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Why another tensor glyph?
•Tensors locally model complex physical phenomena
• Intrinsically multi-variate: focus of vis research

[deLeeuw vanWijk93]

[Theisel+03][Kindlmann04]

[Schultz
Kindlmann10]

[ZhengPang05]

[Zhang+09]

[Chen+11]

[Laidlaw+98]
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Basic vis research question: how can we 
“see” a 2x2 matrix as clearly as we can
use an arrow glyph ↗︎ to “see” a 2-vector?
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Three-way decomposition of tensor
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v(x) = Txreference visualization of     : streamlines throughT
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Decomposition,coords of tensor in new basis

BS1 ,BS2               rotations 
of each other:

D,S1, S2, R; X(T) = T : BX = tr(TtBX)components:

(D,S,R,↵) : T = DBD + SA(↵)BS1A(↵)t +RBRCoordinates:

Dilation/Contraction RotationStretching or Strain rate



§3: Relative to previous math
• (D,S,R) = √2(γd, γs, γr) [Zhang+09] [Chen+11]

•Highlighting connection to invariants and norms:
 tr(T)=√2D; det(T)=(D2–S 

2+R2)/2; ||T||F =√(D2+S 
2+R2)

•Simplifies expression of dual [ZhengPang05], 
pseudo-eigenvectors [Zhang+09] [Chen+11]
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•Using double-angle formulae for stretch component



G(T) = s(kTkF ) Ẽ ⇤̃ b(D,S,R)

Glyph formation and design principles

• Applying Algebraic Visualization Design [KindlmannScheidegger14], 
especially Principle of Visual-Data Correspondence:

• Continuity: T1≈T2  ⇒  G(T1)≈G(T2)
• Symmetry preservation: T=RTR-1 ⇒  G(T)=R(G(T))

• S=0 means b should ideally be continuously rotationally symmetric
• “Transform legibility”: rotation: G(RTR-1) = R(G(T));
 scaling: G(sT) = “s(G(T))”;   negation G(-T) = “-G(T)” 

base 
geometry

diagonal matrix to 
scale along each axis

over-all 
scaling transform

[SchultzKindlmann10]
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base 
geometry
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scale along each axis

over-all 
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4D to 3D 
space

[SchultzKindlmann10]



Simplifying the glyph design space

S R

D

Negation legibility:
G(-D,S,R)= -G(D,S,R)

G(D,S,-R)= -G(D,S,R)

Gnomonic 
projection

Scale legibility: 
design b for 
||T||F =1

S R

D

S R

D

S R

D



D = 1

S = 1 R = 1

S = 0: continuous rotational sym
m

etry

D = 0: traceless tensors: tr(T) = 0

R 
= 

0:
 no

 ro
tat

io
n;

 T
 is

 sy
m

m
etr

ic:
 T
t =T

Visualizing the new 
design space

v(x) = Tx

Shown with 
streamlines 
through
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Visualizing the new 
design space

Re-use this space !
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tr(T) = √2D 

Our strategy: 
design on  

edges, then 
fill interiorv(x) = Tx

Shown with 
streamlines 
through
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Symmetric Tensors



Symmetric Tensors

•Superquadrics:

•Exponent varied to indicate rotational asymmetry

•Axes scaled by eigenvalue

•Negation legibility: negate A,B in CIELAB

•(L, A, B) = (80, 5.8 x·T·x, 23.2 x·T·x)



Traceless Tensors



Traceless Tensors

•Deform with matrix of eigenvector columns when real

•Use matrix of pseudoeigenvectors [Zhang+09] when 
complex

•Same coloring as in symmetric case: generates solid 
gray for S=0



Rotationally 

Symmetric

Tensors



Rotationally Symmetric Tensors

•Circular shape preserves rotational symmetry

•Luminance gradient
• Gives rotation direction and magnitude
• Pattern relates to peripheral drift illusion [Fraser79]
• Breaks rotational symmetry



Glyphs on exterior Halos used for tensors 

with zero determinant



Parallel eigenvectors

• (pseudo)eigenvectors are parallel 
when S=R D

S R



Parallel eigenvectors

• (pseudo)eigenvectors are parallel 
when S=R

•Adjust vectors so glyph area 
indicates tensor determinant 
(“quasi-eigenvectors”)

D

S R



Glyphs in interior Exponent for base 

superquadric



Negation Legibility

•Negating R is a reversal of rotation direction

•Negating D swaps expansion and contraction



Results

•Two superimposed 

Sullivan vortices 

[Zhang+09]

• Same magnitude

• Opposite direction

• Small horizontal offset

•LIC background



Results

• Central slice of a 3D unsteady flow simulation [ICFDD]

• LIC background

• Magenta and green indicate positive and negative 
vorticity, respectively



Conclusion & Future work
•Expanded the class of tensors visible by glyphs

•Constructively guided by Algebraic Vis design
• Transform legibility: negation, scaling, rotation
• Continuous, unambiguous

•Captures previous glyphs as special cases

•Designed glyphs within novel D,S,R triangle

•Extension to 3D case

•Evaluation
• Measure quality of embedding [Demiralp+14]
• User study in scientific application
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Thank you!
Questions?
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nseltzer@uchicago.edu   glk@uchicago.edu


