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Superquadric Glyphs for Symmetric Second-Order Tensors

Thomas Schultz and Gordon L. Kindimann

Abstract—Symmetric second-order tensor fields play a central role in scientific and biomedical studies as well as in image analysis
and feature-extraction methods. The utility of displaying tensor field samples has driven the development of visualization techniques
that encode the tensor shape and orientation into the geometry of a tensor glyph. With some exceptions, these methods work only
for positive-definite tensors (i.e. having positive eigenvalues, such as diffusion tensors). We expand the scope of tensor glyphs to all
symmetric second-order tensors in two and three dimensions, gracefully and unambiguously depicting any combination of positive
and negative eigenvalues. We generalize a previous method of superquadric glyphs for positive-definite tensors by drawing upon a
larger portion of the superquadric shape space, supplemented with a coloring that indicates the tensor’s quadratic form. We show
that encoding arbitrary eigenvalue sign combinations requires design choices that differ fundamentally from those in previous work
on traceless tensors (arising in the study of liquid crystals). Our method starts with a design of 2-D tensor glyphs guided by principles
of symmetry and continuity, and creates 3-D glyphs that include the 2-D glyphs in their axis-aligned cross-sections. A key ingredient
of our method is a novel way of mapping from the shape space of three-dimensional symmetric second-order tensors to the unit
square. We apply our new glyphs to stress tensors from mechanics, geometry tensors and Hessians from image analysis, and
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rate-of-deformation tensors in computational fluid dynamics.

Index Terms—Tensor Glyphs, Stress Tensors, Rate-of-Deformation Tensors, Geometry Tensors, Glyph Design.

1 INTRODUCTION

In tensor visualization, glyphs are the method of choice to locally dis-
play the full tensor information at a discrete set of points, by encod-
ing all its degrees of freedom onto the shape and appearance of some
base geometry [47]. Even though glyphs alone rarely provide a self-
contained answer to a scientific question, they can help build under-
standing and intuition about scientific data and the patterns within it.
When inspecting empirically measured data, glyphs allow one to vi-
sually evaluate data quality and detect measurement artifacts. Glyphs
can also provide a useful reference point for understanding tensor data
when creating new tensor visualization methods. Tensors also arise as
ingredients in scalar and vector field analysis algorithms, where glyphs
can help to monitor the progress and outcome of the analysis.

The utility of tensor glyphs has led to the development of a vari-
ety of glyph-based visualization methods [16, 59, 18, 28, 40, 31], but
most of them have either concentrated on the positive-definite case,
such as diffusion tensors [2], or resorted to showing eigenvalue sign
through color alone. In this work, we apply mathematical principles
of symmetry and continuity to evaluate previous methods, and to de-
sign an extension of a previous superquadric glyph [28] to symmet-
ric second-order tensors with both positive and negative eigenvalues.
Our method allows tensor glyphs to better depict stress tensors [18],
rate-of-deformation tensors [34], geometry tensors [32], and Hessians
(second derivatives of scalar fields) [38].

These are domains in which eigenvalue signs indicate important
qualitative aspects. In geometry tensors and Hessians, eigenvalue sign
represents the difference between locally convex and concave surfaces
and functions. Compressive and tensile stress are distinguished by
eigenvalue sign of stress tensors, and in rate-of-deformation tensors it
separates compression from stretch of a volume element. For applica-
tions where eigenvalue signs are so crucial to interpreting the data, our
method conveys them clearly by using eigenvalue signs to determine
glyph shape, in addition to glyph color.

Glyph design is a creative process for which no unique “correct” so-
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lution exists. However, various constraints are imposed by tensor alge-
bra and generally accepted rules of good visualizations. In Section 2,
we aim to make it as transparent as possible what these constraints are
and which additional design goals we follow. After reviewing previ-
ous work in Section 3, our new method is described in Section 4 and
justified carefully with respect to these high-level goals. To confirm
that our glyphs can be used in a wide variety of contexts, Section 5
presents results from various applications.

2 TENSOR ALGEBRA AND GLYPH DESIGN

A symmetric second-order tensor D can be decomposed into real
eigenvalues A; (1] > A, > A3) and corresponding orthonormal eigen-
vectors e;. With respect to a fixed coordinate system, this eigensystem
decomposition can be written by stacking the e; as columns into a ro-
tation matrix R and collecting the A; in a diagonal matrix A:

D =RART )

A tensor is positive-definite when A; > 0 for all i, negative-definite
when A; < 0, and indefinite if it has both positive and negative eigen-
values. An eigenplane is a plane spanned by any pair of eigenvectors.
The Frobenius norm ||D|| of the tensor is given by

ID|| = VY A2 &)

1

Based on (1) and (2), we distinguish the overall scale of the tensor
(given by its norm), tensor orientation (given by its eigenvectors), and
tensor shape. In this work, shape denotes the part of the tensor that is
invariant under rotation and uniform scaling, and is described by the
normalized eigenvalues A; = A;/||D||. Permutations of eigenvalues are
equivalent to rotations that preserve the set of eigenvectors, so sorted
normalized eigenvalues provide a non-redundant representation of the
range of tensor shapes.

Our tensor glyphs are designed around mathematical considerations
of the eigensystem and its particular symmetries, as well as more gen-
eral principles of visualization. The first principle is that of preserva-
tion of symmetry: tensor glyphs should exhibit the same symmetries
as the underlying tensor, no more or less. We view tensor symmetry
preservation as a special case of the general goals of visualizing only
intrinsic data properties while avoiding misleading artifacts, and using
glyphs to completely depict all data properties. If G(D) is the glyph
for tensor D and T is an isometric linear transformation (such as a
rotation or reflection), preservation of symmetry is formalized as

D=TDT ! < G(D) =TG(D) 3)
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Symmetry preservation has particular implications for how the
eigensystem is visualized. Due to their lack of orientation, e; and —e;
are equivalent eigenvectors of a tensor. Consequently, tensor glyphs
should exhibit mirror symmetry with respect to all eigenplanes. This
condition is fulfilled by all tensor glyphs we are aware of. When two
(or three) eigenvalues are equal, the corresponding eigenvectors span a
two- (three-)dimensional eigenspace. Rotating them within that space
leaves the tensor value unchanged. Tensor glyphs should reflect this
continuous rotational symmetry by avoiding to set apart any particular
direction within the eigenspace. This condition should only be vio-
lated in applications where the case of equal eigenvalues cannot occur.
In order to produce glyphs for a wide variety of applications, we in-
clude symmetry preservation as a design goal of our work.

Two further principles for the design of visualizations can be sum-
marized as continuity and what we term disambiguity: Glyphs for
nearly equal tensors should look nearly the same, and glyphs for dif-
ferent tensors should look different. Without providing a precise quan-
tification, these principles can be expressed in a formulaic manner as:

D ~ D, <= appearance(G(D)) ~ appearance(G(D,)) (4)
D; # D, <= appearance(G(Dy)) # appearance(G(D,))  (5)

We feel that continuity and disambiguity, even if not formulaically ex-
pressed as such, are commonly used visualization guidelines: slight
perturbations of the data should not significantly change the visualiza-
tion (continuity), and visualizations should help discriminate between
different data values (disambiguity). We adopt these principles in the
interests of making the tensor glyphs as informative as possible.

Our last two glyph design principles, invariance under scaling
and eigenplane projection, are more specific to tensor visualization.
Though they may be violated for legitimate reasons in specific con-
texts [25], these principles are fulfilled by the majority of existing ten-
sor glyphs, and we adopt them here in the interests of generality across
applications of tensor visualization. Scale invariance means that a uni-
form scaling of the tensor D should result in a uniform scaling (pre-
serving the aspect ratio) of its glyph G(D). In other words, a scale
invariant base glyph B is scaled by a function s(||D||) of tensor norm:

D

G(D) = s(|D|)B (m) . ©)

In many cases, s(||D||) can be a simple multiple of tensor norm
(s(|D|]) =< ||D|]), though any monotonic function will permit quali-
tative comparisons of tensor scale. When tensor norm varies widely
over a dataset, s can effectively compress its range as with s(||D||) o<
IID||;7 < 1 (cf. Section 5). s can be set to a constant if tensor scale is
irrelevant to a visual analysis task [35]. Since the base geometry de-
pends on normalized eigenvalues, it is undefined when ||D|| = 0. When
approaching this case, we blend the base geometry with a sphere. The
technical details of this interpolation are described in Section 4.3.

A tensor is projected to one of its eigenplanes by setting the remain-
ing third eigenvalue to zero. We call a glyph invariant under eigen-
plane projection when projecting the tensor in this way has the same
effect on the glyph as a corresponding orthogonal projection of the
glyph geometry. Let P denote the projection to one of the eigenplanes:

P=I—ejel %)

where I is the identity matrix. P projects to the plane orthogonal to
eigenvector e;. Then, invariance under P can be written as

G(PDP") =PG(D). ®)

We adopt this invariance as a glyph guideline because it ensures that a
consistent set of two-dimensional glyphs are generated by the visual-
ization of three-dimensional tensors with one zero eigenvalue.

A previous approach by Kindlmann [28] uses superquadrics [1] to
simultaneously pursue similar design goals, though only for positive-
definite tensors D, by constructing glyphs G(D) with

G(D) = s(|D|)RAB(2:). ©
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Specifically, it defines a superquadric base geometry B(A;) which is
parametrized by the normalized eigenvalues A;, exhibits all required
symmetries, and is invariant under projections to eigenplanes. It uses
different geometric shapes to disambiguate tensor shape (5), while
providing a smooth transition between them to ensure continuity (4).
Scale invariance follows from scaling the base geometry with the nor-
malized eigenvalues in A, before rotating it with R to match tensor
orientation and applying a final scale factor s(||D||) = ¢||D||

Our work extends this framework to the full space of three-
dimensional symmetric second-order tensors, by extending the defini-
tion of B(A;) beyond the set of positive-definite tensors, while preserv-
ing the design goals followed in the original approach. The previous
approach [28] satisfies invariance under eigenplane projection, even
though it was never stated as such. Our current work uses eigenplane
projection invariance as a technique to create approximations of three-
dimensional glyphs (which we call “scaffolds”) from three orthogonal
two-dimensional glyphs of the tensor under eigenplane projections.

3 PREVIOUS WORK

Section 3.1 places glyph-based methods into the broader context of
tensor visualization. Since an exhaustive overview of the field is out-
side the scope of this paper, we refer to existing reviews [57] for further
references. More specifically, Section 3.2 clarifies our contribution
with respect to previous glyphs for indefinite tensors.

3.1 Tensor Visualization

Methods for tensor visualization have been created in the context of
various applications, including tensors that arise in computational fluid
dynamics [34], geomechanics [26], general relativity [3], diffusion
tensor magnetic resonance imaging [56], MRI-based strain rate imag-
ing [51], image processing and computer vision [55], and the study of
nematic liquid crystals [25].

A rough overview of previous work on tensor visualization can be
given in analogy to an existing classification of techniques in flow
visualization [43]: Direct methods like color mapping [42], volume
rendering [30] or tensor splats [3] continuously depict a large part of
the field by mapping local tensor values to attributes like color and
opacity. Similarly, image-based techniques like brush strokes [35],
reaction-diffusion textures [30] or variants of line integral convolution
and spot noise [23, 61, 22] produce a dense image of the field.

Geometry-based techniques construct geometric objects whose
shape, orientation and color convey tensor attributes. Tensor glyphs
belong to this group. Unlike direct and image-based methods, they
allow the user to see all attributes of a tensor, but only in discrete loca-
tions. Optionally, glyphs can be combined with continuous renderings
for context [51], or arranged in a way that emphasizes non-local struc-
tures via glyph packing [31] or anisotropic noise sampling [13]. Other
important geometry-based methods are hyperstreamlines [7] and hy-
perstreamsurfaces [26], which concentrate on conveying trajectories in
one of the eigenvector fields. Hybrid methods can use both geometry-
based and direct methods to combine the benefits of each [51, 8].

Feature-based methods like tensor topology [20], crease extraction
[29], segmentation [12] and streamline clustering [9] extract patterns
from the data which are meaningful for a specific research problem
that involves a specific type of tensor data. Such high-level tensor vi-
sualization frequently requires complex algorithms. More basic tech-
niques, including glyphs, play an important part in their debugging
and validation [33, 49].

3.2 Glyphs for Indefinite Tensors

Similar to our own work, Jankun-Kelly and Mehta [25] have consid-
ered superquadric glyphs for indefinite tensors. Their approach also
conforms to the rules of preservation of symmetry, continuity and dis-
ambiguity, but it only applies to traceless tensors, a five-dimensional
subspace in the six-dimensional space of symmetric tensors. There-
fore, our work requires a fundamentally different design. Other work
has used superquadric-based glyphs outside of tensor visualization
[50, 44], but does not make design decisions relevant to our problem.
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Many other tensor glyphs are naturally expressed in terms of (9)
with different choices of base geometry B. Various applications
[2, 18, 54] have used the unit sphere, which results in ellipsoids whose
axes are aligned with the tensor’s eigenvectors and scaled with eigen-
values. Other choices are a coordinate cross [51] (sometimes called
“hedgehog” [26]), tripod [36], the unit cube [46], a clipped plane [40]
or a cylinder [60]. Alternatively, some authors combine different base
shapes B, modulated by different aspects of the tensor [16, 59].

Previous work has commonly used color to indicate eigenvalue
signs [16, 26, 51, 18, 40]. Alternatively, some authors enforce positive-
definiteness for visualization purposes, for example by taking the ex-
ponential of eigenvalues [34], by shifting them by the amount of the
most negative eigenvalue [52], or other application-specific mappings
[22, 21, 33]. An entirely different approach is to define symmetric ten-
sor glyphs via algebraic equations, such as the quadratic surface of the
tensor, known as the Cauchy stress quadric in geomechanics [18] and
as the Dupin indicatrix in differential geometry [17], or the Reynolds
glyph [18]. Section 4.1 describes these methods in comparison with
our approach. Glyphs for tensors of order higher than two [41, 48] are
outside the scope of our current work.

Closely related to our work are glyph-based methods for visualiza-
tion of the vector field Jacobian, which in general is not only indefi-
nite, but also non-symmetric. When all eigenvalues are real, Globus
et al. [15] display a simple coordinate cross with arrows to indicate
eigenvalue signs. The probe by de Leeuw and van Wijk [6] is designed
for the simultaneous visualization of the vector field and its Jacobian
and does not apply to the visualization of tensor fields alone. Icons
proposed by Theisel et al. [54] are based on ellipsoids, which suffer
from visual ambiguities addressed by superquadric glyphs [28].

4 METHODS
4.1 Two-dimensional glyphs

Our new tensor glyph is motivated by a review of existing glyphs
with respect to the design guidelines from Section 2. Focusing first
on the two-dimensional case simplifies the discussion, and provides a
scaffold for three-dimensional glyphs by invariance under eigenplane
projection (8). Unit-norm tensors are sufficient for considering glyph
shape by scale-invariance (6). Since tensor shape is independent of
eigenvalue ordering, we restrict ourselves to the unit half-circle of
sorted eigenvalue pairs A > 4;.

Fig. 1 illustrates the unit-norm tensors we use to consider 2-D glyph
design. Tick-marks on the lower-right half-circle in Fig. 1(a) indicate
the eigenvalue pairs that sample, in clockwise order, the range of two-
dimensional tensor shapes visualized in Fig. 1(b) and subsequent fig-
ures. The top row of glyphs is positive-semidefinite, the middle row is
indefinite, and the third row is negative-semidefinite.

In this work, each point p of a glyph surface G(D) is colored ac-
cording to the sign of the quadratic form

h(p) =p'Dp.

Due to the one-to-one relation between symmetric tensors and their
quadratic forms, this color scheme naturally inherits all required sym-
metries and continuities of Section 2. The quadratic form evaluates
to eigenvalues at eigenvectors (e;rDe,- = A;) while creating a coloring
that respects the relative magnitudes of the eigenvalues. In particular,
the coloring is continuous as per (4) because the angular range around
an eigenvector colored by the corresponding eigenvalue’s sign goes to
zero with the eigenvalue magnitude. Throughout this work, orange
indicates positive, and blue shows a negative sign.

We observe that when indicating eigenvalue sign by color alone,
the glyph shape may suggest symmetries that the tensor does not ac-
tually possess. In the linearly-scaled ellipses (Fig. 1(b)), this becomes
apparent with the indefinite tensor A; = —A, (center of middle row),
visualized with a circle that differs only in coloring from the isotropic
cases (A; = Ay). With its continuous rotational symmetry, this cir-
cle violates symmetry preservation (3) and disambiguity (5). Thus,
eigenvalue coloring alone does not solve the problem of tensor glyph
design. More work is required to satisfy the principles of Section 2.

(10)
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Fig. 1. Our 2-D glyph design starts by sampling the range of unit-norm
tensors (a), visualized by standard linear ellipses in (b). Except for color-
ing by quadratic form, ellipse glyphs misleadingly imply rotational sym-
metry when there is in fact the least rotational symmetry, at A, = —A2,.

Fig. 2 illustrates some previous methods that avoid this misleading
symmetry. Fig. 2(a) uses ellipses to show D by visualizing exp(D), a
method suggested by Kirby et al. [34] for rate-of-deformation tensors
that maps all eigenvalues (by A; — ) to positive values. A limitation
of this approach is that all the glyphs in the middle row (for indefinite
tensors) have similar aspect ratios, even though the underlying tensor
shape is widely varying, undermining disambiguity (5).

Fig. 2(b) shows the Reynolds glyph [18], defined as G(D) =
{(v"Dv)v|||v]| = 1}. This is equivalent to a polar plot of the quadratic
form h(v) over all points v on the unit-circle. Its four-lobed shape in
the indefinite case (middle row) clearly disambiguates it from positive-
and negative-definite tensors (5), and since it is based on the quadratic
form, the Reynolds glyph has the same symmetries as the tensor (3).
Unfortunately, in three-dimensions, the wide lobes of the Reynolds
glyph can create ambiguity by self-occlusion (Section 5).

More dramatic disambiguation is _[given by the Dupin Indicatrix, de-
fined as the positions v satistying v' Dv = =1. The two distinct solu-
tions are shown in the positive and negative colors in Fig. 2(c). In dif-
ferential geometry, this indicatrix shows local surface curvature [17].
It has also been suggested (though not commonly adopted) for three-
dimensional tensors [10]. A drawback is that the indicatrix width
along an eigenvector varies inversely with the eigenvalue magnitude,
which may be counter-intuitive. This problem is fixed with an implicit
formulation of the ellipse glyph in Fig. 2(d), defined by {v|vTD2v =
+1}, wherein D2 is sign preserving: 4;(D~2) = sgn(A;(D))/A;(D)?.
Like the Dupin Indicatrix, however, this implicit surface becomes an
unbounded hyperbola in the indefinite case.

All presented glyphs use a circle to represent isotropy, no matter if
the two equal eigenvalues are positive or negative. A circular glyph
for depicting isotropy is in fact a consequence of symmetry preserva-
tion (3). Previous work [54] has used a circle with a sawtooth-like pro-
file to indicate complex eigenplanes. Even though such shapes violate
rotational symmetry in the strictest sense of (3), they still perceptually
suggest it, and could in principle be used to indicate negative-definite
isotropy. However, we still believe that circles (and spheres, in three
dimensions) provide the best visualization of isotropy. The main rea-
son for this is that isotropic tensors completely lack directional infor-
mation, making it difficult to consistently orient any other shape or
texture in animations or other smooth transitions.

Therefore, glyph shape alone cannot indicate eigenvalue sign. We
propose to use glyph shape to show eigenvalue sign differences: the
shape between two eigenvectors is convex if the corresponding eigen-
values have the same sign, and concave if they are different.
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Fig. 2. Other tensor glyphs have benefits and drawbacks that inform
our design process. Exponentially-scaled ellipses (a) and polar plots
(b) avoid indicating symmetry at A; = —A4,, but with shapes that vary
only slightly when one eigenvalue is near zero. The Dupin Indicatrix
and (c) the implicit ellipse (d) produce fundamentally different shapes
for indefinite tensors, at the cost of unbounded surfaces.

We propose the superquadric tensor glyphs shown in Fig. 3 as one
solution of the design goals in Section 2. For positive- and negative-
definite tensors (top and bottom row), it coincides with previous su-
perquadric glyphs [28], with color indicating eigenvalue sign. The
novelty is using a four-pointed concave shape to handle mixed eigen-
value signs, inspired by the axis-alignment of the four-lobed polar plot
(Fig 2(b)) and the shape of the Dupin Indicatrix (Fig 2(c)). The con-
cavity emphasizes the absence of continuous rotational symmetry, pre-
serves the aspect ratio of the eigenvalue magnitudes, and avoids confu-
sion with the convex shapes for positive- and negative-definite tensors.
The concavity diminishes as one eigenvalue tends towards zero, cre-
ating narrow diamonds. Though distinct from the narrow rectangles
at the nearby positive-definite and negative-definite cases, both shapes
degenerate to a line segment when one eigenvalue is zero, ensuring
complete continuity (4) across all eigenvalue sign combinations.

This glyph does have drawbacks: as with the polar plot and the
Dupin Indicatrix, except for the coloring there is 90-degree rotational
symmetry at A; = —A;, which weakens symmetry preservation (3).
Also, the concavities with mixed eigenvalue signs decrease the visibil-
ity of the glyph compared to the positive- and negative-definite tensors
with the same norm, which unfortunately reduces the visual effect of
scale preservation (6). As the best solution we have yet found, how-
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Fig. 3. Our novel glyphs augment an existing superquadric-based ap-
proach with concave shapes for indefinite tensors and coloring from the
quadratic form.

ever, we use this two-dimensional glyph as the scaffold for creating
the three-dimensional tensor glyphs described next.

4.2 Shape Space for 3-D Symmetric Tensors

Our three-dimensional glyph design builds upon the two-dimensional
glyphs in Fig. 3. Just like Sect. 4.1 explored two-dimensional ten-
sor shape in terms of sorted eigenvalues A; > A, on the unit circle,
for three-dimensional tensors we consider sorted eigenvalues A; >
A» > A3, on the unit sphere (V /’le—|—122 +7L32 =1). Fig. 4 visual-
izes the resulting set of tensor shapes as a two-dimensional surface in
A; eigenvalue space. The three-dimensional analog to the lower half-
circle in Fig. 1(a) is the spherical lune formed by the intersection of
the two hemispheres in which Zl > ;12 and 12 > 13. The resulting
lune is shown from two different viewpoints in Fig. 4(a). Considering
the isotropic positive (ii = 1/v/3) and isotropic negative (/7L,- =—1/\3)
points as the north and south poles of a tensor shape globe, the Merca-
tor projection [58] flattens the lune to the shape in Fig. 4(b).

Though not the central contribution of this work, we suggest that the
Mercator projection is a novel and natural way to visualize the range
of three-dimensional symmetric tensor shapes. A comparable view of
the range of 3-D symmetric tensor shapes was illustrated for image
analysis by Danielsson and Lin [5], but the space was parameterized
with transforms of spherical harmonics, rather than the direct geomet-
ric mapping we use. Mercator maps of tensor shape similar to those
described in this Section provided the visual context for the original
design and evaluation of our new glyphs. The planar layout of the Mer-
cator projection preserves the basic shape of the spherical lune, making
it easier to demarcate and reason about the triangular zones (colored
here arbitrarily) bounded by the various eigenvalue zero-crossings and
equalities. These zones delineate the regions over which our glyph
base geometry is defined and interpolated.

To obtain an explicit parameterization of tensor shape better suited
to glyph creation, we transform the lune to a unit square, shown in
Fig. 4(c) and (d). Normalized eigenvalues are projected to a bi-unit
cube that is unfolded and sheared to create a unit (u,v) square:

’_ # i
max(|ll|,\)«2|,|/13‘)’

ey [ PR
2 7 /1112* —u+1

There are no degeneracies in mapping forwards or backwards between
the lune and the (u,v) square, so either parameterization is an equally
valid representation. The square makes it more computationally con-
venient to represent positions inside the space, and to blend between
shapes. As functions of the eigenvalues, the (u,v) shape coordinates
are tensor invariants (like tr(D) and ||D|)), though we leave a detailed
comparison between (u,v) and established invariants to future work.
For comparison we show in Fig. 4(e) the relationship between the
spherical lune and domains associated with two previous variable-
geometry glyphs. The barycentric triangle parameterized by the
(c15¢p,cs) invariants [59] underlies previous superquadric glyphs for

=1,2,3 (11)

M > =23
A <=M

12)
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Fig. 4. Normalized and sorted eigenvalues A; > 4, > A3 form a spherical lune (a), capturing the range of 3-D symmetric tensor shape. The
Mercator projection (b) lays out the space to better document the eigenvalue zero-crossings and equalities that will structure our approach. The
result of projecting the lune onto the bi-unit cube and unfolding (c) can be sheared to a novel (u,v) unit square that conveniently represents all

relevant tensor shapes (d).

positive-definite tensors [28]. Normalization by trace (4] + A, + A3)
is built into the definition of (c;,cp,cs), so all scalings of this triangle
non-redundantly cover the volume of positive-definite shapes. This
normalization, however, implies that (c;,cp,cs) do not continuously
parametrize the larger range of shapes covered by our (u,v) invariants.
The square region of traceless tensors in Fig. 4(e) indicates some of the
domain of nematic liquid crystal (NLC) alignment tensors studied in
previous work [25]. Fig. 11 compares our new method with previous
visualizations of the traceless tensors in this square domain.

4.3 Definition of New Superquadric Glyphs

Invariance under eigenplane projection (8) described in Sect. 2 implies
that three intersecting orthogonal 2-D glyphs, each visualizing one of
the three eigenplane projections of a 3-D tensor, are an initial approx-
imation or scaffold for the desired 3-D glyph base surface. For a
range of tensors sampled in the projected lune of tensor shapes, these
scaffolds are shown in Fig. 5(a), and the subsequent parts of this figure
represent the core contribution of our work. Guided by the orthogonal
eigenplane glyphs, we find the vertices and the triangles in the (a, )
superquadric parameter space that span the possible glyph base shapes
(Fig. 5(b)). For a given (a,f) value, the superquadric is explicitly
parameterized as [1]

cos(8)% sin(9)?
al@p)— | sin(@)sin(0)f | JSPEE a3
cos(9)? =0

using signed exponentiation x* = sgn(x)|x|%.

A time-consuming part of this work was manually finding points in
(a, B) parameter space to generate base glyphs satisfying the symme-
tries and constraints of Section 2. This required finding triangles in
the (o, ) space that could be patched together to cover the lune of
tensor shape, joined along edges delineated by the eigenvalue equal-
ity relationships seen in Fig. 4(a). We found that the glyph scaffolds
in Fig. 5(a) provided valuable guidance in this process. For example,
A1 = A, dictates that o = 1, creating continuous rotational symme-

Domains of traceless NLC alignment tensors (further visualized in Fig. 11) and barycentric shape coordinates (of
positive-definite tensors) are shown relative to the lune for comparison (e).

try around the z axis for the entire right edge of the lune. The pat-
tern of concavity and convexity then determines 3 for the rotationally
symmetric cross-sections, made visible in the glyph scaffolds. Mixed
eigenvalue signs force 8 > 2, which creates concavity, with the base
glyph axis perpendicular to the two eigenvectors with the same eigen-
value sign. One eigenvalue tending to zero forces 8 — 0 for positive-
or negative-definite tensors and 8 — 2 for indefinite tensors.

The final results of our glyph design are shown in Fig. 5(c), which
shows both the three-dimensional glyph and (via the green and ma-
genta colormap) the (o, 8) parameters that produced it. The sharp
(a,B) discontinuities visible within the lune (along the thin black
lines in Fig. 5(c)) would seem to violate continuity (4). By design,
however, the seams are located exactly where one eigenvalue is zero
(cf. Fig. 4(b)), so that eigenvalue scaling recovers continuity of glyph
shape. For example, the thin disks for planar positive-definite tensors
blend smoothly into the flattened cones as A3 changes from positive to
negative, even though this involves a jump in 8 from 0 to 2. Fig 5(d)
documents the (e, B) control points at the corners of the (u,v) trian-
gle vertices. The maximal value of 3 is recorded here as 4.0, but this
value can be lowered (e.g. to 3.0) while keeping the other (a, 8) con-
trol points fixed, to decrease the concavity of indefinite tensor glyphs.
Fig 5(d) also identifies the regions (with a yellow inscribed triangle)
that require the base glyph to be rotated 90 degrees from their original
vertical z axis to a horizontal axis around x (for the minor eigenvector
e3). This seam between parameterization axes was also present in the
earlier superquadric tensor glyph work [28].

When tensor norm ||D|| = 0, (u,v) coordinates are undefined. In
this case, we define the base glyph to be the unit sphere. In order to
ensure a continuous transition towards this case, we gradually blend
the geometry with a sphere when ||D|| < €, by interpolating the (a, 3)
parameters that are computed as above with (o = 1,8 = 1) when ap-
proaching zero norm. The parameter € is chosen such that for tensor
norm smaller than €, eigenvalue signs start to be dominated by numer-
ical or measurement noise. Its exact value will typically depend on the
average tensor norm and the level of noise in the data.

Fig. 5(e) illustrates one small complication to correctly wrapping
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d (a,8) U

regular superquadric

(a.B) = (0.4)

hybrid superquadric
(a.,8,8) = (0,4.2)

Fig. 5. Creation of the new superquadric tensor glyphs. 3-D tensors sampled on the projected lune (a) are indicated by scaffolds of 2-D glyphs
showing the three orthogonal eigenplane projections, each visualized by the method sketched in Fig. 3. To find three-dimensional base glyph
shapes conforming to these scaffolds, the range of superquadric shapes is sampled in (b), using green and magenta to indicate the varying o and
B parameters respectively. Careful inspection and experimentation led to choosing the triangles indicated in (b), which are mapped to the triangular
zones (a), to produce the new 3-D glyphs in (c). The patchwork of triangles in (a, ) parameter space, with vertices labeled for reference, is shown
in (d). Yellow outlines show triangles where the base superquadric must be rotated to lie along the major eigenvector e, rather than the minor
eigenvector e;. A small adjustment to increase shape continuity at the center of the lune is shown in (e), as described in the text.

the glyph scaffolds (Fig. 5(a)) with superquadrics. Near the center of
the palette (where A ~ —A3 and A, = 0), the cross-section across the
medium eigenvector e, needs to be the star shape (seen at the center
of Fig. 3) created by 8 = 4. The cross-sections across the other eigen-
vectors e and ez involve an eigenvalue A4, near zero, and hence should
be either the narrow diamonds or skinny rectangles also seen in Fig. 3.
This particular combination of cross-sections, however, does not ex-
ist in any available superquadric (Fig. 5(b)). Using (¢t,3) = (0,4)
creates a visibly discontinuous change in seam orientation (Fig. 5(e)
upper left), and also fails to have the desired diamond cross-section
in the base glyph (Fig. 5(e) lower left). Therefore for this particular
tensor shape, at the (0.5,0.5) center of (u,v) shape space, we define a
new hybrid superquadric that is parameterized by (c, 8, 8'):

yp = sin(0)%sin(¢)P (14)
z=cos(¢)P 15)
sg = sin(arccos(z'/F"))P’ (16)
Smax = sin(@)P (17)
cos(6)%sin(¢)P
happ)=( e ) JSIEE L ay
z

The effect of (16) is to recover from z the ¢ = arccos(z!/A") due to
setting B = B’ in (13), then, to use this ¢ for a sin(¢)P" factor %
that scales the y coordinate of h. This forces the (y,z) cross-section
of h(e,3,B’) to match that of q(a, "), while the (x,z) cross-section
matches that of q(o, 8). Fig 5(d) identifies h(0,4,2) as the base glyph
at (u,v) = (0.5,0.5) (Fig. 5(e) lower right), producing the more con-
tinuous transition in Fig. 5(e) upper right.

Offset A Halos

(a) (b)

Fig. 6. Halos support glyph perception when one or more eigenvalues
are near zero. Subfigure (a) shows the zero tensor (top) and the unit
tensor (bottom) at different zoom levels, using offset eigenvalues (left)
and halos (right). Subfigure (b) shows a transition from indefinite to
positive-definite tensors, with a rank-1 tensor at the center.

D=1 |D| =0

4.4 Glyph Halos

A complication with glyphs that follow (9) arises when two or all three
eigenvalues are near zero: In this case, the glyph degenerates to a line
or a point, so it is no longer visible. In practice, even the case of a
single near-zero eigenvalue can be problematic.

A simple solution to avoid this problem is to offset eigenvalues
away from zero. However, it requires visual comparison to a refer-
ence size to decide how close a displayed glyph is to the zero tensor.
This is illustrated in Fig. 6(a), which compares the zero tensor (top) to
the unit tensor (bottom), but shows them at different zoom levels. With
offset eigenvalues (left), both may result in the same visualization.

Therefore, we propose to render a halo around the tensor glyph. Ha-
los have been used previously in visualization to enhance depth per-
ception [53]; in our case, their goal is to ensure that even skinny struc-
tures remain visible. The extent of the halo corresponds to a glyph with
offset eigenvalues (resulting in a fixed width in world space), but the
visual difference between the glyph itself and its halo clearly indicates
whether or not an eigenvalue is near zero (Fig. 6(a), right).

The halo can be colored to encode additional tensor information.



SCHULTZ AND KINDLMANN: SUPERQUADRIC GLYPHS FOR SYMMETRIC SECOND-ORDER TENSORS

In our examples, a colormap of tensor trace determines halo color.
The utility of this is demonstrated in Fig. 6(b), showing tensors vary-
ing gradually from indefinite (left) to positive-definite (right). For the
rank-1 tensor at the center, the glyph itself vanishes visually, but its
halo extent indicates both the magnitude of the non-zero eigenvalue
and the direction of the associated eigenvector, while the halo color
indicates the eigenvalue sign. For a rank-1 tensor, the sign of the trace
coincides with the sign of the only non-zero eigenvalue.

Unlike the glyph shape itself, the shape of our halo is discontin-
uous with eigenvalue sign changes. In practice, this did not become
apparent in our experiments, and it can be considered to reflect the
fact that halo shape visualizes eigenvalue signs, which are not contin-
uous mathematical quantities. Image space methods for halo genera-
tion [37] could be explored if, for some application, continuous halos
are important. A near-zero trace is indicated by a gray halo, which
allows for a convenient check of whether or not a tensor is traceless.

4.5 Glyph Generation and Rendering

The process of glyph generation for a given tensor D is summarized
as follows: First, we find eigenvalues A; via the spectral decomposi-
tion (1), sort and divide them by tensor norm ||D|| to obtain normal-
ized eigenvalues i, and map the resulting descriptor of tensor shape
to (u,v) coordinates via (11). Next, we find out into which of the trian-
gles shown in Fig. 5 (d) the values of (u,v) fall. Finally, a superquadric
base geometry is created as described in Section 4.3, with parameters
o and B given by barycentric interpolation within the respective tri-
angle. For reference, Fig. 5 (d) provides the (a, ) at each triangle
vertex, as well as the special (@, 8, 8) value at the center of the (u,v)
square. When ||D|| = 0, we set (o,) = (1,1), with a continuous
blending towards this case as described in Section 4.3.

Our OpenGL-based implementation stores vertex positions p of the
glyph base geometry in the tensor’s eigenframe; non-uniform scaling,
rotation and global scaling (as with s(|[D||) RA in (9)) are achieved via
a suitable modelview matrix. The untransformed position p is passed
from an OpenGL vertex shader to a fragment shader in a “varying”
variable [45], where it is used to determine color. D is diagonal in its
eigenframe, so it suffices to transfer the three eigenvalues to the GPU
(once per glyph, in a “uniform” variable) for computing the quadratic
form (10) in the fragment shader. Based on the resulting sign, orange
(positive) or blue (negative) is selected as the fragment color, modu-
lated by Phong shading.

Glyph halos are rendered in a two-pass approach: The extent of
the glyphs rendered in the first pass is recorded in the stencil buffer.
For the second pass, glyphs are made slightly larger by offsetting the
eigenvalues by a constant amount, away from zero. To achieve the
desired halo effect, lighting is turned off in this second pass, and we
only render to pixels for which the stencil bit is not set.

4.6 Optimized Implementation

To accelerate glyph generation, we pre-compute a palette of represen-
tative base glyph shapes B(4;) by a uniform sampling of the (o, 8) do-
main shown in Fig. 5 (b). To render a new tensor, we can then compute
its (¢, B) and simply pick the nearest base shape from the palette. Note
that the final glyphs seen in the tensor visualization are not merely uni-
form scalings and reorientations of the shapes sampled in the palette.
Rather, the palette provides the axis-aligned base glyphs B. These are
transformed by (9) to glyphs G that accurately indicate tensor orienta-
tion, shape, and scale. Since shapes in superquadric (a, ) space vary
smoothly, the differences in shape of adjacent samples will no longer
be apparent visually when the discretization is fine enough. In our ex-
perience, a palette resolution around 15 x 45 is sufficient to make the
result visually indistinguishable from the use of base geometry that is
computed from scratch for each individual tensor.

To increase rendering performance, the shape palette can be kept
in video memory, e.g., via OpenGL vertex buffer objects. Even with
a tessellation that produces high-quality renderings (we use a single
triangle strip with 801 vertices per glyph), vertex positions and nor-
mals (6 x 4 = 24 bytes per vertex) for a 15 x 45 palette consume
801 x 24 x 15 x 45 bytes (=~ 12.7 MB) of video memory, which is very

1601

oo

(a) Reynolds glyphs (b) Superquadric glyphs

Fig. 7. The existing general glyphs for symmetric tensors, Reynolds
glyphs (a), suffer significantly from ambiguity problems due to self-
occlusion by the wide lobes. Both the magnitude and sign of the re-
maining eigenvalues can be hard to discern (top row), while from the
same viewpoint, the new superquadrics (b) show these clearly.

moderate with respect to modern hardware resources and leaves space
for other visualization techniques that may complement the glyphs.
The same index array can be used for all shapes.

With this implementation, only a pointer into the palette, a mod-
elview matrix, and the set of eigenvalues (for coloring) is transferred
to the graphics card per tensor. Despite the two-pass rendering for
the halos, we achieve interactive results (25 fps) when rendering more
than 3000 glyphs simultaneously in full mesh resolution on a large
viewport (1800 x 1000 pixels).

5 RESULTS

The polar plot seen in Fig. 2(b), sometimes referred to as a Reynolds
glyph, naturally generalizes to three dimensions and is an interesting
possibility for three-dimensional symmetric tensor visualization. As
Fig. 7 shows, Reynolds glyphs suffer from ambiguity problems. At
certain view angles (top row), the wide lobe associated with a single
positive eigenvalue can hide basic information about the remaining
eigenvalue magnitudes and signs. The superquadric glyphs clearly re-
veal linearly shaped tensors with (left to right) zero, one, or two nega-
tive eigenvalues. The same distinctions can only be inferred from the
Reynolds glyph when changing the viewpoint (bottom row).

In demonstrating the new glyphs on real-world data from different
contexts, our hope is to highlight possible benefits of being able to
fully “see” individual symmetric tensors. A simulation of the stress
tensor field resulting from a two downward compressive point loads is
an especially common dataset for hyperstreamline demonstrations [7],
but it is less often visualized with glyphs, in part because, as others
have noted [26], existing glyphs are unsatisfactory. Fig. 8 visualizes
this canonical dataset with hyperstreamlines and our new glyphs. Ten-
sor norms are significantly compressed, by setting s(|[D|) o< |[D||'/10
in (6), due to the very wide variation of eigenvalues. The longest axis
of glyphs in Fig. 8(a) indicates the minor eigenvector (direction of
maximal compression) typically traced with hyperstreamlines. The
glyphs additionally reveal the variation of stress patterns near the cen-
ter of the dataset, and halos clarify the orientation of the narrowest
glyphs elsewhere. The horizontal slice in Fig. 8(b) shows the radial
structure of the two compressive loads, as well as locations and di-
rections along which there is expansion (positive eigenvalues in or-
ange). A previous glyph for stress tensor visualization in geomechan-
ics depicts the orientation of the plane spanned by the two eigenvectors
with the largest eigenvalue magnitudes [40]. By symmetry preserva-
tion (3), our glyphs also depict this orientation whenever the tensor
shape strongly determines it, while also showing the principle eigen-
vector directions traced by hyperstreamlines.

Another tensor field more often depicted by streamlines or other
methods than by individual glyphs are geometry tensors G on smooth
three-dimensional implicit surfaces:

G=(I—nn")H(I—nn")/||g]| (19)
where n = g/||g|| is the normalized gradient and H is the Hessian of a
scalar function f(x). The eigenvalues of G are zero and the principal
curvatures (of the isosurfaces of f) k| and k. Invariants of G can be
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(b) Glyphs through horizontal cutting plane

Fig. 8. Glyphs in the double point load stress tensor field reveal the
minor eigenvector along which hyperstreamlines [7] are traced (a), and
the variation in stress with distance from the load (b).

volume rendered [32], but its eigenvectors are commonly used in non-
photo-realistic rendering, e.g. curvature-based strokes [11, 14, 19].
Inspecting geometry tensors could help debug an NPR method giving
unexpected results in an unfamiliar dataset. Fig. 9(a) visualizes geom-
etry tensors G on an isosurface (sampled by a particle system [39]) of
an ear from the Visible Human male CT scan. Variations in surface
curvature are reflected in the new glyphs: convex (blue circles), con-
cave (orange circles), and saddles (orange and blue stars). For compar-
ison, Fig. 9(b) shows the full Hessian H from which G was computed.

The new glyphs may also have a role in visualizing the tensor in-
gredients of image analysis methods such as edge detection. One edge
definition is zero-crossing on the second directional derivative along
the gradient direction, f” = nT Hn. This edge surface is sampled by
a particle system [33] in Fig. 9(c), showing the Hessians at the edge
locations, and revealing close similarities with the geometry tensors
on the isosurface in Fig. 9(a), indicating that one of the Hessian eigen-
values is near zero even though this is not part of the edge defini-
tion. Another edge definition is the zero-crossing of the Laplacian
V2 f =tr(H), and Fig. 9(d) illustrates the difference between the Hes-
sians on this surface and those in Fig. 9(c). The consistently gray glyph
halos in Fig. 9(d) indicate that these are traceless tensors.

As a demonstration of the glyphs in a 2-D visualization, Fig. 10
visualizes a cross-section of a simulation of jet flow rightward into a
steady medium, causing turbulence. Glyphs of rate-of-deformations
tensors document how an infinitesimal volume is stretched or com-
pressed as it moves along the flow. A backdrop of line integral con-
volution [4] (with contrast modulated by velocity) provides visual
context. Fig. 10(a) uses the exponentially-scaled ellipses of [34] to
map tensors with negative eigenvalues to positive-definite tensors suit-
able for ellipsoid visualization. When the absolute difference between
eigenvalues becomes too large, these glyphs can become so stretched
that they overlap each other and extend over a significant portion of
the domain, undermining the locality normally enjoyed by glyphs.
Such stretching also reduces the visual presence of the needle-like
glyphs for tensors with larger norms, contrary to scale preservation (6).
Fig. 10(b) uses our superquadric glyphs with s(||D||) o< ||D||. The as-
pect ratio reflects the relative eigenvalue magnitudes, the size correctly
indicates the tensor norm, and pointed glyph shapes clearly commu-
nicate eigenvector directions. With compression of scale variation
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(d) Hessians H on V2 f zero-crossing
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(c) Hessians H on f” zero-crossing

Fig. 9. Visualization of geometry tensors (a) and Hessians associ-
ated with isosurfaces (b) and two different definitions of edges, zero-
crossings of the second-directional derivative (c) and the Laplacian (d).
These results use s(||D||) o< ||D||'/? in (6).

(s(ID]]) o [ID]|'/2), Fig. 10(c) better shows the directional patterns
where the tensor norm is low. Colormapping the rate-of-deformation
tensor trace with glyph halos highlights the regions of over-all stretch-
ing or compression, especially along the bottom edge of the domain.
Finally, Fig. 11 demonstrates how our new glyph performs trace-
less tensor visualization, in a side-by-side comparison to the dedi-
cated traceless NLC tensor glyphs by Jankun-Kelly et al. [25]. Trace-
less tensors form a plane in eigenvalue space, and we are visualiz-
ing samples from a square within this plane, centered around the zero
tensor (cf. Fig. 4(e)). Unlike the traceless glyph, which maps ten-
sor norm to glyph sharpness, our glyph expresses norm by its overall
scale s(||D||) =< ||D||. Consequently, the traceless glyph requires pre-
specification of maximum eigenvalue magnitudes (which are mapped
to perfect sharpness), while our glyph can be used without such prior
information. Another notable difference is that limiting their glyph to
traceless tensors allows Jankun-Kelly et al. to make use of parts of the
superquadric shape space — including cylinders and boxes — that our
approach sets aside for positive- or negative-definite tensors.

6 CONCLUSION

Visualization research has made significant progress in visualizing
second-order tensor fields, but has mostly concentrated on the positive-
definite case. Faced with indefinite tensors, a frequent strategy is to
map them to positive-definite tensors prior to visualization [34, 22,
21, 52, 33]. Even when bijective mappings are used (so mathemati-
cally, no information is lost), such mappings still visually obscure the
difference between positive and negative eigenvalues, which is a fun-
damental qualitative aspect in various applications.

Therefore, we propose an extension of a previous positive-definite
tensor glyph [28] to the full space of symmetric second-order tensors.
Our glyph emphasizes differences in eigenvalue sign in a way that,
unlike the Reynolds glyph [18], prevents small eigenvalues from be-
ing occluded by larger ones. We also propose to use halos to ensure
tensor glyph visibility even when one or more eigenvalues are near
zero. Finally, we present a time- and memory-efficient implementa-
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Fig. 10. Rate-of-deformation tensors visualized in a computational fluid
dynamics simulation with exponentially-scaled ellipsoids (a) and our su-
perquadric glyphs (b), (c).

tion, based on a small pre-computed palette of glyph shapes which are
represented by a single triangle strip each. They are kept in GPU mem-
ory and instantiated as needed, combined with a simple and effective
shader-based coloring to indicate the quadratic form.

Tensor glyph design is ultimately a creative process that balances
aesthetic, computational, and mathematical considerations, and op-
tionally some level of specialization to a particular visualization appli-
cation. An interesting counterpart to our approach is the work of Keefe
et al. [27] that fostered the design of multi-variate fluid flow visualiza-
tions through artistic collaborations, which started with visual media
and then moved to computer graphics algorithms and the constraints
they impose. Our initial work in glyph design began with hand-drawn
experimental versions of Figs. 3, 4, and 5, but the mathematical guide-
lines of Section 2 were adopted from the outset as constructive con-
straints in the design process. Our glyph is designed to preserve sym-
metry, continuity, and invariance under scaling and eigenplane pro-
jection, while minimizing visual ambiguity. By adhering to these con-
straints, our glyph unambiguously reflects the mathematical properties
of the underlying tensors, and produces useful visualizations in a range
of applications.

Following on recent work by Jankun-Kelly et al. [24] for perceptu-
ally evaluating traceless tensor glyphs, future work may quantitatively
investigate the effectiveness of our glyph for general symmetric ten-
sors, perhaps in the context of particular application areas. Special-
purpose glyphs may offer advantages for particular applications in-
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(a) Traceless superquadric tensor
glyphs proposed in [25]

(b) Our symmetric tensor glyphs,
applied to the same traceless plane

Fig. 11. When applied to traceless tensors, our glyph (b) uses a smaller
part of superquadric shape space than a previous approach that spe-
cialized on the traceless case (a), but supplements it with color.

volving tensor fields, such as mapping glyph shape to important phys-
ically meaningful properties of the field. In contrast, our approach
has aimed for generality across applications, and is most likely not
a unique solution to the chosen mathematical constraints. We invite
other researchers to explore new ways of satisfying some or all of the
design constraints according to their own needs, perhaps starting with
Fig. 1 as a framework for sketching new glyph shapes.
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