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Abstract

Tensors model a wide range of physical phenomena. While symmetric tensors are sufficient for some applications (such as dif-
fusion), asymmetric tensors are required, for example, to describe differential properties of fluid flow. Glyphs permit inspecting
individual tensor values, but existing tensor glyphs are fully defined only for symmetric tensors. We propose a glyph to visual-
ize asymmetric second-order two-dimensional tensors. The glyph includes visual encoding for physically significant attributes
of the tensor, including rotation, anisotropic stretching, and isotropic dilation. Our glyph design conserves the symmetry and
continuity properties of the underlying tensor, in that transformations of a tensor (such as rotation or negation) correspond to
analogous transformations of the glyph. We show results with synthetic data from computational fluid dynamics.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Curve, surface, solid, and object
representations—Computer Graphics [I.3.8]: Applications—

1. Introduction

Tensors provide an essential mathematical model for a range
of physical phenomena. Some important examples are in
physics (stress/strain, deformation gradient, velocity gradient),
biomedicine (diffusion), geometry (metric/curvature), and com-
puter vision (structure). For many applications, the problem of an-
alyzing or visualizing the tensor field is simplified by the tensor
being symmetric (Tt = T). Other tensors, such as from deforma-
tion and velocity gradients, are not symmetric.

Though there has been significant work on asymmetric tensor
field analysis, the community lacks an established method for visu-
alizing the tensor itself, even in the two-dimensional case. We focus
on exactly this problem. Glyphs are an ideal visualization choice
for displaying tensors at discrete points, since the glyph shape, ori-
entation, and appearance encode all the degrees of freedom in the
tensor.

This paper proposes a glyph for visualizing general two-
dimensional second-order tensors. There are several design prin-
ciples we hope to follow. We want the design to be continuous
and disambiguous: tensors that are very similar should be repre-
sented with visually similar glyphs and tensors that are very dif-
ferent should be visually distinct. The glyph should preserve the
symmetries of the tensor: if the tensor is symmetric to some change
in coordinates (e.g. a rotation), the glyph should exhibit a similar
symmetry.

Tensor decomposition often plays a fundamental role in tensor
analysis. There are different ways to decompose a tensor, and the
most informative decomposition may be application dependent. We

hope to make several basic tensor properties easily identifiable from
the glyph appearance: the isotropic, deviatoric, and rotational com-
ponents, and the properties of the tensor eigensystem.

Our main contribution is a new tensor glyph (Sec. 4), modestly
expanding the class of tensors with fully defined glyphs to asym-
metric 2D 2nd-order tensors (i.e., 2×2 matrices). We make sure to
include previous tensor glyphs as special cases of our own, and we
demonstrate that algebraic visualization design [KS14] can con-
structively guide each step of constructing a new visual encod-
ing. Our design is created within a novel barycentric space to or-
ganize unit-norm tensors. Our glyph definition benefits from re-
visiting (Sec. 3) the mathematical bases of previous work with
asymmetric tensors [ZP05, ZYLL09, CPL∗11]. Our contributions
here include clarifications of which tensor decomposition coor-
dinates are invariant with respect to basis, and expressions of
(dual,pseudo)eigenvectors simplified by exploiting double angle
formulae to parameterize tensor orientation.

2. Background and Related Work

2.1. Tensor Field Visualization

Existing methods for tensor field visualization fall into several cat-
egories; surveys [LV12, KASH13] provide more context. Some di-
rect methods use color-mapping and volume rendering [DGBW09,
KWH00] to depict large, continuous regions. Other methods that
produce dense visualizations of continuous regions of the field in-
clude texture-based methods like LIC and brush-strokes [LAK∗98,
ZP03, HFH∗04].
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Geometry-based methods create shapes that encode tensor prop-
erties. Glyphs are small shapes used to represent individual ten-
sors at particular locations in the field (more in section 2.2).
Hyperstreamlines [DH93] and hyperstreamsurfaces [JSF∗02] are
lines and surfaces that follow the eigenvectors of the tensor field
in a method similar to streamlines in vector field visualization
(topological skeletons being a special case of hyperstreamlines
[HLL97]). These methods are also sometimes combined to cre-
ate hybrid visualizations [ZYLL09]. Continuous renderings can be
used to provide context for glyphs or other geometry based meth-
ods [SEHW02, DGBW09].

2.2. Tensor glyphs

For symmetric tensors, our glyphs are very similar to existing su-
perquadric glyphs [SK10b]. These glyphs are scaled and rotated to
match the scaling and orientation of the eigensystem of the tensor.
We extend the design to apply to asymmetric tensors as well, rep-
resenting asymmetric glyphs by more complex deformations to the
base shape. Other shapes have also been used for the base geome-
try of tensor glyphs, including of unit spheres [BML94], cylinders
[WLW00], and multiple superimposed shapes [Hab90, WMK∗99].
Often these shapes are deformed by scaling and rotating the glyph
so the axes are aligned with the eigenvectors of the tensor and the
dimensions match the eigenvalues. A different approach is to cre-
ate planes [NJP05] or more complex analytic surfaces representing
tensor properties [MSM95, HYW03].

A lot of existing work visualizing asymmetric tensor fields is
specifically motivated by vector field analysis, with many placing
special emphasis on using glyphs to represent the Jacobian near
critical points of the field. Field lines near such critical points are
one source of inspiration for our glyph shape. Several other works
already closely match streamline shapes, including the concave su-
perquadrics for indefinite tensors [SK10b] and the elliptical glyphs
representing tensors with complex eigensystems [CPL∗11]. There
are other methods for visualizing vector fields which incorporate
features of the Jacobian [dLvW93,AKK∗13,TWHS03] into the vi-
sualization, but do not apply to the visualization of tensor fields
alone.

Aside from shape, color is another important consideration for
glyph design. Two common techniques are to use color to indicate
eigenvalue sign [Hab90,JSF∗02,SK10a] or eigenvector orientation
[WLW00]. In general, color is well used to differentiate properties
of the tensor that are unclear from the shape of the glyph alone.

3. Tensor Algebra

The following decomposition and parameterization of the space of
second-order two-dimensional tensors underlies the design space
of our new glyphs. Instead of using tensor invariants, as in previous
tensor glyph designs [SK10b], we define our space in terms of the
2× 2 matrix T representing a tensor in a given orthonormal basis
for R2, and note invariances with respect to the basis as they arise.

Following previous work [ZYLL09, CPL∗11], we decompose T
into isotropic CD, traceless symmetric (deviatoric) CS, and anti-

symmetric CR components, via

T = 1
2 (T+Tt)︸ ︷︷ ︸
(symmetric)

+ 1
2 (T−Tt)︸ ︷︷ ︸

(antisymmetric)

(1)

= 1
2 tr(T)I︸ ︷︷ ︸
=CD

+ 1
2 (T+Tt)− 1

2 tr(T)I︸ ︷︷ ︸
=CS

+ 1
2 (T−Tt)︸ ︷︷ ︸

=CR

(2)

Tt and tr(T) are the transpose and trace of T; using these oper-
ations ensures that the decomposition is invariant with respect to
basis. The CD, CS, CR components capture three basic modes of
fluid parcel motion: isotropic expansion, anisotropic stretching, and
rotation, respectively. This decomposition is common in fluid dy-
namics [Bat67] and particularly in the previous work on visualizing
velocity gradients [ZYLL09, CPL∗11].

How we parameterize these three components is functionally
equivalent to previous work, though we clarify here relationships
between invariants, bases, and eigenvector orientation. We define
basis matrices to span the isotropic, traceless symmetric, and anti-
symmetric subspaces:

BD = 1√
2

[
1 0
0 1

]
BR = 1√

2

[
0 −1
1 0

]
BS1 =

1√
2

[
1 0
0 −1

]
BS2 =

1√
2

[
0 1
1 0

]
.

(3)

The decomposition (2) can be stated in this basis as:

T = D(T)BD︸ ︷︷ ︸
=CD

+S1(T)BS1 +S2(T)BS2︸ ︷︷ ︸
=CS

+R(T)BR︸ ︷︷ ︸
=CR

; (4)

X(T) = X = T : BX ; X ∈ {D,S1,S2,R} (5)

where “:” is the Frobenius inner product A : B = tr(ABt). A change
of basis between any two orthonormal bases for R2 is a unitary
transform T′ = QTQt where Q is a unitary matrix: Q−1 = Qt

and det(Q) =±1. The Frobenius inner product and norm ‖T‖F =√
T : T are unitarily invariant (invariant under unitary transforms)†.

In this sense (BD,BS1 ,BS2 ,BR) is an orthonormal basis for 2× 2

matrices, as is the standard (
[

1 0
0 0

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]
,
[

0 0
0 1

]
) basis. We can

reason about matrix T both as a linear transform and as a 4-vector.
For example, the Frobenius norm ‖T‖F is the 4-vector length, com-
putable in either matrix basis:

T =

[
a b
c d

]
⇒‖T‖F =

√
a2 +b2 + c2 +d2 (6)

=
√

D2 +S2
1 +S2

2 +R2 (7)

The isotropic component CD is measured by the coordinate
D(T) = T : BD = 1√

2
tr(T), which, being proportional to the trace,

is the same in any R2 basis. The rotation component CR is mea-
sured by R(T) = T : BR. R(T) is unitarily invariant up to sign: one
can show R(T′) = R(QTQt) = −R(T) if det(Q) = −1 (i.e. Q ro-
tates and reflects) and R(T′) = R(T) if det(Q) = 1 (Q only rotates).
We measure the remaining component CS by its Frobenius norm.

† Note that unlike trace or determinant, the Frobenius norm is not invariant
under all similarity transforms (arbitrary changes of basis).
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By (4), (7), and the Pythagorean theorem,

S(T) = ‖T−CD−CR‖F = ‖CS‖F =
√

S2
1 +S2

2 (8)

where Si = T : BSi . S(T) is unitarily invariant. While D and R are
signed, S is necessarily non-negative. The D, S, R coordinates of T
quantify the amounts in T of isotropic scaling, anisotropic stretch-
ing, and rotation, respectively [ZYLL09, CPL∗11]. In terms of the
elements of T =

[
a b
c d

]
,

D =
a+d√

2
; S =

√
(a−d)2 +(b+ c)2

√
2

; R =
c−b√

2
. (9)

The final degree of freedom in T is the relationship between S1
and S2, parameterized by angle α ∈ [− π/2,π/2):

tan(2α) = S2
S1
⇒ α = 1

2 tan−1( S2
S1
) = 1

2 tan−1( b+c
a−d ) (10)

The 2 factor in (10) is motivated by considering the double angle
formulae and the standard 2D rotation matrix

A(α) =

[
cosα −sinα

sinα cosα

]
, (11)

so that with (3) and (4):

CS =
1√
2

[
S1 S2
S2 −S1

]
=

S√
2

[
S1/S S2/S
S2/S −S1/S

]
(12)

= S√
2

[
cos 2α sin 2α

sin 2α − cos 2α

]
= S√

2

[
cos2

α− sin2
α 2 sin α cos α

2 sin α cos α sin2
α− cos2

α

]
(13)

= S√
2

[
cos α − sin α

sin α cos α

][
1 0
0 −1

][
cos α sin α

− sin α cos α

]
(14)

= SA(α)BS1 A(−α) = SA(α)BS1 A(α)t. (15)

Eq. (14) diagonalizes CS, so eigenvectors of CS are rows of A(−α)

or columns of A(α):
[

cos α

sin α

]
= A(α)

[
1
0

]
and

[
− sin α

cos α

]
= A(α)

[
0
1

]
,

with eigenvalues ±S/
√

2. Our contribution is using the double an-
gle formulae to express CS in terms of α rather than θ = 2α ∈
[−π,π] [ZYLL09, CPL∗11]‡. This naturally parameterizes the ori-
entation, relative to the given R2 basis, of both CS and (since CD
and CR are rotationally symmetric) T itself. One can similarly show

BS2 = A(π/4)BS1 A(−π/4), (16)

i.e., the BS1 and BS2 basis matrices capture the same deformation,
but along different directions (they are rotations of each other), and
the orientation of T is entirely determined by how it projects onto
BS1 and BS2 , using (5).

Summarizing (4), (11), and (15), we reconstitute T from its
(D,S,R,α) coordinates by:

T = M(D,S,R,α) = DBD +SA(α)BS1 A(α)t+RBR (17)

Formulae for invariants of T can be found by setting

α = 0⇒ A(α) = I⇒ CS = SBS1 (18)

⇒ T0 = DBD +SBS1 +RBR (19)

=
1√
2

[
D+S −R

R D−S

]
. (20)

‡ The authors use a different tan−1 branch cut, giving θ ∈ [0,2π).

Note that tr(T) =
√

2D and det(T) = (D2−S2 +R2)/2. Eigenval-
ues λ1, λ2 of T are roots of det(T− λI) = λ

2− tr(T)λ+ det(T).
With

∆ = S2−R2, (21)

the quadratic formula, and some simplification, we find

λ1 =
D+
√

∆√
2

; λ2 =
D−
√

∆√
2

. (22)

The eigenvalues are complex conjugate when |R| > S (rotation
dominates stretching). While all these invariants are independent
of α, the eigenvectors v are oriented by A(α):

v1 = A(α)

[
R

S−
√

∆

]
; v2 = A(α)

[
S−
√

∆

R

]
. (23)

These formulae can be verified by hand for the case α = 0, and
generalized by observing that if v0 is an eigenvector of T0 (20) with
λv0 = T0v0, then A(α)λv0 = A(α)T0v0 = A(α)T0A(α)tA(α)v0
implies A(α)v0 is an eigenvector of A(α)T0A(α)t = T, also with
eigenvalue λ.

Relative to the γd , γs, γr coordinates of Zhang et al. [ZYLL09,
CPL∗11], our D, S, R coordinates are a

√
2 factor larger (D=

√
2γd ,

etc.). Their eigenvalue manifold is a spherical surface correspond-
ing to the set {γd ,γs,γr} where γ

2
d + γ

2
s + γ

2
r = 1 (and with the con-

straint that tensor orientation θ = 2α = 0). This is where ‖T‖F =√
D2 +S2 +R2 =

√
2. Zhang et al. parameterize the relationship

between the CR and CS components with

φ = tan−1(γr/γs) = tan−1(R/S) (24)

Angles φ ∈ [− π/2,π/2] and tensor orientation θ = 2α ∈ [−π,π) pa-
rameterize, by spherical coordinates, a sphere they term the eigen-
vector manifold. This is exactly the sphere defined by D = 0 and
‖T‖F =

√
2.

For characterizing the shape and orientation of flow when the
Jacobian has complex eigenvalues (|R|> S), Zheng and Pang intro-
duce dual-eigenvectors [ZP05]. Zhang et al. show [ZYLL09] that
the dual eigenvectors of T = M(D,S,R,α) are the eigenvectors of

PT = sgn(R)S
[

cos(2α+ π

2 ) sin(2α+ π

2 )
sin(2α+ π

2 ) −cos(2α+ π

2 )

]
. (25)

This statement of PT uses our notation and drops a
√

2 factor unim-
portant for the eigenvectors. Following the simplification of (13) to
(15) and using (16) we find:

PT = sgn(R)SA(α+ π

4 )BS1 A(α+ π

4 )
t (26)

= sgn(R)SA(α)A( π

4 )BS1 A(− π

4 )A(−α) (27)

= sgn(R)SA(α)BS2 A(α)t. (28)

Eq. (26) affords a novel expression of the dual-eigenvectors d1,d2
of T as the columns of A(α+ π

4 ) = A(α)A( π

4 ):

d1 = A(α)A( π

4 )

[
1
0

]
=

A(α)√
2

[
1
1

]
(29)

d2 = A(α)A( π

4 )

[
0
1

]
=

A(α)√
2

[
−1
1

]
(30)

Eq. (28) shows how PT equals the anisotropic component CS (15),

© 2016 The Author(s)
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except for a sgn(R) factor (determining whether d1 or d2 is the
major eigenvector) and BS2 replacing BS1 . We thus observe that
dual-eigenvectors arise from a kind of transpose that swaps coor-
dinates along the BS2 and BS1 basis matrices, while transpose nor-

mally swaps
[

0 1
0 0

]
and

[
0 0
1 0

]
.

When |R| > S, Zhang et al. introduce pseudoeigenvectors as
analogs to the eigenvectors when |R| < S [ZYLL09]. In their no-
tation, the pseudoeigenvectors of T(θ,φ) are the eigenvectors of
T(θ,π/2−φ) when φ > π/4, and of T(θ, − π/2−φ) when φ < − π/4.
From (24) we find:

tan(
π

2
−φ) = tan(−π

2
−φ) =

1
tanφ

=
1

R/S
=

S
R

(31)

⇒ ±π

2
−φ = tan−1 S

R
= tan−1 sgn(R)S

|R| (32)

and thus (in our notation) pseudoeigenvectors of T = M(D,S,R,α)
are the eigenvectors of M(D, |R|,sgn(R)S,α), i.e., swapping S and
R while ensuring that the anisotropic coordinate |R| remains pos-
itive and the sign of rotation coordinate is preserved. Our refor-
mulation unifies the φ > π/4 and φ < − π/4 cases, and clarifies that
pseudoeigenvectors arise from a different kind of matrix transpose,
one which swaps coordinates along the rotation BR and stretching
A(α)BS1 A(α)t directions of matrix space. This in turn provides a
simple statement of the pseudo-eigenvectors of T, based on (23):

p1 = A(α)

[
sgn(R)S
|R|−

√
−∆

]
; p2 = A(α)

[
|R|−

√
−∆

sgn(R)S

]
. (33)

Like the eigenvectors and the dual-eigenvectors, the pseudoeigen-
vectors are oriented by A(α), which rotates from the given R2 basis
to the tensor orientation.

4. Glyph Design

4.1. Design Principles

We design our new tensor glyph according to methodical ap-
plication of principles used previously for 3D symmetric tensor
glyphs [SK10b], and generalized as algebraic visualization design
principles [KS14]. Following the principle of Unambiguous Data
Depiction, glyphs for very different tensors should be visually
distinct. The Visual-Data Correspondence principle, stating that
changes in the data should meaningfully correspond to changes in
the visual representation, can be applied in at least three different
ways. First, a notion of continuity arises from considering that two
nearly equal tensors should be shown with glyphs that are visually
very similar. We evaluate conformance to this principle by look-
ing for large changes in the glyphs for tensors that densely sam-
ple paths through our design space. Second, glyphs should ideally
have exactly the same symmetries as the underlying tensor: a trans-
form that is a symmetry of the tensor (such as a rotation within the
eigenspace of a repeated eigenvalue) should also be a symmetry of
the glyph.

Third, transforms (such as negation or rotation) that significantly
change a tensor, however, should be manifested as an analogous
change in the glyph: the glyph for a rotated tensor should be the
rotation of the glyph for the original tensor, and the glyph for a
negated tensor should somehow appear as the “negation” of the

original tensor glyph. We use transform legibility to describe this
aspect of visual-data correspondence. Though not stated as such,
the superquadric glyphs in [SK10b] made negation legible with op-
ponent colors (orange and blue) to show eigenvalue sign. Solid
colors assigned to different regions of the eigenvalue manifold
in [ZYLL09, CPL∗11] exploit opponent colors to make legible the
signs of rotation and scaling, though at the expense of continuity.
Our glyph design uses transform legibility to assess how the glyphs
change with negating R and D.

The basic glyph formation equation from [SK10b] can be stated
in terms of the mathematics of the previous section as:

G(T) = s(‖T‖F ) Ẽ Λ̃ b(D,S,R). (34)

The base glyph geometry is b(D,S,R). The matrices Λ̃ and Ẽ are re-
lated to the eigenvalues and eigenvectors, respectively, of T, though
this relationship is more indirect in our new glyphs than with pre-
vious tensor glyphs. s(‖T‖F ) is some uniform scaling parameter-
ized monotonically by the Frobenius norm (or “size”) of T. Our
new glyphs contain as special cases the previously defined 2D su-
perquadrics (transformed by the eigensystem) for symmetric ten-
sors (R = 0) [SK10b], as well as the ellipsoids (transformed by the
pseudoeigenvectors) for when |R|> S [ZYLL09, CPL∗11].

We are additionally guided in our glyph design by recognizing
the asymmetric tensor as the Jacobian (first derivative) of some un-
derlying vector field. The first-order Taylor expansion of a vector
field f(x) is determined by the Jacobian ∇f around a critical point
x0 where f(x0) = 0:

f(x0 + ε)≈∇f(x0) ε (35)

Topological flow analysis uses properties of ∇f (a second-order
tensor, not symmetric in general) at critical points to characterize
the behavior of nearby streamlines [HH89, CPC90]. Conversely,
given tensor T, with (35) one can synthesize a flow field v(x) in
which streamlines near x=0 visualize T:

v(x) = Tx (36)

Such streamlines guide the design of our tensor glyphs.

4.2. Choosing a Design Space

The four (D,S,R,α) coordinates completely describe the tensor
(17), but we use the design principles above to reduce this to an
intuitive two-dimensional space. First, we assert rotation legibility
by making a glyph for a tensor T = M(D,S,R,α) be a rotation by
A(α) of the glyph for M(D,S,R,0). To preserve rotational sym-
metry, however, the glyph should ideally be rotationally symmetric
when S = 0, since the tensor only has meaningful orientation when
S > 0 (17). We then assert scale legibility (34) by making the glyph
for a tensor T with ‖T‖F 6= 1 be a scaling by s(‖T‖F ) of the glyph
for the tensor with ‖T‖F = 1. This leaves a design space that is a
scaling of the eigenvalue manifold [ZYLL09,CPL∗11] by 1/

√
2: the

hemisphere defined by ‖T‖F =
√

D2 +S2 +R2 = 1 and S≥ 0.

Noting that coordinates D and R have sign, we propose to exploit
negation legibility for both. The glyph for M(D,S,R,0) with dila-
tion D> 0 should correspond to a visual “negation” of the glyph for
M(−D,S,R,0) with contraction−D < 0. The indication of D must

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.



N. Seltzer & G. Kindlmann / 2nd-order 2D Tensor Glyphs

D = 1

S = 1 R = 1

S R

D

S = 0: continuous rotational sym
m

etry

D = 0: traceless tensors: tr(T) = 0

R 
= 

0:
 no

 ro
tat

io
n;

 T
 is

 sy
m

m
etr

ic:
 T
t =T

(a)

(b)

(c)

(d)

p
2

0

1/2

–1/2

tr(T)

det(T)
kTkF = 1

Figure 1: Our glyph design space is the equilateral triangle formed
by gnomonic projection of the ‖T‖F =

√
D2 +S2 +R2 = 1, S≥ 0,

D ≥ 0, R ≥ 0, α = 0 portion of the tensor coordinates (a), shown
with streamlines through v(x) = Tx (b) and maps of tr(T) (c) and
det(T) (d).

smoothly vanish at D = 0 to ensure continuity. Rotation indicated
by the glyph for M(D,S,R,0) with R > 0 should likewise appear to
be in the opposite direction of rotation indicated by the glyph for
M(D,S,−R,0), with all rotation indication smoothly vanishing at
R = 0. This reduces the design space to the hemisphere quadrant
‖T‖F =

√
D2 +S2 +R2 = 1, D≥ 0, S≥ 0, and R≥ 0.

Gnomonic projection (along lines through the origin, mapping
great circles to straight lines), maps this quadrant to an equilateral
triangle tangent to the hemisphere at D = S = R = 1/

√
3. Fig. 1(a)

shows the hemisphere quadrant in question and the equilateral tri-
angle tangent to it. Fig. 1(b) diagrams this triangle with streamline
visualizations in the vector field generated by the tensor (36). The
mapping from barycentric coordinates (d,s,r) to tensor coordinates
is (D,S,R) = (d,s,r)/

√
d2 + s2 + r2. In Fig. 1(c), the trace tr(T) =√

2D decreases from
√

2 at the top D = 1 corner to tr(T) = 0 at
the bottom D = 0 edge. Assuming the ‖T‖F =

√
D2 +S2 +R2 = 1

restriction, from (20) we note

det(T) = D2−S2 +R2

2
=

1
2
−S2. (37)

det(T) is thus a function of S, varying in Fig. 1(d) from det(T) =
− 1/2 at the left S = 1 corner to det(T) = 1/2 along the right S = 0
edge. At the midpoints S = D = 1/

√
2 and S = R = 1/

√
2 of the left

and bottom edges, det(T) = 0.

4.3. Glyphs at Triangle Edges

We first define glyphs for the three edges of the triangular design
space (where the reduced degrees of freedom give more power to
the design principles), and then fill the interior in a continuous way.
Figures of the glyphs along the edges serve to qualitatively illus-

trate the design decisions, while the full mathematical definitions
are given later, in Sec. 4.5

We start with the left R = 0 edge, where we copy previous su-
perquadric glyphs for symmetric tensors [SK10b], as shown in
Fig. 2. The base geometry is defined by [Bar81]:

b(D,S,R) = (cosa(D,S,R)
θ,sina(D,S,R)

θ); 0≤ θ < 2π (38)

using signed exponentiation xa = sgn(x)|x|a; this θ has no relation
to θ in [ZYLL09, CPL∗11]. Eq. (34) creates the glyph from (38),
with Λ̃ the diagonal matrix of eigenvalues of T, and the eigenvec-
tors of T in the columns of matrix Ẽ. Superquadric tensor glyphs
vary the shape parameter a(D,S,R) according to the tensor coordi-
nates. A detailed definition is below, but along this edge we note
that a varies smoothly from a = 1 at D = 1 to a = 0 at D = 1/

√
2

(gaining convex corners), jumps at D = 1/
√

2 to a = 2, and varies
smoothly again to a= 4 at D= 0. The shape discontinuity is hidden
by the zero eigenvalue scaling at D = S = 1/

√
2 where det(T) = 0.

The a = 1 circle shape at D = 1 is the only choice that obeys the ro-
tational symmetry of isotropic expansion. The glyph becomes more
rotationally asymmetric as the tensor becomes more anisotropic
(|D| decreases), fitting how only the anisotropic component CS car-
ries tensor orientation. The coloring of the glyph is similar to that
of [SK10b], which used the tensor contraction x ·Tx between ten-
sor T and unit direction x. Rather than a solid coloring (with sharp
edges) determined by the sign of x ·Tx, we choose opponent or-
ange and blue hues for the extremum of x ·Tx, and blend with equi-
luminant gray at x ·Tx = 0. The invisibility of the glyph at D = S
(when compressed to a line) is addressed in previous work with a
halo [SK10b], which we revisit below.

The right half of Fig. 2 shows something we believe has not been
noted before in tensor glyph design: the concave outline of the su-
perquadric glyph for T with S > |D| mimics the hyperbolic shape
of the streamlines of v(x) =Tx (36) (flowlines along gradients with
constant Hessian T). This became a principle that we sought to fol-
low where possible in the remainder of the design space, especially
for the traceless tensors along the bottom D = 0 edges of the de-
sign triangle, shown in Fig 3. Starting from pure deviatoric (S,R) =
(1,0) tensors on left and moving right towards S = R, the eigenvec-
tors v1 and v2 gradually become parallel (23) [ZYLL09, CPL∗11].
We find that transforming the superquadric geometry by a matrix
Ẽ with eigenvectors in its columns creates an outline that again
mimics the hyperbolic shape of streamlines when |R| < S. When
|R| > S, the pseudoeigenvectors (33) are instead in the columns of
Ẽ, following the finding by Zhang et al. that a circle transformed
by the pseudoeigenvectors exactly attains the elliptical shape of the
streamlines of v(x) = Tx [ZYLL09]. Throughout, we use the same
coloring based on contraction x ·Tx, which yields gray at R = 0,
where Tx is orthogonal (rotated 90 degrees) to x. However, this

Figure 2: Symmetric tensors going down left (R = 0) edge of trian-
gle, from (D,S) = (1,0) (left) to (D,S) = (0,1) (right).

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.



N. Seltzer & G. Kindlmann / 2nd-order 2D Tensor Glyphs

produces a solid gray circle at R = 1, which conveys nothing of the
rotation, which we address next.

Everywhere along the right S = 0 edge of the design space, ten-
sors are invariant to rotation, so a circular shape is appropriate. This
presents an interesting visualization design challenge: how does
one indicate the direction and magnitude of a rotation in a rotation-
ally symmetric way? The opponent coloring of [ZYLL09,CPL∗11]
shows only the largest differences in rotation (many similar tensors
will receive the same color, violating the Unambiguity principle),
and the assignment of red to counterclockwise and green to clock-
wise requires reference to a figure legend. Drawing inspiration from
static depictions of motion blur, we propose the gradient pattern
shown in Fig. 4, which roughly suggests four bright spokes rotat-
ing counterclockwise. The intensity gradient within each sector of
the pattern indicates the direction and magnitude of the rotation
component. This pattern also mimics the sawtooth luminance pat-
tern that induces the peripheral drift illusion [FW79]. Viewed pe-
ripherally, one may perceive counterclockwise rotation in this pat-
tern. Different repeating asymmetric luminance patterns eliciting
the same illusion have been explored for flow and shape visual-
ization [CLQW08, CYZL14]. Though we do not intend or require
that our glyphs are viewed peripherally, the illusion gives addi-
tional evidence that the pattern can convey rotation. The gradients
have opposite sense when R < 0. As the magnitude of the rota-
tion component decreases, the contrast of the gradients fades to the
hue determined by tensor contraction. The ramp pattern breaks the
continuous rotational symmetry of the tensor itself at S = 0, but
the number of discrete rotational symmetries can be increased with
more sectors. We chose four sectors for our current work to max-
imize legibility of the rotation, at the expense of some rotational
symmetry.

4.4. Glyphs at Triangle Interior

We now stitch together the glyph definitions along the triangle
edges in a continuous and legible way to fill the interior. The first
challenge is smoothly connecting the |R|< S left side to the |R|> S
right side of the triangle, in which eigenvectors and pseudoeigen-
vectors, respectively, are the natural choice to fill the columns of Ẽ
(34).

Both eigenvectors and pseudoeigenvectors become parallel at
|R| = S, however, so Ẽ would become rank one, compressing the
glyph to a line. While true to the mathematics, this violates continu-
ity: isotropic (D = 1) tensors are shown with a circle, but arbitrarily
close tensors with |R|= S would be shown with a line.

We fix this by drawing on the geometric intuition that relates
determinants with area. The determinant of T is the area of a unit
square transformed by T. Furthermore, if T is the Jacobian of a

Figure 3: Traceless tensors going right along bottom (D = 0) edge,
from (S,R) = (1,0) (left) to (S,R) = (0,1) (right).

Figure 4: Rotationally symmetry going up along right (S = 0) edge,
from (R,D) = (1,0) (left) to (R,D) = (0,1) (right).

Figure 5: At D = 0.9, around |R| = S glyphs shrink to an area
unrelated to their determinant when their geometry is strictly
determined by the (pseudo)eigenvectors (top row). Using quasi-
eigenvectors (bottom row) fixes this.

coordinate change, then the determinant of T is the infinitesimal
element for area integrals. Using only (pseudo)eigenvectors creates
near |R|= S a glyph with misleadingly small area, given the deter-
minant. Fig. 5 shows this by cutting across the design triangle near
its D = 1 top. We define quasi-eigenvectors qi below to give the
glyph an area indicative of its determinant. Furthermore, the eigen-
values approach zero near D = 0 and |R| = S (not shown), so we
also define quasi-eigenvalues λ̃i to reflect the constant ‖T‖F within
the design space.

Glyphs can also disappear when det(T) = 0, which we address
with halos, as in previous work [SK10b]. Halos are created by
drawing the glyph shape a second time with every vertex trans-
lated by a small amount along the normal to the glyph perimeter.
The halo width is greatest at S =

√
D2 +R2⇔ det(T) = 0 and de-

creases linearly to zero at S = 0 and S = 1. The halo appearance is
determined by a similar gradient pattern as used to show rotation in
the glyph interior.

4.5. Glyph Definition

Our full glyph definition for a given tensor T follows. First, we de-
fine the unit-norm T1 = T/‖T‖F . The (D,S,R,α) coordinates of
T1 are then found via (9) and (10). Then with (17) we define a
tensor T′ to unify the eigensystem and pseudoeigensystem compu-
tation.

T′ =
{

M(D,S,R,α) |R| ≤ S
M(D, |R|,sgn(R)S,α) |R|> S

. (39)

Let λ1, λ2 be the eigenvalues and v′1, v′2 the eigenvectors of T′,
choosing the signs of v′i to have a positive dot product with the
major dual eigenvector d1 of T′ (29). To prevent glyph shrinkage
near D = 0 and |R|= S, for i = 1,2 let

λ
′
i =

{
λi |R| ≤ S
1 |R|> S

; λ̃i = λ
′
i/
√

λ′21 +λ′22 . (40)

The quasi-eigenvalues λ̃i preserve relative magnitudes but not ab-
solute values of λ

′
i . To make the glyph area roughly indicate the

tensor determinant, we compute the angle

ψd = sin−1(
det(T′)
λ̃1λ̃2

) (41)
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which gives the desired angle between scaled eigenvectors that
would span a parallelogram of area det(T). This is compared with
the actual angle between the eigenvectors

ψa = cos−1(v′1 ·v′2). (42)

If ψa > ψd , no adjustments to the eigenvectors v′i are needed, and
we set qi = v′i . Otherwise, we use the dual eigenvector basis d1
(29), d2 (30) to form quasi-eigenvectors qi separated by angle ψd :

q1 = cos(ψd/2)d1 + sin(ψd/2)d2, (43)

q2 = cos(ψd/2)d1− sin(ψd/2)d2. (44)

Glyphs are shaped and oriented via (34) with matrices

Ẽ =
[
q1 q2

]
, Λ̃ =

[
λ̃1 0
0 λ̃2

]
. (45)

What remains is to define the base geometry and its coloring. The
superquadric shape parameter a(D,S,R) is defined to create circles
when |R|> S, continuously blended with other convex shapes when
det(T) = 1/2−S2 > 0, and concave shapes when det(T)< 0.

a(D,S,R) =


1 |R|> S

4−2
√

2|D| S > 1/
√

2
1−
√

2(S−|R|) otherwise
(46)

a(D,S,R)
0

4
The plot at left of the superquadric param-
eter a(D,S,R) shows how it does not vary
continuously over the design space, but the
glyph shape being compressed to a line seg-
ment at det(T) = 0 hides the discontinuity
there. The hue and saturation at position x
relative to glyph center are determined by

the expression x ·T1x. In CIELAB color space we use (L,A,B) =
(80,5.8x ·T1x,23.2x ·T1x) to generate orange and blue for posi-
tive and negative x ·T1x, respectively. We implement negation leg-
ibility of x ·T1x by negation of CIELAB hue, with equi-luminant
gray at x ·T1x = 0.

Our principle for showing rotation with a gradient pattern inside
the glyphs is that the gradient of the intensity ramp at some loca-
tion x roughly indicates the vector T1x (36): the rotation is towards
higher intensities. For each of the four ramp sectors, let c be the
vector from the glyph location to the areal center of the sector. The
gray level intensity L(x) at position x relative to glyph center is

r = T1c− c ·T1c
|c| ; L(x) = (x− c) · r (47)

To the extent that T1 exhibits rotation, T1c has a tangential com-
ponent r pointing in the rotation direction. The sector boundaries
are oriented along the dual eigenvectors, which are stable except
where R = 0 exactly. Finally, the glyphs are formed by (34), us-
ing the superquadric base geometry determined by (38) and (46),
transformed by Ẽ and Λ̃ (45).

Halos are drawn around the transformed glyph geometry to en-
sure legibility even when the glyph interior is compressed to a line
segment. The halos are filled with a similar ramp pattern as the
glyph interior, except that the radial component of T1c is not re-
moved (because the halo must indicate all information about the
underlying tensor when det(T) = 0): L(x) = (x− c) ·T1c.

D = 1

S = 1 R = 1

S = 0: continuous rotational sym
m

etry

D = 0: traceless tensors: tr(T) = 0
R 

= 
0:

 no
 ro

tat
io

n;
 T

 is
 sy

m
m

etr
ic:

 T
t =T

Figure 6: Palette of our proposed tensor glyphs, shown over faint
streamlines indicating the vector field created by (36).

negate Dnegate R

Figure 7: Negation legibility is demonstrated by negating D (to
the right, where blue shows contraction) and R (to the left, which
reverses the rotation direction).

Fig. 6 shows the final glyphs. The gradient pattern, showing the
direction and magnitude of the rotation component, fades away to-
wards the symmetric R = 0 case on the left edge. Non-circular
glyph outlines indicate the amount and orientation of anisotropic
stretching, blending to circles on the right S = 0 edge. On the exact
S = 0 edge, the tensor is rotationally symmetric, so the orientation
of the glyph is arbitrary (a shortcoming given the lack of continu-
ous rotational symmetry in the gradient pattern there). Towards the
D = 0 edge, the glyph outline conveys the shape of Tx streamlines,
exactly matching them when |R| > S. The internal hue shows the
sign of the stretching and isotropic components, fading to pure gray
at the R = 1 corner. Halos preserve glyph visibility near det(T) = 0
while indicating rotation and stretching. Glyph continuity is pre-
served over the entire design space.

Fig. 7 demonstrates negation legibility with a coarse sampling of
the design space. Negating D has increasing effect moving towards
the top D= 1 corner, and no effect at the bottom D= 0 edge. Negat-
ing R has increasing effect towards the right R = 1 corner, with no
effect on the left R = 0 edge. The relative subtlety of flipping gra-
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dient pattern direction with R negation, versus the large hue change
with D negation, highlights room for improvement in our design.

5. Results

We first apply our glyphs in Fig. 8, a 2D cross-section of a pair
of superimposed Sullivan vortices (an exact solution of the Navier-
Stokes equations [Sul59]). For the sake of comparison with results
in [ZYLL09], we use the same vortex locations (x,y) = (±0.085,0)
and parameters: a = 1.5, Γ = ±25, v = 0.1. The 2D vector field
records the (x,y) vector components in the z= 1 plane. Fig. 8 shows
our glyphs on a hexagonal grid, with glyph scaling s(‖T‖F ) =

‖T‖
1
4
F . The contrast of the LIC background is modulated by the

square root of vector magnitude. The full range of glyphs is vis-
ible. Regions of high vorticity (|R| large relative to |D| and S) ap-
pear on either side of the image center, where the gradient pattern
is the dominant visual feature. Areas where |D| is large stand out as
highly saturated areas: convex orange glyphs show strong positive
divergence at the center, while convex blue glyphs show negative
divergence at the periphery. Areas characterized mainly by stretch-
ing (S is large) are clearly indicated by concave superquadrics near
the bottom of the image. The directions of expansion versus con-
traction are indicated by the blue versus orange glyph points.

There are several places where one eigenvalue is nearly zero,
but the tensor is not near zero, so the glyph is visible mainly as
a halo. The two glyphs indicated by white outlines in Fig. 8 are
nearly rotations of each other: both indicate contraction in one di-
rection. However, the glyph at the bottom shows contraction along
the direction of flow (the gradients in the halo increase toward the

Figure 8: Two superimposed Sullivan vortices, shown with white
arrows near center. Yellow circles indicate critical points. Two
glyphs with a determinant close to zero are indicated by a white
outline. The visualization domain is from −1.125 to 1.125 in x and
y.

glyph center) and the glyph on the left shows contraction across the
direction of flow.

There are three critical points in the flow, indicated by yellow
circles. The bottom critical point is a saddle, identifiable by the
concave glyph shape. The directions of the eigenvectors are aligned
with the points of the glyph and the sign of the corresponding eigen-
value is indicated by hue. The glyph shape here matches the LIC
texture in the same way as the glyphs and arrows match in Fig. 6.
At the top and middle critical points, we see a sink and a source,
respectively. The asymmetric glyph shapes clearly show that con-
traction and expansion are stronger in one direction than the other,
which can also be seen in the LIC background. Near each of these
points, the LIC texture approximates the arrows in Fig. 6.

Fig. 9 demonstrates our glyphs in a 2D flow (a central slice
through a 3D unsteady flow simulation), using the same glyph scal-
ing as the previous example. The image background is also LIC
along streamlines, but with positive and negative vorticity indicated
by magenta and green, respectively. The way the rotation alternates
direction through the domain is unclear from the LIC alone. A par-
ticle system placed glyphs at vorticity extrema first, then spaced
others out through the domain. One interesting feature of this vi-
sualization is that the glyphs in front of the obstacle show that the
fluid is deformed by the obstacle, not significantly compressed. Our
glyphs indicate that the Jacobian is quite large outside of the vor-
tices, and that flow in those areas is dominated by deformation,
rather than expansion or contraction. The directions of deformation
are clearly seen, aligned with the points of the concave glyphs, and
the directions of expansion and compression are indicated by hue.

6. Conclusion

Our new glyph design effectively represents all asymmetric two-
dimensional second-order tensors. Starting from precedent set by
other work for visualizing tensors and tensor fields, we devised
mathematical expressions that would preserve the intuitive correct-
ness of those other designs and continuously deform to represent
other tensors. The deformations chosen automatically respect the
desired symmetry properties we were aiming for with respect to
scaling and rotation. The class of 2×2 matrices may not seem like
a significant visualization challenge, but it has remain unsolved. We
also see significance in how our glyph was created largely by me-
thodical and careful application of existing scientific visualization
design principles, suggesting that they may soon be employed for
more general problems.

More rigorous evaluation of our glyph design remains to be
done. Good visualizations will in some way preserve the distances
between objects being visualized [DSK∗14]. Determining appro-
priate distance metrics for tensors, and for images of tensor glyphs,
will take some care. Choosing such a metric and applying it to a
large sampling of pairs of tensors and their glyph images would
give a quantitative quality measure of our glyph design. If the
glyphs are well designed, there should be a roughly linear relation-
ship between the tensor distance and the glyph distance.

Ongoing work is expanding our design to 3D tensors. These can
still be split into isotropic (one degree of freedom), anisotropic (five
DOF), and antisymmetric (three DOF) parts. Both the anisotropic

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.



N. Seltzer & G. Kindlmann / 2nd-order 2D Tensor Glyphs

Figure 9: Flow (from left to right) past a square obstacle creating a train of vortices.

and antisymmetric parts carry information about orientation, but
our gradient pattern may still have utility. Furthermore, the eigen-
system analysis, a core part of our design, becomes more difficult,
though recognizing that pseudo- and dual-eigenvectors arise from
generalizations of tensor transpose may be helpful.
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