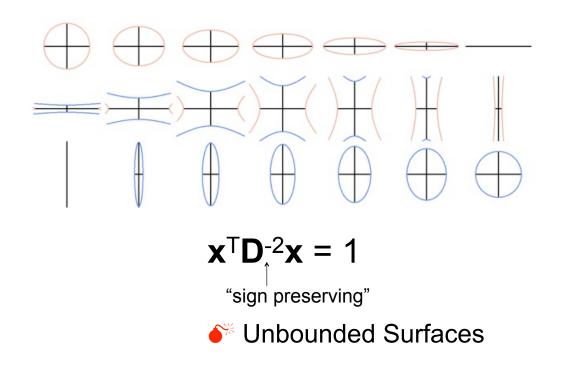
Satisfies

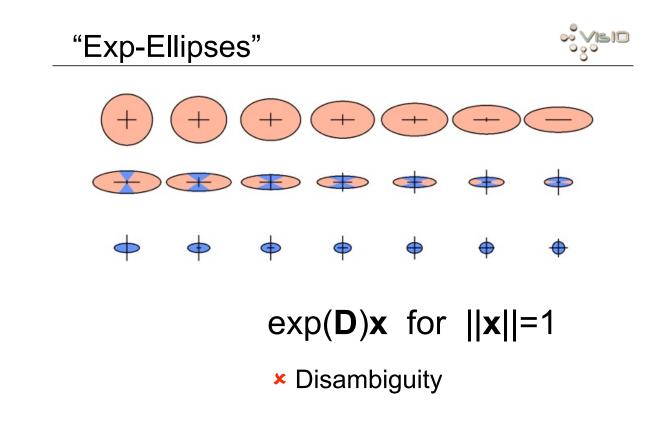
- Preservation of Symmetry
- ✓ Continuity
- ✓ Disambiguity

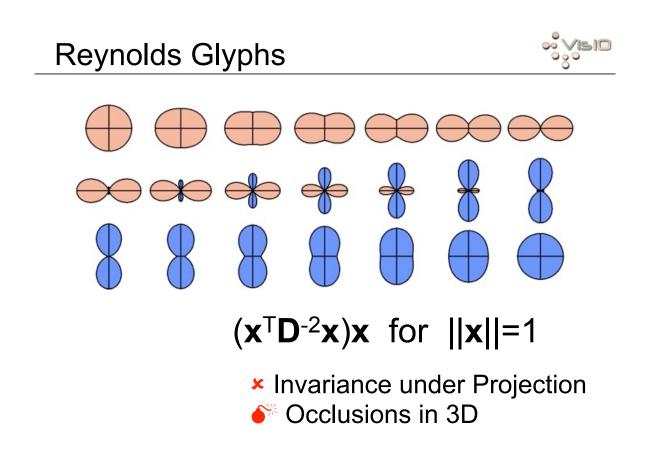




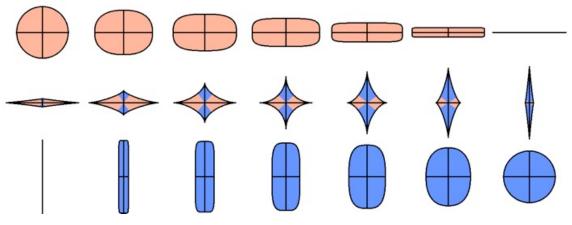
Implicit Ellipses



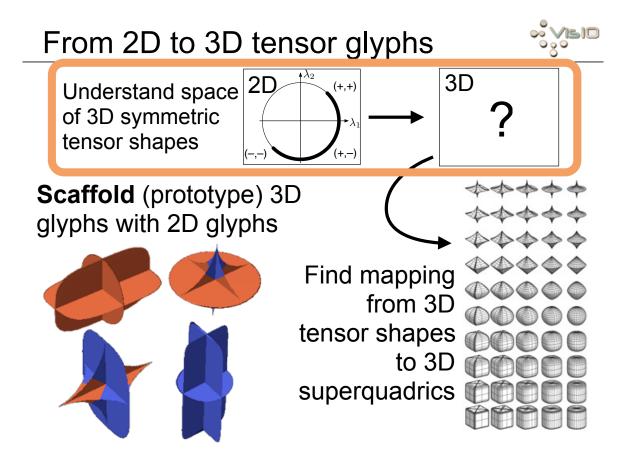


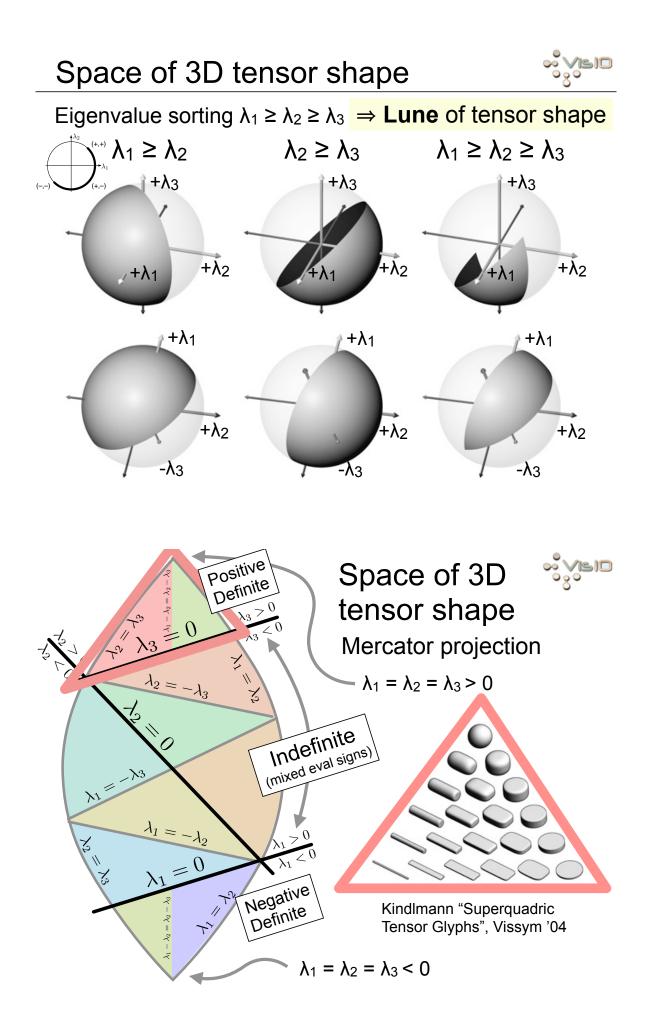


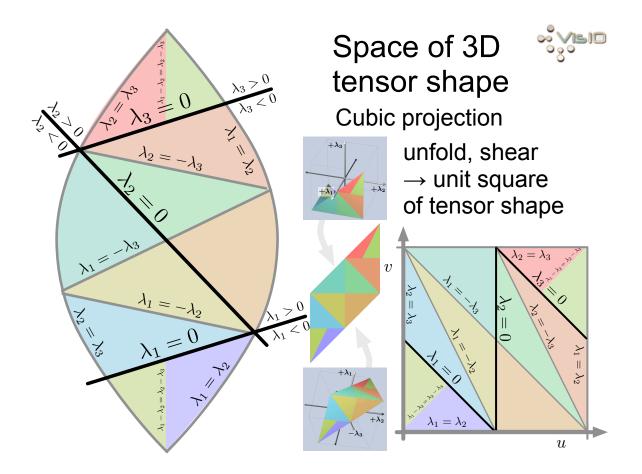
New Glyph for 2D symmetric tensor °

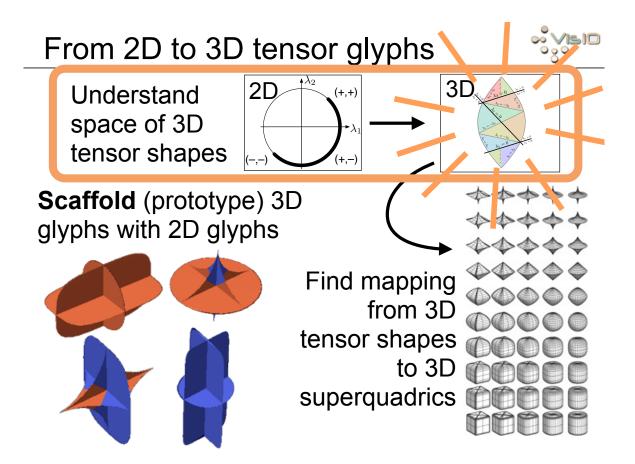


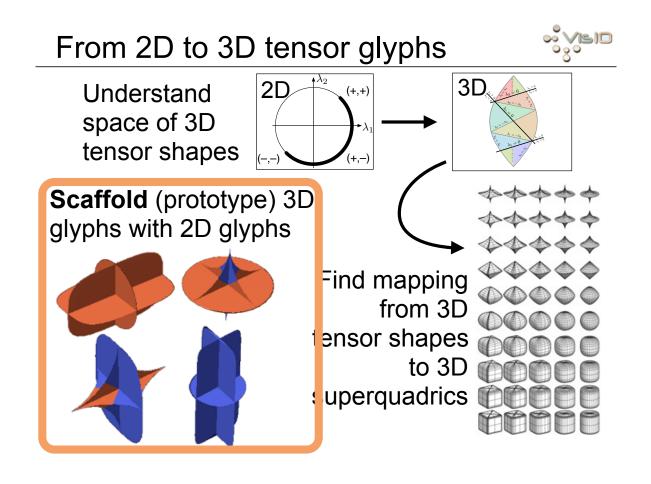
- Meet disambiguity, symmetry preservation req.
- Glyph shape shows eigenvalue sign differences
- Convex indicates same sign (positive-definite, negative-definite)
- Concave indicates different sign (indefinite)



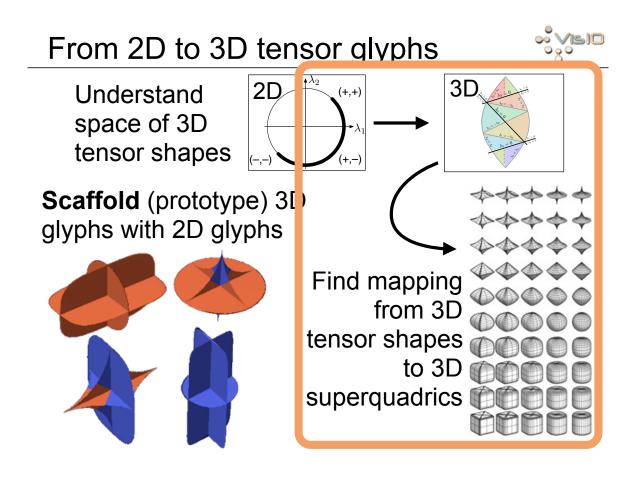




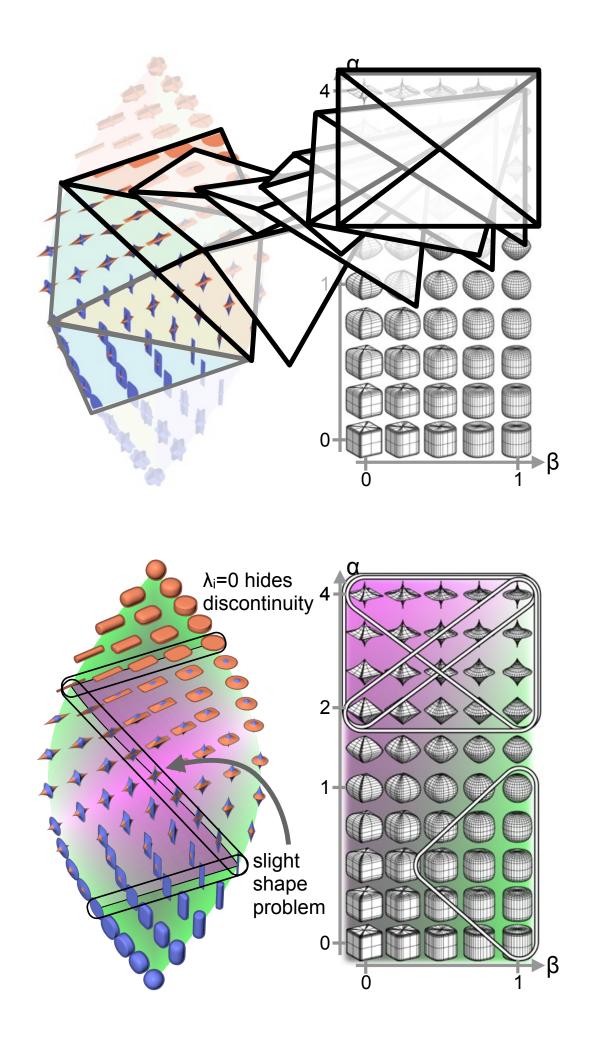


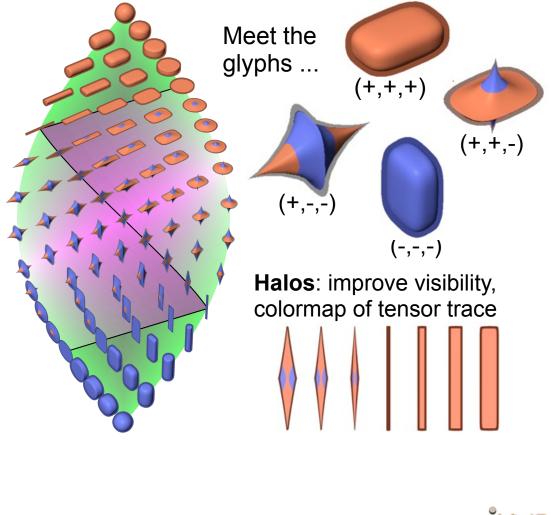


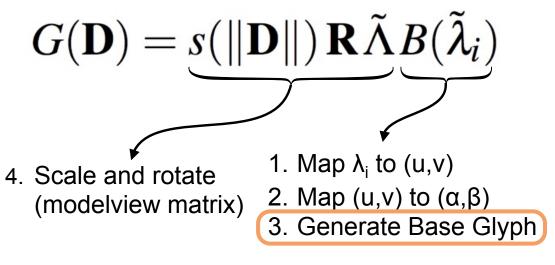








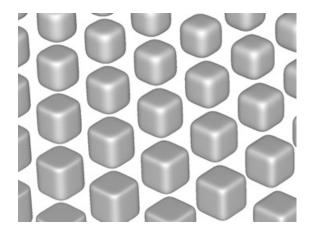




5. Color code sign (fragment shader)

Using a Palette of Base Geometry

Precompute and re-use superquadric geometry on a grid in (α,β) space

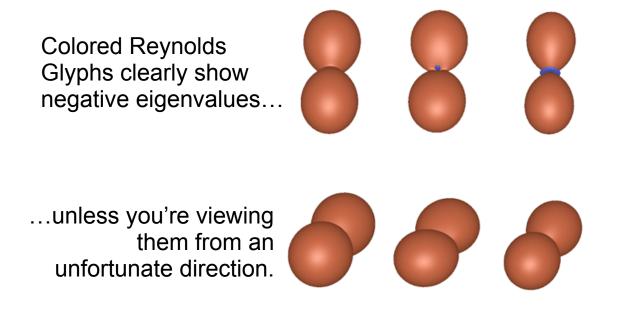


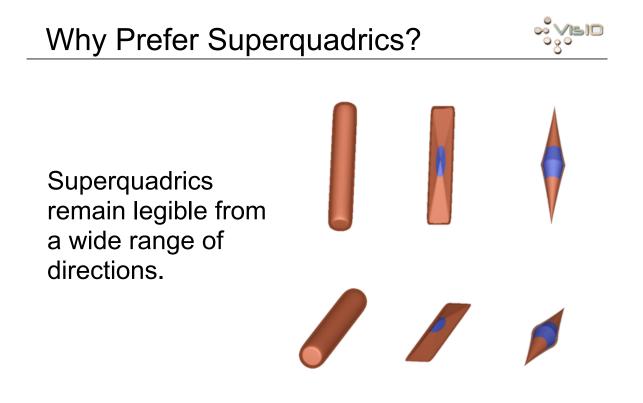
Implementation & Performance

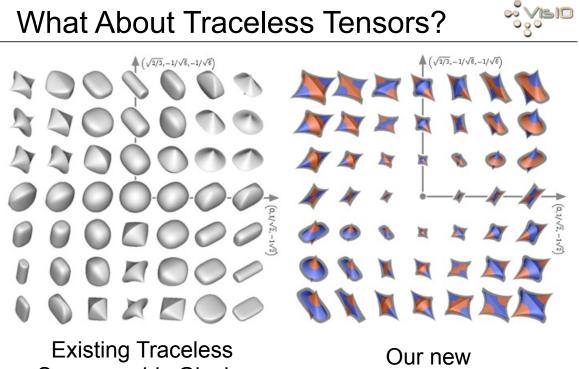
- Geometry-based implementation
- Performance:
 - 3000 full-resolution glyphs
 - 1800x1000 viewport
 - 25fps (incl. halos) on NVIDIA Quadro FX 1800

Most code is in Teem; please see tutorial on http://www.ci.uchicago.edu/~schultz/sphinx/

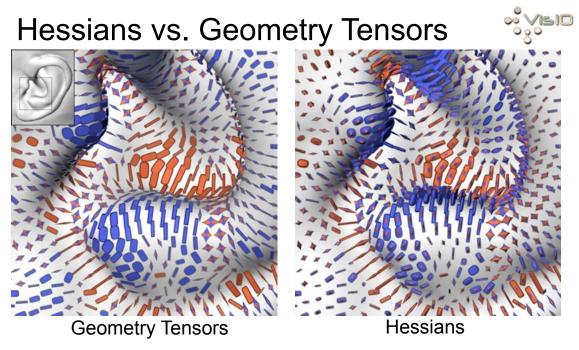
Why not use Reynolds Glyphs?





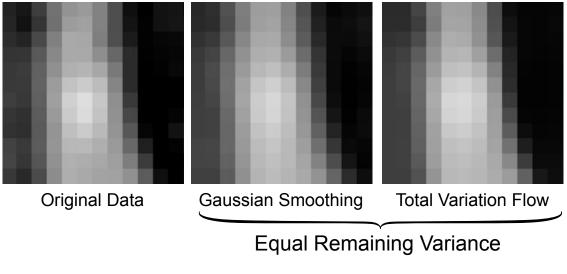


Superquadric Glyphs [Jankun-Kelly/Mehta, Vis06] Our new Superquadric Glyphs

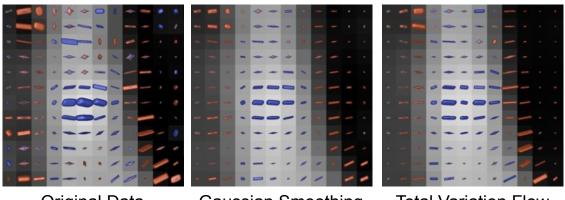


See how geometry tensors are related to Hessians **G** = (**I**-**nn**^T)**H**(**I**-**nn**^T)/||**g**||

Inspecting Smoothing Image Filters



What are Differences?

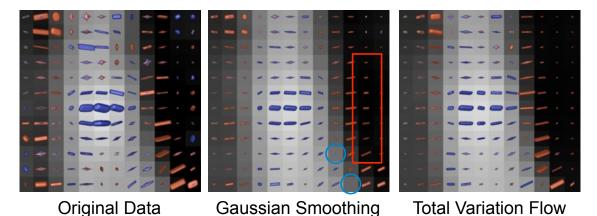


Original Data

Gaussian Smoothing

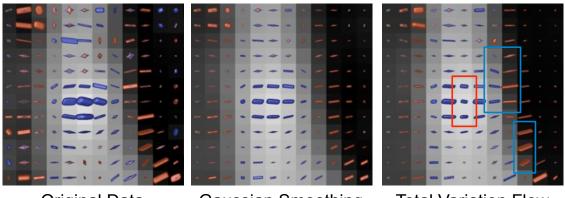
Total Variation Flow

Let's look at Hessians...



Gaussian Filtering **Smoothes Hessians**. Leads to "smearing out" into flat regions and cancellation effects.

Inspecting Smoothing Image Filters



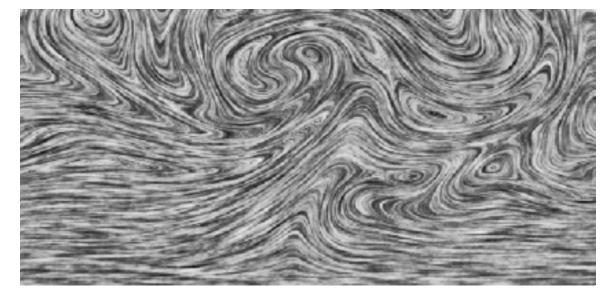
Original Data

Gaussian Smoothing

Total Variation Flow

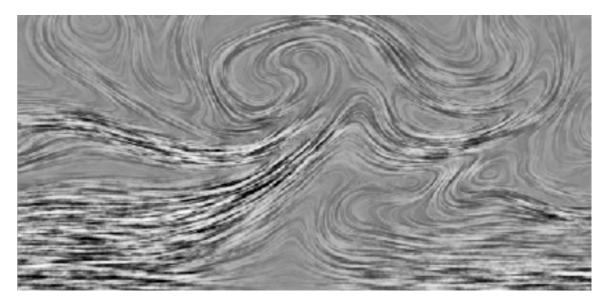
TV flow creates flat regions and sharp edges between them.

Results, turbulent jet flow

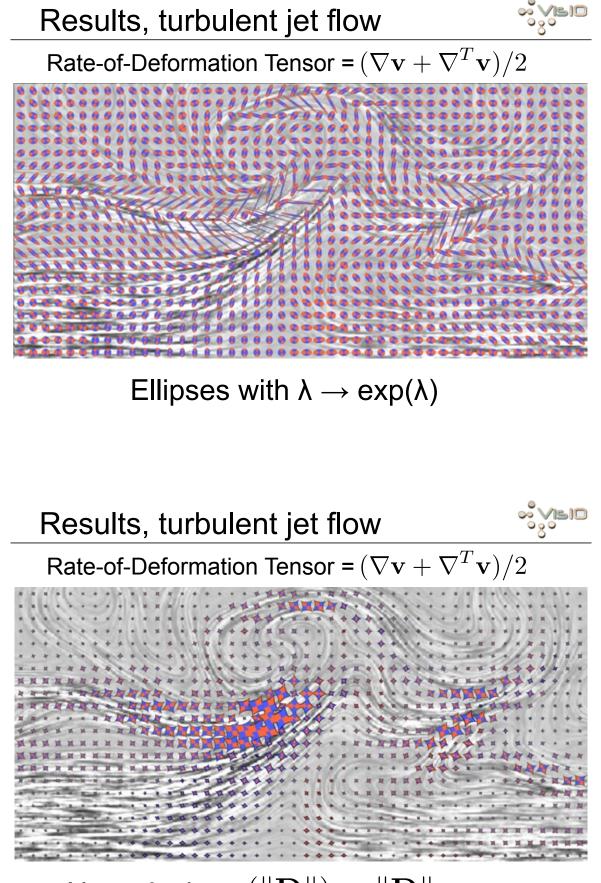


LIC

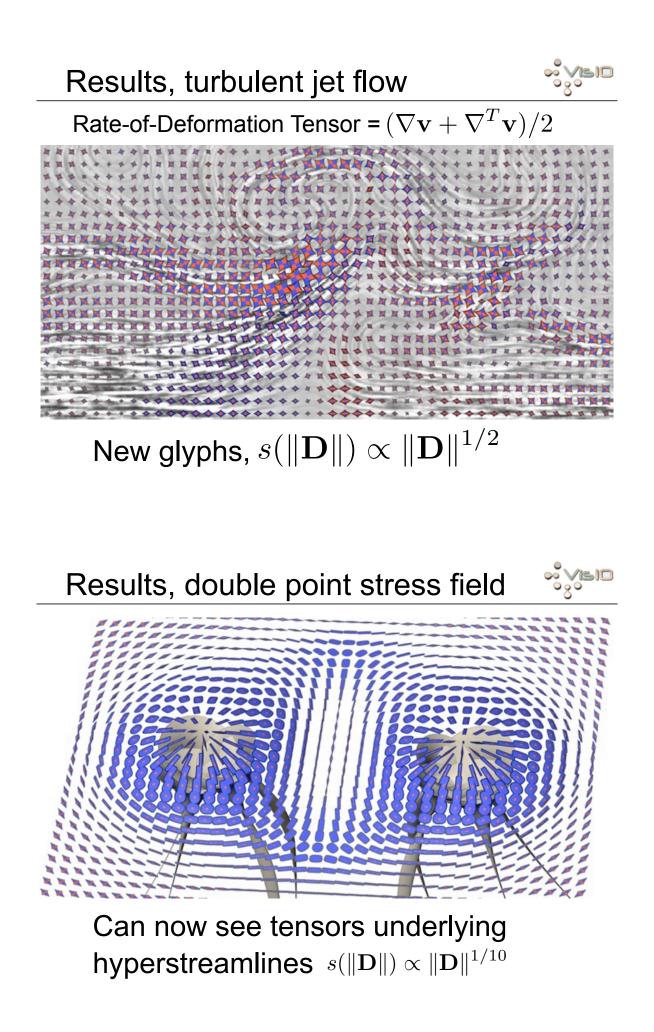
Results, turbulent jet flow



LIC, modulate contrast by velocity



New glyphs, $s(\|\mathbf{D}\|) \propto \|\mathbf{D}\|$



- Presented a new set of tensor glyphs
 - Can visualize all symmetric 3D 2nd-order tensors
- Glyphs design guided by principles
 - Need disambiguity, avoid misleading symmetries
 - Eigenplane projection invariance \Rightarrow scaffolds
- Future: still no satisfactory glyphs for:
 - General 2nd-order (non-symmetric) tensors
 - Rotations

Acknowledgements

- Funding: DAAD
- Flow data: Wolfgang Kollmann, UC Davis
- Symmetry and Continuity discussion:
 2009 Dagstuhl Scientific Visualization Seminar 09251

