EuroVis 2016

Glyphs for Asymmetric Second-Order 2D Tensors

Nicholas Seltzer and Gordon Kindlmann

Department of Computer Science and Computation Institute, University of Chicago, USA

Why another tensor glyph?

-Tensors locally model complex physical phenomena

- Intrinsically multi-variate: focus of vis research

[Laidlaw+98]

aKindlmann10]

Why another tensor glyph?

-Tensors locally model complex physical phenomena

- Intrinsically multi-variate: focus of vis research

Basic vis research question: how can we "see" a $2 x 2$ matrix as clearly as we can use an arrow glyph \nearrow to "see" a 2-vector?
[Zhang+09]

reference visualization of \mathbf{T} : streamlines through $\mathbf{v}(\mathbf{x})=\mathbf{T x}$

Decomposition,coords of tensor in new basis

Dilation/Contraction

Stretching or Strain rate

Rotation components: $D, S_{1}, S_{2}, R ; X(\mathbf{T})=\mathbf{T}: \mathbf{B}_{X}=\operatorname{tr}\left(\mathbf{T}^{\mathrm{t}} \mathbf{B}_{X}\right)$
$\mathbf{B}_{S_{1}}, \mathbf{B}_{S_{2}}$ rotations of each other:

$$
\mathbf{A}(\alpha)=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]
$$

$$
S=\sqrt{S_{1}^{2}+S_{2}^{2}} \quad \mathbf{B}_{S_{2}}=\mathbf{A}(\pi / 4) \mathbf{B}_{S_{1}} \mathbf{A}(-\pi / 4)
$$

Coordinates: $(D, S, R, \alpha): \mathbf{T}=D \mathbf{B}_{D}+S \mathbf{A}(\alpha) \mathbf{B}_{S_{1}} \mathbf{A}(\alpha)^{\mathrm{t}}+R \mathbf{B}_{R}$

§3: Relative to previous math

- $(D, S, R)=\sqrt{2}\left(\gamma_{d}, \gamma_{s}, \gamma_{r}\right)$ [Zhang+09] [Chen+11]
-Highlighting connection to invariants and norms: $\operatorname{tr}(\mathbf{T})=\sqrt{2} D ; \operatorname{det}(\mathbf{T})=\left(D^{2}-S^{2}+R^{2}\right) / 2 ;\|\mathbf{T}\|_{F}=\sqrt{ }\left(D^{2}+S^{2}+R^{2}\right)$
-Using double-angle formulae for stretch component $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]=\sqrt{2} \mathbf{A}(\theta / 2) \mathbf{B}_{S_{1}} \mathbf{A}(-\theta / 2) ; \mathbf{A}(\alpha)=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
- Simplifies expression of dual [ZhengPang05], pseudo-eigenvectors [Zhang+09] [Chen+11]

Glyph formation and design principles

$G(\mathbf{T})=s\left(\|\mathbf{T}\|_{F}\right) \tilde{\mathbf{E}} \tilde{\Lambda} \mathbf{b}(D, S, R)$

- Applying Algebraic Visualization Design [KindlmannScheidegger14], especially Principle of Visual-Data Correspondence:
- Continuity: $T_{1} \approx T_{2} \Rightarrow G\left(T_{1}\right) \approx G\left(T_{2}\right)$
- Symmetry preservation: $\mathrm{T}=\mathrm{RTR}^{-1} \Rightarrow \mathrm{G}(\mathrm{T})=\mathrm{R}(\mathrm{G}(\mathrm{T}))$
- $S=0$ means b should ideally be continuously rotationally symmetric
- "Transform legibility": rotation: $\mathrm{G}\left(\mathrm{RTR}^{-1}\right)=\mathrm{R}(\mathrm{G}(\mathrm{T}))$; scaling: $G(s T)=" s(G(T)) " ;$ negation $G(-T)="-G(T) "$

Glyph formation and design principles

- Applying Algebraic Visualization Design [KindlmannScheidegger14], especially Principle of Visual-Data Correspondence:
- Continuity: $T_{1} \approx T_{2} \Rightarrow G\left(T_{1}\right) \approx G\left(T_{2}\right)$

4D to 3D space

- Symmetry preservation: $\mathrm{T}=\mathrm{RTR}^{-1} \Rightarrow \mathrm{G}(\mathrm{T})=\mathrm{R}(\mathrm{G}(\mathrm{T}))$
- $S=0$ means b should ideally be continuously rotationally symmetric
-"Transform legibility": rotation: $\mathrm{G}\left(\mathrm{RTR}^{-1}\right)=\mathrm{R}(\mathrm{G}(\mathrm{T})$); scaling: $G(s T)=" s(G(T)) " ;$ negation $G(-T)="-G(T) "$

Simplifying the glyph design space

Scale legibility: design b for

Negation legibility:
$G(-D, S, R)=-G(D, S, R)$
Gnomonic projection
$G(D, S,-R)=-G(D, S, R)$

Visualizing the new design space

 Re-use this space!

 Re-use this space!}

Shown with streamlines through

$$
\mathbf{v}(\mathrm{x})=\mathbf{T} \mathbf{x}
$$

KZhang+09] [Chen+11]

Our strategy: design on edges, then

$$
\begin{aligned}
& \text { iwhf } \\
& S=1
\end{aligned}
$$ fill interior

Symmetric Tensors

Symmetric Tensors

- Superquadrics: $\left(\cos ^{a} \theta, \sin ^{a} \theta\right)$
- Exponent varied to indicate rotational asymmetry
-Axes scaled by eigenvalue
- Negation legibility: negate A, B in CIELAB
$\cdot(\mathrm{L}, \mathrm{A}, \mathrm{B})=(80,5.8 \mathrm{x} \cdot \mathrm{T} \cdot \mathrm{x}, 23.2 \mathrm{x} \cdot \mathrm{T} \cdot \mathrm{x})$

Tr T $D=1$
 Traceless Tensors

Traceless Tensors

-Deform with matrix of eigenvector columns when real - Use matrix of pseudoeigenvectors [Zhang+09] when complex
-Same coloring as in symmetric case: generates solid gray for $\mathrm{S}=0$

Rotationally Symmetric Tensors

$D=1$

Rotationally Symmetric Tensors

-Circular shape preserves rotational symmetry
-Luminance gradient

- Gives rotation direction and magnitude
- Pattern relates to peripheral drift illusion [Fraser79]
- Breaks rotational symmetry

Glyphs on exterior

Halos used for tensors

 No with zero determinant
Parallel eigenvectors

-(pseudo)eigenvectors are parallel when $\mathrm{S}=\mathrm{R}$

Parallel eigenvectors

-(pseudo)eigenvectors are parallel when $\mathrm{S}=\mathrm{R}$
-Adjust vectors so glyph area indicates tensor determinant ("quasi-eigenvectors")

Glyphs in interior

Exponent for base

Negation Legibility

- Negating R is a reversal of rotation direction - Negating D swaps expansion and contraction

Results

-Two superimposed Sullivan vortices [Zhang+09]

- Same magnitude
- Opposite direction
-Small horizontal offset
-LIC background

Results

-Central slice of a 3D unsteady flow simulation [ICFDD]
-LIC background

- Magenta and green indicate positive and negative vorticity, respectively

Conclusion \& Future work

-Expanded the class of tensors visible by glyphs

- Constructively guided by Algebraic Vis design
-Transform legibility: negation, scaling, rotation
- Continuous, unambiguous
- Captures previous glyphs as special cases
- Designed glyphs within novel D,S,R triangle
- Extension to 3D case
- Evaluation
- Measure quality of embedding [Demiralp+14]
- User study in scientific application

References

- [Chen+11] G Chen, D Palke, Z Lin, H Yeh, P Vincent, R S Laramee, E Zhang: Asymmetric tensor field visualization for surfaces. IEEE TVCG. 17:1979-1988 (2011)
- [Demiralp+14] Ç Demiralp, C E Scheidegger, G L Kindlmann, D H Laidlaw, J Heer: Visual embedding: A model for visualization. IEEE CG+A 34: 10-15 (2014)
- [Fraser79] A Fraser, K J Wilcox: Perception of illusory movement. Nature 281: 565-566 (1979)
- [ICFDD] International CFD database. Formerly at http://cfd.cineca.it/. Further info at https://people.mpi- inf.mpg.de/~weinkauf/notes/ squarecylinder.html
- [Kindlmann04] G Kindlmann: Superquadric Tensor Glyphs. Proc. VisSym 2004, pp. 147-154
- [KindlmannScheidegger14] G Kindlmann, C Scheidegger: An algebraic process for visualization design. IEEE TVCG 20: 2181-2190 (2014)
- [Laidlaw+98] D Laidlaw, E Ahrens, D Kremers, M Avalos, R Jacobs, C Readhead: Visualizing diffusion tensor images of the mouse spinal cord. Proc. Vis. 1998, pp. 127-134
- [deLeeuw vanWijk93] C De Leeuw, J van Wijk: A probe for local flow field visualization. Proc. Vis. 1993, pp. 39-45
- [SchultzKindlmann10] T Schultz, G Kindlmann: Superquadric glyphs for symmetric second-order tensors. IEEE TVCG 16: 1595-1604 (2010)
- [Theisel+03] H Theisel, T Weinkauf H-C Hege, H-P Seidel: Saddle connectors - An approach to visualizing the topological skeleton of complex 3D vector fields. Proc. Vis. (2003), pp. 225-232
- [Zhang+09] E Zhang, H Yeh, Z Lin, R S Laramee: Asymmetric tensor analysis for flow visualization. IEEE TVCG 15: 106-122 (2009)
- [ZhengPang05] X Zheng, A Pang: 2D asymmetric tensor analysis. In Proc. Vis. 2005, pp. 3-10

Glyphs for Asymmetric Second-Order 2D Tensors Nicholas Seltzer

Gordon Kindlmann nseltzer@uchicago.edu glk@uchicago.edu

