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ABSTRACT

We describe ongoing work developing Diderot, a new paral-
lel domain-specific language (DSL) for computing on continuous
fields reconstructed from multi-dimensional images. Diderot uses a
syntax similar to mathematical conventions for expressing convolu-
tion, differentiation, and tensor operations, making it easy to code
computationally complex algorithms. In addition to being easy to
code, programs written in Diderot will be compiled for several dif-
ferent parallel architectures, with many optimizations handled au-
tomatically by the compiler.

Keywords: Image Data Visualization, Image Analysis, Paral-
lelism, Domain-Specific Language

1 INTRODUCTION

Many visualization programs are difficult to write, even though the
algorithms may involve simple mathematical principles. We fre-
quently need to take derivatives of multi-dimensional data or han-
dle tensors which result from such operations. Such ideas can usu-
ally be expressed with mathematical notation in one short line, but
implementing them may require hundreds of lines of code or re-
quire the use of complex libraries. Diderot is a parallel DSL with
high-level mathematical notation for expressing computations with
tensors and tensor fields. Diderot naturally handles fields of any di-
mension and tensors of any order. Moreover, Diderot programs will
be portable to multiple hardware targets without changing the code
at all. Our goal is a language for easily managing computations on
continuous fields reconstructed from discrete datasets that leads to
efficient, optimized, portable, and parallel code.

Diderot is inspired by previous parallel DSLs. One such lan-
guage is Scout, a general data-parallel language [6] compiled for
GPUs. Another DSL, Shadie, is a a GPU-based volume visualiza-
tion framework which emphasizes code simplicity [7]. Other work
seeks to compile a particular domain of algorithms to a range of
parallel architectures such as SMPs, clusters, and GPUs. For exam-
ple, Liszt is a DSL for expressing computations on finite element
meshes and for compiling code to a variety of architectures [3].
Diderot follows this approach, restricting the domain of the lan-
guage to computations on continuous tensor fields (including scalar
and vector fields).

2 LANGUAGE ABSTRACTIONS

Diderot has several built in types and operations for expressing
high-level mathematical computations and abstracting away dis-
crete image data. The syntax of Diderot expressions mirrors con-
ventional mathematical notation, making programs easier to read.

The tensor is the basic computational type. Tensors are de-
clared as: tensor[d1,d2,...,dm]. The [d1,d2,...,dm]
(di > 1) is the shape of an mth order tensor. Common tensor
types have aliases, e.g., real means tensor[] and vec3 means
tensor[3]. Diderot supports addition (“+”) and subtraction
(“-”) of tensors, as well as common vector and tensor products
(i.e., inner p • q, cross p × q, outer p ⊗ q).
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The image type represents multi-dimensional arrays of ten-
sors, and stores meta-data about how the array is oriented in
world space. The image can have any number of dimen-
sions and store tensors of any order. Images are declared as:
image(n)[d1,d2,...,dm]. n is the dimension of the image
array (n > 0) and [d1,d2,...,dm] is the shape of the tensors
stored in the image. For example, to load a 3D image of scalars:

image(3)[] my_data = load ("data.nrrd");

Diderot uses univariate piecewise polynomial kernels to recon-
struct continuous fields from discrete data by separable convolu-

tion. Each kernel has a Ck continuity level that limits the number
of times a field reconstructed with the kernel may be differentiated
to k. Diderot provides kernels such as C2 Cubic B-spline bspln3,
C1 Catmull-Rom ctmr, and C0 tent for linear interpolation.

The field type combines kernels and discrete data to create the
abstraction of smooth tensor fields over continuous world-space.
Fields are declared as field#k(n)[d1,d2,...,dm], where k is
the continuity level. Convolving 3D image my_data with a cubic

B-spline creates C2 scalar field my_field:

field#2(3)[] my_field = bspln3 ! my_data;

Besides convolution, fields are created by adding, subtracting,
and scaling existing fields, as well as by differentiation:

field#1(3)[3] gradient = ∇my_field;

field#0(3)[3,3] Hessian = ∇⊗∇my_field;

∇, ∇×, and ∇⊗ are higher-level functions that apply analytic
differentiation to fields. Fields are not pre-computed; they are ab-
stract functions that can be evaluated at any location to produce
a tensor. Kernel differentiation and convolution are not computed
until a field is probed at a particular world-space location.

3 COMPUTATION MODEL

Diderot is a C-like language extended with high-level mathemat-
ical notation for expressing computations on tensors and tensor
fields. Diderot organizes the computation into mostly-autonomous
strands, which are the unit of parallelism. Each strand has lo-
cal state and an update method. The execution model is bulk-
synchronous and deterministic. Each iteration updates every
strand independently. Execution continues until all strands either
stabilize, producing output, or die, with no output.

A Diderot program has a simple structure composed of three
parts: global declarations, strand definitions, and strand initializa-
tion. Global declarations include variables readable by all strands.
The strand definition includes some parameters, strand-local vari-
ables (and their initialization), and an update method. Finally,
strand initialization creates all the strands with the correct param-
eters. Like shader languages, Diderot global variables are im-
mutable, but local strand-instance variables are mutable. The fol-
lowing is a simple Diderot program which creates 50 strands that
output the numbers 0.0 to 49.0:

int numStrands = 50;

strand my_strand (int i) {

output real out = real(i);

update { stabilize; }

}

initially [ my_strand(i) | i in 0..(numStrands - 1) ];



Not only does Diderot make code easier to write, it enables ef-
ficient executables for a variety of architectures, taking advantage
of the highly parallel nature of such algorithms. The Diderot com-
piler currently supports both sequential and SMP executables, and
a GPU (OpenCL) version is under development. Traditionally, par-
allel programs must be tuned for different platforms by hand, but,
because Diderot is designed for a specific domain of computation,
it is possible for the compiler generate efficient code for signifi-
cantly different target platforms. Domain knowledge also allows
the compiler to take advantage of target features such as SSE vec-
tor instructions automatically. Because Diderot is implemented as
a compiler, instead of as a library, it is able to optimize across
the whole program. For example, it can eliminate redundancies
in probing a field’s value, gradient, and Hessian.

4 EXAMPLE APPLICATIONS

The language abstractions and computational model discussed
above support a wide range of visualization and analysis algo-
rithms. Direct volume rendering is one natural application of
Diderot. Direct volume rendering creates an image by casting one
ray per pixel through a field and determining color from local field
properties [4]. The computation of each ray is independent, so we
create one strand per ray, with an update function that increments
along the ray and updates the color according to the transfer func-
tion. Local curvature, summarized in a geometry tensor, G, can be
used in transfer functions [5] (Figure 1):

tensor[3] norm = normalize(∇F(p));

tensor[3,3] P = identity[3] - norm⊗norm;

tensor[3,3] G = -(P•(∇⊗∇F(p))•P)/|∇F(p)|;

!
1

!
2

Figure 1: Volume rendering of a synthetic dataset with a transfer
function designed to illustrate curvature computation.

Another application of Diderot is line integral convolution (LIC),
which visualizes a vector field by blurring a noise texture (Fig-
ure 2) [1]. The computation is independent for each pixel, so in
Diderot, we can create one strand for each pixel. At every iteration,
each strand takes a step along the direction of the underlying vector
field and adds the contribution of the new location. A second order
Runge-Kutta (Midpoint method) integration updates position p in
vector field V with step size h via:

p += h*V(p + 0.5*h*V(p));

Figure 2: LIC of a turbulent vector field with color based on curl,
expressed in Diderot as ∇×V(p).

Another natural application of Diderot is edge detection (Fig-
ure 3). One simple method is to create a separate strand for every

pixel and classify edge pixels with a threshold on gradient mag-
nitude and with non-maximal suppression [2]. Each pixel can be
classified in parallel:

vec3 step = h*normalize(∇F(p));

if(|∇F(p)| > threshold &&

-|∇F(p+step)| + 2*|∇F(p)| - |∇F(p-step)| > 0)

A more refined technique would create a particle system, ini-
tialized with particles evenly spread over the image domain. The
solution would be computed with one strand per particle, using
Newton-Raphson iterations to move them along image gradients
towards maxima of gradient magnitude.

Figure 3: Edge detection of a face.

5 FUTURE WORK

While we have been able to write several non-trivial Diderot pro-
grams, Diderot is still a work in progress. Work is being done to
allow strands to communicate and share information. We also plan
to support the dynamic creation of strands after computations have
started and to add a global computation step to be executed after
each iteration. These additions will increase the range of algorithms
supported by Diderot. We are also working to make Diderot code
callable as a C library. With callable libraries, it will be easy to
combine Diderot computations with other processing, and to chain
Diderot computations together. Future work will include porting
Diderot to MPI clusters. We expect one of the first applications
of Diderot will be in education, allowing students to focus on high-
level algorithmic design and still get highly parallel executables that
efficiently process real-world datasets.
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1. Introduction 
D

iderot is a language designed for efficient analysis and visualization of m
ulti-dim

ensional 
im

ages. B
y supporting high-level m

athem
atical abstractions in a fam

iliar notation, D
iderot 

m
akes com

m
on im

age analysis and visualization algorithm
s easier for dom

ain experts to 
im

plem
ent. D

iderot also m
akes it easy to take advantage of the extensive parallelism

 present 
in these algorithm

s w
ithout forcing the program

m
er to learn the low

-level details of the 
target platform

. 
 D

iderot is inspired by previous parallel dom
ain specific languages. Scout [6] com

piles 
general-purpose data-parallel program

s to G
PU

s. Shadie [7] sim
plifies creating G

PU
-based 

volum
e renderers w

ith concise program
s. O

ther D
SLs trade generality in parallel 

architectures for specificity in algorithm
s, such as Liszt [3] for finite elem

ent m
esh codes. 

D
iderot follow

s this approach, being restricted to com
putations on continuous tensor fields 

(including scalar and vector fields). 

Figure 3: Volum
e rendering of a synthetic dataset [5]. This volum

e rendering of a 3-dim
ensional scalar 

field w
as designed to dem

onstrate com
putations of curvature using second derivatives of the field. The 

code segm
ent evaluates the principle curvatures K

1 and K
2 at position pos: 

 im
age(3)[]  I  =  load(“data.nrrd”);; 

field#2(3)[] F = I ⊛
 bspln3; 

 vec3 grad = -∇F(pos); 
tensor[3,3] H

 = ∇⊗
∇F(pos); 

vec3 norm
 = norm

alize(grad); 
tensor[3,3] P = identity[3] - norm⊗

norm
; 

tensor[3,3] G
 = -(P•H

•P)/|grad|;; 
real disc = sqrt(2.0*|G

|^2 - trace(G
)^2); 

real k1 = (trace(G
) + disc)/2.0; 

real k2 = (trace(G
) - disc)/2.0; 
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Program
 structure 

G
lobals 

•
The first part of each program

 declares program
-w

ide global variables 
•

This data is not m
odified once the strands begin com

putation 
•

The im
age datasets, and fields created from

 them
, are globals 

 Strand definition 
•

Param
eters describe the initial state of the strands 

•
Local variables m

ake up the state of each strand 
•

A
n update function expresses one iteration of per-strand com

putation 
 Strand initialization 
•

C
reates the initial param

eterized set of strands 

H
igh-level m

athem
atical abstractions 

Tensors 
•

tensor[d
1 ,d

2 ,...,d
m ] is an m

th order tensor w
here d

i  denotes the length of the tensor along 
dim

ension i 
•

real and vec3 are aliases for tensor[] and tensor[3] respectively 
•

C
om

m
on tensor operations (+, -,  •,  ×, ⊗

) in unicode and ascii are available 
 Input im

age datasets 
•

Parallel com
putations in im

age datasets are the purpose of D
iderot program

s 
•

im
age(n)[d

1 ,d
2 ,...,d

m ] is an n-dim
ensional array of tensor[d

1 ,d
2 ,...,d

m ]s 
•

The im
age is to be used to reconstruct a continuous field 

•
Lookup tables and volum

e rendering transfer functions are also read as im
ages and 

accessed as fields 
 C

ontinuous fields 
•

field#k(n)[d
1 ,d

2 ,...,d
m ] is an n-dim

ensional field of tensor[d
1 ,d

2 ,...,d
m ] 

•
The #k indicates that the field is C

k continuous – it can only be differentiated k tim
es, 

and further differentiation is a type error 
•

Fields are created by convolving (⊛
) im

ages w
ith various univariate kernels (e.g. tent 

and bspln3) – D
iderot uses separable convolution for m

ulti-dim
ensional fields 

•
Fields can be evaluated at arbitrary locations in the dom

ain 
•

C
om

m
on field operations (+, -, ∇, ∇×, ∇⊗

) in unicode and ascii are supported 

3. Language D
etails 

D
iderot is designed for expressing parallel com

putations on tensor fields. Fam
iliar 

m
athem

atical notation is included for m
anipulating tensors and continuous fields. In 

addition to m
aking it easier for dom

ain experts to rapidly im
plem

ent a variety of im
age 

analysis  and  visualization  algorithm
s,  the  sim

plicity  of  D
iderot’s  notation  m

akes  it  an  ideal  
candidate language for educational settings w

here students m
ay not have tim

e to learn 
m

ore com
plex m

ethods. 
 The source code in figure 2 show

s each section of the program
 structure. A

n exam
ple of 

the  use  of  D
iderot’s  m

athem
atical  abstractions  is  included  w

ith  figure  3. 

Figure 1: Illustrative volum
e rendering of a 

C
T scan [4, 5]. This illustrative volum

e 
rendering of a C

T scan of a hum
an hand is a 

typical exam
ple of a possible application for 

D
iderot. Every strand com

putes a separate ray 
integral in parallel, one per-pixel of the output 
im

age. The final im
age w

as colored w
ith a 

curvature-based transfer function involving 
second derivatives of the data (com

puted in a 
m

anner sim
ilar to that seen in Figure 3). 

Figure 2: Line Integral C
onvolution [1]. This LIC

 w
as created w

ith the m
idpoint integration m

ethod, 
w

ith coloration indicating curl. The pieces of D
iderot code show

n below
 w

ere selected to illustrate the 
structure of the program

 used to create this LIC
. 

 field#2(2)[2]  V
  =  load(“vectors.nrrd") ⊛

 bspln3; 
field#0(2)[]  R

  =  load(“noise.nrrd") ⊛
 tent; 

strand LIC
 (int xi, int yi) { 

 
vec2 p = [xi,yi]; 

 
output real sum

 = 0; 
 

update { 
 

 
p += h*norm

alize(V
(p + 

 
 

 
 

0.5*h*norm
alize(V

(p)))); 
 

 
sum

 += R
(p); 

 
 

if (step == stepM
ax) {stabilize;} 

 
} 

} initially [ LIC
(xi, yi) | yi in 0..(im

gSizeY-1), xi in 0..(im
gSizeX

-1) ]; 
 

Figure 4: Edge detection [2]. Edge detection is 
a natural application for D

iderot, since edges 
can be classified by finding m

axim
a in the 

gradient m
agnitude of an im

age, and 
com

putations can be done in parallel in different 
parts of the im

age. The notation m
akes 

determ
ining the gradient trivial and significantly 

sim
plifies the task of finding local m

axim
a. 

 N
on-m

axim
al suppression: 

vec3 step = h * norm
alize(∇F(p)); 

if (|∇F(p+step)|<|∇F(p)| &
&

 
 

 
|∇F(p – step)|<|∇F(p)|) { 

 
R

G
B

 += [c*|∇F(p)|, c*|∇F(p)|, 0]; 
 

} 

2. Portable Parallelism
 

M
any im

age analysis and visualization tasks benefit heavily from
 parallelization. In the 

exam
ples, the com

putations are parallelized over per-pixel ray integrals (volum
e 

renderings, Figures 1 and 3), per-pixel stream
lines (LIC

, Figure 2), or other per-pixel 
com

putations (edge detection, Figure 4). D
iderot is designed to support parallel 

im
plem

entation across a w
ide range of parallel platform

s. B
y restricting the dom

ain of 
applications for D

iderot, it can achieve better perform
ance on a w

ide variety of parallel 
hardw

are. 

Parallelism
 m

odel 
•

D
iderot com

putation is divided into lightw
eight threads called strands 

•
Each strand has som

e param
eters used to distinguish its starting state from

 the other 
strands 

•
A

ll strands have access to global variables, including im
ages and fields 

•
Each strand has its ow

n local state 
•

Program
s execute in a bulk synchronous fashion, w

ith each strand updated in each step 
•

Strands term
inate by either 

•
stabilizing, in w

hich case their state contributes to the output 
•
dying,  in  w

hich  case  the  strand’s  state  is  discarded 

Portability across different hardw
are platform

s 
•

W
e distinguish betw

een the parallelism
 m

odel the program
m

er uses and the hardw
are 

the program
 is being run on 

•
D

iderot program
s can be run 

•
Sequentially on a single C

PU
 core 

•
W

ith threads on m
ultiple C

PU
 cores 

•
O

n a G
PU

 
•

D
iderot also takes advantage of hardw

are vector instruction sets like Intel SSE 

4. Future W
ork 

Expand range of supported algorithm
s 

•
A

llow
 strands to interact and 

com
m

unicate w
ith each other 

•
A

llow
 dynam

ic creation of strands 
•

A
dd a global com

putation phase 

Expand range of target platform
s 

•
A

dd support for M
PI clusters 

U
sability im

provem
ents 

•
M

ake D
iderot executables callable as 

libraries 


