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Summary. Water diffusion is anisotropic in organized tissues such as white matter
and muscle. Diffusion tensor imaging (DTI), a non-invasive MR technique, measures
water self-diffusion rates and thus gives an indication of the underlying microstruc-
ture of tissue. The diffusion rate is often expressed by a second-order tensor. Visu-
alizing DTI in an insightful way is challenging because of the high dimensionality
of the diffusion tensor and the complex spatial relationships in a diffusion tensor
field. This chapter surveys the different visualization techniques that have been de-
veloped for DTI and compares their main characteristics and drawbacks. We also
discuss some of the many biomedical applications in which DTI helps extend our
understanding or improve clinical procedures. We conclude with an overview of open
problems and research directions.

1 Introduction

Diffusion tensor imaging (DTI) is a medical imaging modality that can reveal
directional information in vivo in fibrous structures such as white matter or
muscles. Although barely a decade old, DTI has become an important tool
in studying white matter anatomy and pathology. Many hospitals, universi-
ties, and research centers have MRI scanners and diffusion imaging capability,
allowing widespread DTI applications.

However, DTI data require interpretation before they can be useful. Vi-
sualization methods are needed to bridge the gap between the DTI datasets
and understanding of the underlying tissue microstructure. A diffusion tensor
measures a 3D diffusion process and has six interrelated tensor components.
A volumetric DTI dataset consists of a 3D grid of these diffusion tensors that
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form complicated patterns. The multivariate nature of the diffusion tensor and
the 3D spatial characteristics of the diffusion tensor field combine to make DTI
visualization a challenging task. This chapter compares current visualization
techniques and analyzes their strengths and weaknesses.

DTI research is broadly interdisciplinary. Figure 1 gives a simplified illus-
tration of the research domains surrounding DTI. It is worth noting that all
of the components in the diagram are interrelated in a loop: new discoveries
in one specific area often lead to improvements in the whole DTI field. For
example, Pierpaoli et al. found incorrect connections in the neural pathways
generated from a DTI dataset [1]. Issues like this stimulate research in diffu-
sion imaging, and lead to new methods, in this case high angular resolution
imaging [2, 3].

In section 2, we review techniques for DTI data acquisition In section 3,
we survey the computation and visualization techniques. We review some
applications of DTI in section 4, discuss some open issues and problems in
section 5, and conclude in section 6.

Fig. 1. The research context of DTI. Note that all the research domains are inter-
related: progress in one domain can easily propagate into the rest of the field.

2 Diffusion Tensor Imaging

As for any visualization method, the merits of DTI visualization methods
depend on the quality of the data. Understanding where the data come from,
what they measure, and what their limitations are is an important first step
in designing and implementing a visualization scheme.
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Water molecules in human tissues constantly collide randomly with one
another and with other molecules, a phenomenon called Brownian motion.
In pure water, this seemingly random movement results in a dynamically ex-
panding Gaussian distribution of water molecules released from one point [4].
In human tissues, however, cell membranes and large protein molecules limit
the motion of water molecules. The geometrical and physical properties of
the tissue determine the rate and direction of diffusion. We can thus infer
the microstructure of human tissue by measuring the diffusion of the water
molecules.

The discovery of the nuclear magnetic resonance (NMR) effect [5, 6] in 1946
was the beginning of work that has led to the current form of diffusion mag-
netic resonance imaging (MRI). Two important landmarks were the discovery
of the spin echo [7], whose signal is perturbed by the water molecule diffusion,
and MR imaging [8], which determines exactly where the NMR signal origi-
nats within the sample. Diffusion imaging was the first imaging modality that
can measure the diffusion of water in human tissues in vivo. Although the ex-
act mechanism of the generation of diffusion MRI signals in biological tissues
is not fully understood, it is generally believed that the quantity measured
by diffusion MRI is a mixture of intracellular diffusion, intercellular diffusion,
and the exchange between the two sides of the the cell membrane [9].

Inferring tissue structure from the diffusion process requires exploring the
orientation dependence of the diffusion. This dependence can be described
by the diffusion propagator P (r, r′, τ), which is the probability of a water
molecule traveling from position r′ to r in diffusion time τ [10]. In practice, the
number of diffusion directions we can measure in a clinical scan is limited by
scanning time, making it impossible to reconstruct the diffusion propagator
completely. A diffusion tensor [11] describes the orientation dependence of
diffusion assuming free diffusion in a uniform anisotropic medium (Gaussian
diffusion). For example, a diffusion tensor is a good model for diffusion in
uniformly oriented white matter structures such as the corpus callosum, but
is insufficient in areas where different tracts cross or merge. The coefficients
of the diffusion tensor, D, are related to the diffusion-weighted MRI(DWI)
signals by [12]: Ĩ = I0 exp(b : D), where I0 is the 0-weighted diffusion image,
the tensor b characterizes the diffusion-encoding gradient pulses used in the
MRI sequence, and b : D =

∑3
i=1

∑3
j=i bijDij is the tensor dot product.

A 3D diffusion tensor is a 3 × 3 positive symmetric matrix:

D =

⎡
⎣Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

⎤
⎦

Diagonalizing D, we get three positive eigenvalues λ1, λ2 and λ3 (in decreasing
order) and their corresponding eigenvectors e1, e2 and e3. Many scalar indices
and visualization methods are based on the eigenvalues and eigenvectors of
DTI measurements, as discussed in section 3.
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Fig. 2. Barycentric space of diffusion tensor ellipsoids.

One geometric representation of Gaussian diffusion is a diffusion ellipsoid.
These ellipsoids represent the surface of constant mean-squared displacement
of diffusing water molecules at some time τ after they are released from one
point. The shape of a diffusion ellipsoid is inherently related to the eigenvalues
and eigenvectors of the diffusion tensor: the three principal radii are propor-
tional to the eigenvalues and the axes of the ellipsoid aligned with the three
orthogonal eigenvectors of the diffusion tensor. Figure 2 shows ellipsoids rep-
resenting different kinds of diffusion; the difference among the shapes of the
ellipsoids are discussed in section 3.1. DTI measurements have been validated
within acceptable error on the fibrous muscle tissue of the heart [13, 14]. How-
ever, in a voxel containing nonuniformly oriented neural fibers (see Figure 12),
DTI measures an average signal from all the fibers within the voxel, which
usually results in an apparent reduction of anisotropy and increase in uncer-
tainty [15]. To resolve the uncertainty in these areas, q-space spectral imag-
ing [16] and other high angular resolution diffusion imaging methods [17, 18]
have been explored.

Image acquisition for DTI is a very active research area. Progress is fre-
quently reported on resolution improvement and reductions in imaging time,
noise, and distortion.

3 DTI Visualization

Meaningful visualization of high-dimensional data is challenging because of
the high dimensionality of the diffusion tensor and the complex interrelation-
ships in diffusion tensor fields. The last decade has seen several approaches to
visualizing diffusion tensor data, most of them based on reducing the dimen-
sionality of the data by extracting relevant information from the tensor. One
possible classification of the different visualization techniques is by the dimen-
sionality to which the tensor is reduced. Another important characteristic is
the ability of these algorithms to show local or global information. Our discus-
sion here groups the visualization methods on the basis of these two criteria.
Anisotropy indices reduce the 6D information to a scalar value (1D). Volume
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rendering for DTI uses anisotropy indices to define transfer functions that
show the anisotropy and shape of the tensor. Tensor glyphs do not reduce the
dimensionality of the tensor, instead using primitives that show the 6D tensor
as such; however, these techniques cannot show global information. Vector
field visualization reduces the tensor field to a vector field, and therefore to
3D. Several techniques can be used for vector-field visualization that show
local as well as global information. In section 3.5, algorithms are described in
which the vector field information is extended to the whole tensor. Finally in
section 3.6, several interaction schemes in DTI visualization are discussed.

3.1 Scalar Indices

The complexity of a DTI dataset requires a complicated visualization scheme;
however, medical researchers and practitioners alike are trained to read scalar
fields on gray-level images slice by slice. Scalar datasets, although limited in
the amount of information they can convey, can be visualized with simplicity
and clarity and thus interpreted quickly and easily. It can thus be useful to
reduce DTI to scalar datasets. Since the advent of diffusion MRI, scalar indices
of diffusion MRI data have been designed and visualized successfully alongside
multivariate visualization schemes: rather than competing, the two methods
complement one another.

The challenges of reducing a tensor-valued diffusion MRI measurement to
a scalar index include mapping to a meaningful physical quantity, maintaining
invariance with respect to rotation and translation, and reducing the effect of
noise. Some scalar indices for DTI data are listed in Table 1.

Mean diffusivity (MD), which measures the overall diffusion rate, is the
average of the diffusion tensor eigenvalues and is rotationally invariant. van
Gelderen et al. [22] demonstrated that, after a stroke, the trace of the diffusion
tensor delineates the affected area much more accurately than the diffusion
image in one direction.

Before the diffusion tensor model was made explicit in 1994 by Basser et
al. [11], several different anisotropy indices derived from DWIs had been used,
such as anisotropic diffusion ratio [23]. Unfortunately, these anisotropy indices
depend on the choice of laboratory coordinate system and are rotationally
variant: their interpretation varies according to the relative positions of the
MR gradient and the biological tissues, usually resulting in an underestimation
of the degree of anisotropy [19]. Therefore it is important to use rotationally
invariant anisotropy indices such as Volume ratio (VR), rational anisotropy
(RA) or fractional anisotropy (FA), which are based on the rotationally in-
variant eigenvalues. Note that both RA and FA can be derived from tensor
norms and traces without calculating the eigenvalues.

However, rotationally invariant indices such as RA and FA are still sus-
ceptible to noise contamination. Pierpaoli et al. [19] calculated an intervoxel
anisotropy index, the lattice index (LI), which locally averages inner products
between diffusion tensors in neighboring voxels. LI decreases the sensitivity to
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Scalar Index Equations

Mean diffusivity, 〈D〉 Dxx + Dyy + Dzz

3
,
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3
,
Trace(D)

3
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[21] Linear anisotropy, cl
λ1 − λ2

λ1 + λ2 + λ3

Planar anisotropy, cp
2(λ2 − λ3)

λ1 + λ2 + λ3

Isotropy, cs
3λ3

λ1 + λ2 + λ3

Table 1: Some scalar indices for DTI data. ||D|| =
√

D : D is the tensor norm,
Var(λ) and E(λ) are the variance and expectation of the three eigenvalues, an

is a normalized weighting factor, A = D − 〈D〉I.

noise and avoids underestimation of the anisotropy when the neighbor voxels
have different fiber orientations.

Because they contract the tensor to one scalar value, FA, RA and LI do
not indicate the directional variation of the diffusion anisotropy well. For
example, a cigar-shaped and a pancake-shaped ellipsoid can have equal FA
while their shapes differ greatly. Geometrical diffusion measures [21] have been
developed: linear anisotropy, cl, planar anisotropy, cp and spherical anisotropy
or isotropy, cs. By construction, cl + cp + cs = 1. Thus, these three metrics
parameterize a barycentric space in which the three shape extremes (linear,
planar, and spherical) are at the corners of a triangle, as shown in Figure 2. It
is worth noting that, unlike FA or RA, geometrical diffusion metrics depend
on the order of the eigenvalues and are thus prone to bias in the presence of
noise [19].

Figure 3 shows one way to compare qualitatively some of the metrics
described above by sampling their values on a slice of a DTI dataset of a
brain. Notice that the mean diffusivity (MD) is effective at distinguishing be-
tween cerebrospinal fluid (where MD is high) and brain tissue (lower MD),
but fails to differentiate between different kinds of brain tissue. High frac-
tional anisotropy, FA, on the other hand, indicates white matter, because the
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directionality of the axon bundles permits faster diffusion along the neuron
fiber direction than across it. FA is highest inside thick regions of uniformly
anisotropic diffusion, such as inside the corpus callosum. Finally, while both
cl and cp indicate high anisotropy, their relative values indicate the shape of
the diffusion ellipsoid.

(a) MD: mean diffusivity (b) FA: fractional
anisotropy

(c) cl (green) and cp (ma-
genta)

Fig. 3. Different shape metrics applied to one slice of a brain DTI scan.

3.2 Volume Rendering

Volume rendering is a means of visualizing large-scale structure in a tensor
field, based on locally measured properties of the tensor data [24]. Volume ren-
dering has the defining property of mapping from the tensor field attributes to
a rendered image, without introducing additional geometry. However, volume
rendering is inherently flexible in the sense that the volume scene can eas-
ily be supplemented with other visualizations (such as glyphs or fiber tracts,
described in the following sections) to create a more informative image. Com-
positing all the scene components together creates an integrated visualization
in which local and global aspects of the field may be seen in context. The
volume of tensor field attributes can either be pre-computed and stored as
a scalar field, or computed implicitly as part of rendering. In either case, an
anisotropy index plays the important role of determining the opacity (thus
visibility) of each sample. Each sample is then colored and shaded to indicate
local shape characteristics, then samples composited as the integral of colors
and opacities sampled along each ray.

An essential element of volume rendering is the transfer function, which
assigns colors and opacities according to locally measured field properties.
Traditionally, volume rendering has been applied to visualization of scalar
fields, in which the domain of the transfer function is either the scalar value
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defining the dataset or additionally includes derived quantities such as the
gradient magnitude [25, 26]. The transfer function is usually implemented
as a one-dimensional or two-dimensional lookup table. The transfer function
domain variables are quantized to generate indices of table entries that contain
the colors and opacity of the transfer function range.

The extension of volume rendering to diffusion tensor fields is thus essen-
tially a matter of determining which quantities should serve as transfer func-
tion domain variables. To define opacity, the anisotropy indices in Table 1 are
used. Fractional anisotropy (FA) is attractive in this respect because it can be
expressed in terms of differentiable tensor invariants, so the chain rule can be
used to calculate the gradient of FA as a normal for surface shading. Figure 4
shows depiction of basic 3-D structure with volume-rendered isosurfaces of
fractional anisotropy. Rather than using a polygonal model of the anisotropy
isosurface (as with Marching Cubes [27]), these images are computed with an
opacity step function: opacity is 0.0 or 1.0 depending on whether FA is below
or above the indicated threshold.

FA = 0.0 FA = 0.3 FA = 0.5 FA = 0.65

Fig. 4. Volume-rendered isosurfaces at a range of FA values show basic 3D structure
of white matter in a DTI brain scan.

Color can be assigned in diffusion tensor volume rendering to indicate
either the orientation or the shape of the underlying tensor samples. Apply-
ing the standard RGB coloring of the principal eigenvector (Sect. 3.4) allows
basic neuroanatomic features to be recognized by their over-all color, as in
Figure 5(a). Color can also be used to clarify differences in the shape of
anisotropy apart from the anisotropy index used to define opacity. In par-
ticular, the difference between linear and planar anisotropy as measured by
the cl and cp indices (Table 1) can be mapped onto the anisotropy isosurface,
as in Figure 5(b) (where the variation from green to magenta for linear to
planar anisotropy is the same as in Figure 3(c)). The rendering indicates how
features with orthogonal orientations lead to planar anisotropy at their ad-
jacencies. Locations in the brain characterized by this configuration of white
matter fibers include the right-left trans-pontine tracts ventral to the inferior-
superior corticospinal tracts in the brainstem, and the right-left tracts of the
corpus callosum inferior to the anterior-posterior cingulum bundles.
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(a) Principal eigenvector (b) Linear versus planar

Fig. 5. Volume renderings of half a brain scan, (a) colored according to orientation of
principal eigenvector, and (b) the distribution of linear (green) and planar (magenta)
anisotropy. Surface is defined by FA = 0.4.

A recent application of volume rendering to diffusion tensor visualization
is based on converting the tensor field to scalar fields, as described by Wenger
et al. [28]. The approach here is to precompute multiple scalar volumes, that
can be layered and interactively rendered with 3D texture-mapping graphics
hardware [29]. The renderings in Figure 6 demonstrate visualizations which
combine a volume rendering of the ventricles, together with a collection of
fiber tracts rasterized into a color-coded scalar volume, to illustrate the re-
lationship between the distribution and direction of the fiber tracts and the
large-scale patterns of anisotropy. The flexible combination of the different
scalar volumes into the final rendering permits interactive exploration and
generation of visualizations.

There are currently no implementations that can volume render directly
from a diffusion tensor volume to an image at interactive rates. The computa-
tional speed and flexibility of modern graphics hardware is increasing at such a
rate, however, that this should soon be feasible. For example, two-dimensional
transfer functions took minutes to render (in software) when introduced in
1988 [26], but can now be rendered at multiple frames per second with com-
modity graphics hardware [30]. Whether applied to scalar or tensor data, the
intrinsically data-parallel nature of volume rendering means it is well suited
to streaming-based processors found on modern graphics hardware [31]. We
anticipate that volume-rendering graphics hardware will play an increasing
role in the interactive visualization of diffusion tensor data.

3.3 Tensor Glyphs

Another avenue of DTI visualization has focused on using tensor glyphs to
visualize the complete tensor information at one point. A tensor glyph is a
parameterized graphical object that describes a single diffusion tensor with its
size, shape, color, texture, location, etc. Most tensor glyphs have six or more
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Fig. 6. Interactive volume renderings of a human brain dataset. The volume render-
ings (top) show collections of threads consistent with major white-matter structures:
IC=internal capsule, CR=corona radiata, CB=cingulum bundle, CC=corpus callo-
sum , diagrammed on the bottom. Components of the tensor-valued data control
thread direction, color, and density. Direct volume rendering simultaneously shows
the ventricles (labeled V) in blue for anatomical context.

degrees of freedom and can represent a diffusion tensor completely. However,
tensor glyphs do not expose relationships and features across a diffusion ten-
sor field, rather, they imply these relationships from the visual correlation
and features of the individual glyphs. While exploiting many different types
of tensor glyphs, from boxes to ellipsoids to superquadrics, tensor glyph de-
signers aim to make the mapping between glyphs and diffusion tensors faithful,
meaningful and explicit.

The diffusion ellipsoid described in section 2above is the most commonly
used representation of a diffusion tensor. Pierpaoli et al. [19], in the first use of
ellipsoids as tensor glyphs, associated ellipsoid size with the mean diffusivity,
indicated the preferred diffusion direction by the orientation of the diffusion
ellipsoid. Arrays of ellipsoids were arranged together in the same order as the
data points to show a 2D slice of DTI data.

Laidlaw et al. normalized the size of the ellipsoids to fit more of them in
a single image [32] (see Figure 7(a)). While this method forgoes the ability
to show mean diffusivity, it creates more uniform glyphs that better show
anatomy and pathology over regions.
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(a) (b)

Fig. 7. (a) Arrays of normalized ellipsoids visualize the diffusion tensors in a sin-
gle slice. (b) Brush strokes illustrate the direction and magnitude of the diffusion:
background color and texturemap show additional information.

Fig. 8. Superquadrics as tensor glyphs, sampling the same barycentric space as in
Figure 2.

Laidlaw et al. [32] also developed a method that uses the concepts of brush
strokes and layering from oil painting to emphasize the diffusion patterns.
They used 2D brush strokes both individually, to encode specific values, and
collectively, to show spatial connections and to generate texture and a sense
of speed corresponding to the speed of diffusion. They also used layering and
contrast to create depth. This method was applied to sections of spinal cords of
mice with experimental allergic encephalomyelitis (EAE) and clearly showed
anatomy and pathology (see Figure 7(b)).

Boxes and cylinders have also been used to show the directions and relative
lengths of all three eigenvectors. Boxes clearly indicate the orientation of the
eigenvectors. They also have fewer polygons and are thus faster to render. But
their flat faces usually make it hard to infer the 3D shapes from a 2D image
(see Figure 9(a) below).

Kindlmann adapted superquadrics, a traditional surface modeling tech-
nique, to generate tensor glyphs [33]. The class of shapes he created includes
spheres in the isotropic case, while emphasizing the differences among the
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(a) Boxes (b) Ellipsoids (c) Superquadrics

Fig. 9. A portion of a brain DTI scan as visualized by three different glyph methods
(overall glyph sizes have been normalized).

eigenvalues in the anisotropic cases. As shown in Figure 8, cylinders are used
for linear and planar anisotropy and intermediate forms of anisotropy are
represented by approximations to boxes. As with ellipsoid glyphs, a circular
cross-section accompanies equal eigenvalues, for which distinct eigenvectors
are not defined.

The differences among some of the glyph methods can be appreciated by
comparing their results on a portion of a slice of a DTI brain scan, as shown
in Figure 9. The individual glyphs have been colored with the principal eigen-
vector colormap. The directional cue given by the edges of box glyphs 9(a)
is effective in linearly anisotropic regions, but can be misleading in regions of
planar anisotropy and isotropy, since in these cases the corresponding eigen-
vectors are not well defined numerically. The rotational symmetry of ellip-
soid glyphs 9(b) avoids misleading depictions of orientation, with the draw-
back that different shapes can be difficult to distinguish. The superquadric
glyphs 9(c) aim to combine the best of the box and ellipsoid methods.

3.4 Vector Field Visualization

The tensor field can also be simplified to a vector field defined by the main
eigenvector, e1. This simplification is based on the assumption that in the
areas of linear anisotropy, e1 defines the direction of linear structures. The
sign of e1 has no meaning.

One commonly used method to visualize DTI data is to map e1 to color,
e.g., directly using the absolute value of the e1 components for the RGB
channel: R = |e1 · x| , G = |e1 · y| , B = |e1 · z|

The saturation of this color is weighted by an anisotropy index to de-
emphasize isotropic areas (see figure 10).

Other methods have been proposed to visualize the global information of
2D as well as 3D vector fields [34], and there are well established 2D vector-
field visualization methods [35]. Although 2D techniques have been extended
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to 3D, the visualization of 3D vector fields is still a challenging problem due
to visual cluttering and computational cost.

We concentrate here on 3D DTI data. The most commonly used technique
to visualize DTI data is streamline tracing; in DTI-specific literature this is
also called fiber tracking [36] or tractography [37]. There is a direct analogy
between the streamlines and the linear structures to be visualized (e.g., fibers).
Furthermore, streamlines in 3D can easily be visualized by regions in order to
avoid cluttering. Streamline tracing is based on solving equation:

p(t) =
∫ t

0

v(p(s))ds (1)

where p(t) is the generated streamline and v corresponds to the vector field
generated from e1. p(0) is set to the initial point of the integral curve.

The streamline technique has three main steps: definition of initial tracking
points (i.e., seed points), integration, and the definition of stopping criteria.
Seed points are usually user defined: the user specifies one or more regions of
interest (ROI). Interior of the ROIs are sampled and the samples are used as
seed points. Equation ( 1 ) is solved by numerical integration via such schemes
as: Euler forward and second-or fourth-order Runge-Kutta.

Stopping criteria avoids calculation of the streamline where the vector field
is not robustly defined. In areas of isotropic or planar diffusion, the value of
e1 can be considered random, and thus has no meaning for the underlying
structure. The user can usually set a threshold based on the anisotropy indices
(e.g., FA, RA or Cl) to describe the areas where the vector field is defined;
the value of this threshold depends on the data-acquisition protocol and the

(a) axial slice (b) sagital slice

Fig. 10. Mapping of e1 to the RGB channel shown in 2D slices of a healthy volunteer
brain.



14 Vilanova, Zhang, Kindlmann, Laidlaw

(a) (b)

Fig. 11. (a) Streamline tracing using two ROIs to trace the corona radiata in a
data set of a healthy volunteer brain. (b) Streamlines in a data set of a goat heart
using the tracing seeding technique by Vilanova et al. [38]

nature of the object that is being scanned. Other criteria can also be used,
such as the curvature or length of the streamline.

Hyperstreamlines are an extension to streamlines for second-order tensor
fields [39], first used by Zhang et al. for DTI data [40]. Hyperstreamlines
employ all eigenvalues and eigenvectors. A streamline defines the axis of a
generalized cylinder whose cross-section perpendicular to the axis is an ellipse
defined by e2 and e3 and λ2 and λ3, respectively.

Streamline-tracing techniques for DTI have several disadvantages that are
constantly being addressed. In areas of non-linear diffusion the main eigen-
vector is not robustly defined [15]. However, linear structures can be present
in areas with nonlinear diffusion, appearing where the linear structure direc-
tion is not coherent within a voxel (see figure 12) or arising from noise. Most
DTI tracing algorithms consider only the areas where the vector field is de-
fined robustly. Several authors have proposed methods to trace within areas
of isotropic or planar diffusion following the most probable diffusion direc-
tion based on some heuristics(e.g., [41, 42]). Some of these methods are based
on regularization techniques that are commonly used in image processing for
noise removal.

Another difficulty in streamlines is seeding. The seed points can be defined
by the user. In a healthy person with known anatomy, users can estimate where
the interesting bundles are and where to seed. However, in some cases, there
are no real clues to the possible underlying structure and user seeding can
miss important structures. Defining the seed points to cover the whole volume
can be computationally expensive, however and furthermore, too many seed
points, clutter the image and it becomes difficult to extract useful information.

Zhang et al. [40] employed uniform seeding throughout the entire vol-
ume and developed a culling algorithm as a postprocessing step to control
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Fig. 12. Regions on which fibers are present but the diffusion tensor is planar: (left)
kissing fibers, (middle) two fiber bundles crossing and (right) diverging fibers. Gray
regions have a tensor with planar diffusion.

the streamlines density.This allows inside structures to be visible and outside
structures still to be adequately represented. The metrics for the culling pro-
cess include the length of a trajectory, the average linear anisotropy along a
trajectory, and the similarity between a trajectory and the group of trajecto-
ries already selected.

Vilanova et al. [38] extended of Jobard et al.’s seeding algorithm [43] for
3D DTI data (see Figure 11(b). Here seeding and generation of streamlines
depend on a parameter that defines the density of the streamlines (i.e., min-
imal distance between streamlines). This method allows control of cluttering
and a less computationally expensive generation of streamlines than seed-
ing the whole volume regularly. However, if the density is set to a low value
this method does not guarantee that the important structures are visible,
since only the distance between streamline seed points is taken into account.
Generally, the fiber bundles are more interesting than an individual, and here
several authors have proposed ways to cluster the streamlines to obtain bun-
dles (e.g.,[44, 45, 46, 47]). These algorithms differ primarily in the metrics used
to define the similarity between streamlines and clusters, which are mainly
based on the shape and distance between fiber pairs. It is not clear which
metric gives the best clustering results. Bundles are a compact representation
of the data, that alleviates cluttering; however, these algorithms have the dis-
advantage of relying solely on the results of the streamline-tracing algorithm,
and therefore are very sensitive to its errors.

3.5 Beyond Vector Field Visualization

The previous section presented several visualization methods on which the
diffusion tensor data are simplified to the main diffusion direction to recon-
struct the underlying linear structure. In doing this of course information is
lost. In this section, we present several approaches that try to rectify this loss
and use more information than the main eigenvector.
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In the streamline tracing algorithm, the main eigenvector is assumed to
represent the tangent vector of an underlying linear structure. In a similar way,
it can be assumed that planar anisotropy indicates planar structure. There-
fore, the two main eigenvectors define the tangent plane of an underlying
planar structure, i.e., streamsurface. Zhang et al. [40] presented an algorithm
to generate the streamsurface based in the planar anisotropy. Figure 13(a)
shows the results of using their algorithm to trace streamlines and stream-
surfaces in the whole volume. Vilanova et al. [38] used a similar algorithm in
combination with streamline tracing to show the areas where linear structures
cross, kiss, converge or diverge (see Figure 12). Figure 13b shows streamlines
generated by a few seed points (in the yellow circle). Instead of stopping, a
streamsurface is traced when a streamline reaches an area of planar anisotropy.
In addition, the possible continuations of the initial streamline going through
the streamsurface are traced further.

Seed Points

(a) (b)

Fig. 13. (a)Red streamlines (represented as cylinders) and green streamsurfaces
generated using the method of Zhang et al. [40] show linear and planar anisotropy,
respectively, together with anatomical landmarks for context; (b) Streamlines using
seed points (yellow region), trace streamsurfaces and show the possible prolongation
of the fiber bundle, generated using the algorithm Vilanova et al. algorithm [38]

Streamsurfaces are extensions of streamlines, but the tensor information
is still simplified and not treated as a whole. Parker et al. [48] and Brun
et al. [49] modelled all possible paths from a given starting point. Parker
et al. used a front-propagation method with a speed function based on the
underlying tensor field. The path between the starting point and any point in
the volume is defined, by using the time of arrival of the front to each point and
a gradient descent algorithm. A connectivity metric describes the likelihood of
connection of each path. Brun et al. [49] modelled the paths as a probability
distribution, that is discretely represented by weighted samples from it. For
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each path, a connectivity is also assigned according to diffusion tensor and the
path’s shape. Batchelor et al. [50] propose a method based on simulating the
diffusion defined by the diffusion tensor, and use a probabilistic interpretation
of the time of arrival of the diffusion front to quantify the connectivity of
two points. O’Donnell et al. [51] describe a similar idea: a flux vector field
based on solving the steady-state concentration is created. Paths generated
in this vector field have a measure of connectivity based on the flow along the
paths; the maximum flow indicates the most probable connection. They also
present a method based on warping the space locally using a metric defined
by the inverse of the diffusion tensor. Finding the minimum-distance path
(i.e., geodesic) in this warped space provides a reconstruction of a possible
underlying linear structure and a numerical measure of connectivity between
two points (i.e., distance).

The advantage of these methods is that they are well defined in the com-
plete space, even in areas with planar or isotropic diffusion. Furthermore, they
give a quantitative measure of connectivity. Their drawbacks are that they are
computationally expensive and any pair of points in the space is connected.
Therefore, it is necessary to define not just a starting point but also end points,
or to establish criteria for which points are considered to be connected (e.g.,
a percentile of the most probable connections).

There have been several efforts to visualize the global information of the
second-order tensor field in general [52, 53]. Recently, Zheng and Pang [54]
presented an extended the vector-field visualization method LIC (line integral
convolution) to tensor data. As in the 3D extension of the LIC, cluttering is a
problem, when this method is applied to DTI data, not much more than the
outer shell of the anisotropic areas is visible.

Hesselink et al. [55] presented a method to extract topology skeletons of
second-order 3D tensor fields. These skeletons are mainly defined by points,
lines and surfaces that represent the complex structure of a tensor field in
a compact and abstract way. The main component of the topology is the
calculation of degenerated points whose eigenvalues are equal to each other.
The main drawback of this method is the lack of intuitive interpretation of
the topology skeletons for tensor fields. It is also very sensitive to noise, so
that the resulting skeletons can be very complex and difficult to analyze.

3.6 Interaction

Human-computer interaction (HCI) arises in multiple aspects of DTI visu-
alization: transfer function manipulation, seeding point selection, streamline
culling, streamline query, and graphical model exploration, to name a few. We
briefly review some of the interaction techniques here.

In volume rendering, transfer functions determine the mapping from the
data to color and opacity (see section 3.2). The selection of transfer functions
often requires expertise; in addition, it is often done by trial and error, so that
it is important that the user be able to select the transfer functions intuitively



18 Vilanova, Zhang, Kindlmann, Laidlaw

and quickly. Kniss et al. [30] describes a set of widgets that let the user specify
multi-dimensional transfer functions interactively. Wenger et al. [28] applied
this idea to DTI volume rendering, employing a set of widgets including a
barycentric widget for manipulating the geometrical diffusion measures (see
Figure 14).

Interaction permeates the whole process of vector field visualization: both
seeding points selection and connectivity query involve specifying ROIs.
Streamline culling requires selecting certain criteria and setting the corre-
sponding thresholds. And displaying the 3D streamline models often relies on
user input to show the models at different scales and perspectives. Akers et
al. [56] developed a pathway-query prototype to expedite the first two oper-
ations, precomputing the pathways and their statistical properties to achieve
real-time interaction.

The complexity of the DTI datasets often yields complicated graphical
models that are hard to discern in a still picture. Continuing developments
in computer graphics constantly change how user interact with these models.
Desktop 3D graphics used mouse click and drag to move the models; fish-
tank virtual reality display systems added stereo and head tracking [57]. the
CAVE provided an immersive virtual environment that engaged the user in
whole-body interaction [58] (see Figure 14(b)). However, none of these sys-
tems stand alone; each has its strengths and weaknesses depending on certain
applications [57].

The interaction schemes can also be combined in hybrid visualization
methods. For example, the streamtube-culling widget can be incorporated
into the control panel with various other transfer function widgets (see Fig-
ure 14(a)). A traditional light-box display of a structural image slice provides
context in a complex 3D scene (see Figure 14(b)).

Currently, computational power limits our ability to achieve real-time in-
teraction and precomputed models must often be used for the sake of the
speed. In the future, we expect a closer tie between computation and human
input for more efficient and effective data exploration.

4 Applications

DTI is especially useful in studying fibrous structures such as white matter
and muscle: the anisotropy information it provides reveals the fiber orientation
in the tissue and can be used to map the white-matter anatomy and muscle
structure in vivo [37]. The diffusion coefficient measures a physical property
of the tissue and the measurements can be compared across different times,
locations, and subjects. Therefore, DTI has frequently been used to identify
differences in white matter due to a variety of conditions. Normal conditions
such as age and gender have been reported to affect anisotropy and diffusivity;
neural developments such as myelination, physical trauma such as brain injury,
and neurodegenerative diseases such as multiple sclerosis and HIV have all
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(a) (b)

Fig. 14. (a) An interactive exploration tool for DTI volume rendering. Clockwise
from upper left are a 2D barycentric widget, a 1D widget, a 2D Cartesian widget,
and a 2D Cartesian culling widget. (b) A user explores a complex 3D model in
virtual reality.

been indicated by DTI studies to affect white-matter composition, location,
or integrity.

The variety of DTI applications provides a valuable testbed for visual-
ization methods. Indeed, without applications to guide the development of
computational and visualization tools, these tools are far less likely to be
applicable. We introduce some of the applications in this section.

4.1 White matter normal conditions

Some normal conditions can affect the microstructure of white matter. Sig-
nificant differences were found in diffusivity and anisotropy of the human
corpus callosum with gender and handedness [59]. Age also has significant
effect on white matter, usually resulting in reduced FA and increased diffusiv-
ity [60, 61]. These factors should be considered when selecting control groups
for white-matter pathology studies.

The vector field visualization methods introduced in section 3.4 have been
employed to reveal connectivity in a normal brain. A common application is to
use neuroanatomy knowledge to select the ROIs and then reconstruct neural
pathways running through them. Evidence of occipito-temporal connections
within the living human brain was found by tracing neural pathways between
two ROIs [62]. Expert-defined ROIs for brainstem fibers and associate fibers
have been used to generate corresponding tracts [63]. An exciting trend is
to combine functional MRI (fMRI), which measures the changes in blood
flow and oxygenation in a brain area, with DTI fiber tracking, so that both
activated brain areas and the tract connecting them to other brain areas can
be visualized at the same time. For example, foci of fMRI activation have
been used as ROIs to reveal axonal connectivity in a cat’s visual cortex [64].
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4.2 White Matter Development

Almost all the neurons that the brain will ever have are present at birth.
However, the brain continues to develop for a few years after birth. A signif-
icant aspect of brain development is myelinization, the continued growth of
myelin around the axons. Myelin acts as an isolating membrane and allows a
conduction of nerve impulses from ten to one hundred times faster than along
a non-myelinated system and, at birth, few fibers are myelinated. The devel-
opment of myelin is a measure of increasing maturity of the neural system.
Previous studies have explored when particular fibers are myelinated, e.g.,
areas related with primary sensory (vision, touch, hearing, etc.) and motor
areas are the first to myelinate [65].

Diffusion tensor imaging has the potential to evaluate brain maturaty in
newborns. Myelinated fibers have higher anisotropy than non-myelinated ones,
i.e., the anisotropy depends on the development phase. The study of newborn
brain presents new challenges:

• The anisotropy in the neonatal brain is lower than in the adult brain.
Therefore it is more difficult to reconstruct fibers reliably.

• Motion artifacts can play a larger role, since neonates often move more
than adults.

• The signal-to-noise ratio is smaller. The neonatal brain is smaller than that
of an adult, and hence the voxel size must be smaller, leading to decreased
signal. Furthermore, one voxel in a neonate still contains more structures
than a voxel in an adults.

The first years of life are a critical time for brain development. Early di-
agnoses of brain lesions can help diminish the consequences of an injury. For
example, neonates who suffer hypoxic ischemic brain damage, have brain in-
juries caused by lack of oxygen and nutrients arising from blood flow problems.
Diffusion weighted imaging has already proved useful in detecting this injury.
Diffusion tensor imaging might provide further information about structure
and the development of the neonatal brain. Figure 15(a) shows the fibers cor-
responding to a data set of a premature neonate of 26 weeks and scanned
at six weeks old. Several fiber structures are visible (e.g., corona radiata in
blue). However, the corpus callosum is not visible: the arrow indicates where
the fibers are missing. Further investigation of all MR images of this neonate
confirmed that this patient lacks a corpus callosum. Figure 15(b) shows the
result of tracing streamlines using ROIs to visualize the corpus callosum and
the corona radiata in a full-term neonate scanned after four weeks of birth.
The DTI data does not reveal any alteration in the fibers despite the neonate
had meningitis.

4.3 White matter injury and disorders

DTI has proven effective in studying a range of white-matter disorders in-
cluding brain injury, brain tumor, focal epilepsy, multiple sclerosis, tuberous
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a) b)

Fig. 15. Studies of fibers in neonatal brains with different data sets. (a) Premature
neonate lacking corpus callosum (see arrow), (b) full-term neonate where no fiber
abnormalities were found. Corpus callosum and corona radiata are seen.

sclerosis, Parkinson’s disease, Alzheimer’s disease, schizophrenia, HIV infec-
tion, Krabbe’s disease, chronic alcohol dependence, ALS, X-linked ALD, and
CADASIL. Reviews of these studies can be found in [66, 67, 68, 69]. We select
three application areas in which pathological causes differ greatly, resulting
in different patterns and subtleties of the changes in white matter. Effective
analysis of these cases can be realized only by applying processing and visu-
alization methods accordingly.

Brain tumor

It is estimated that 17,500 people in the U.S. die from primary nervous-system
tumors each year [70]. A better understanding of the pathophysiology of brain
tumors is essential if we are to find effective treatments. Cortical disconnection
syndromes may play a significant role in clinical dysfunction associated with
this disorder.

Tractography methods have been applied to study patterns of white-
matter tract disruption and displacement adjacent to brain tumors. Wiesh-
mann et al. [71] found evidence of displacement of white-matter fibers of the
corona radiata in a patient with low-grade glioma when compared with spa-
tially normalized data collected from 20 healthy volunteers. Mori et al. [72]
found evidence of displacement and destruction of the superior longitudinal
fasciculus and corona radiata in two patients with anaplastic astrocytoma.
Gossl et al. [73] observed distortion of the pyramidal tract in a patient with
a high-grade glioma. Witwer et al. [74] found evidence of white matter tract
edema. Zhang et al. [75] observed the pattern of linear and planar diffusion
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(a)
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Fig. 16. Visual exploration and quantitative analysis of a tumor brain. (a) A 3D
visualization showing streamtubes and streamsurfaces as well as tumor and ven-
tricles. (b) The difference histogram obtained by subtracting normalized barycen-
tric histograms calculated from tumor-bearing and contralateral sections. Here zero
maps to medium gray because the difference is signed. Note that the most striking
difference occurs near the cs = 1 vertex.

around the tumor and analyzed the asymmetries of white-matter fiber tracts
between the tumor and the contralateral hemispheres.

Figure 16 shows visual exploration and quantitative analysis of a tumor
brain [75]. The streamtubes and streamsurfaces visualize both linear and
planar diffusion. The displacement of fiber tracts around the tumor is ac-
companied by a cradle of streamsurfaces, indicating a local increase of pla-
nar anisotropy. The normalized distribution of anisotropy is calculated on a
barycentric space (see section 3.1) for both the tumor side and contralateral
side of the brain. The difference in the two distributions (Figure 16(b)) clearly
indicates a decrease in linear anisotropy and an increase in planar anisotropy
in the tumor side of the brain.

As Figure 17 indicates, the geometrical alteration of fiber structures sur-
rounding the tumors can have different patterns [38]. In Figure 17(a), the
fibers are pushed to the left by the presence of the tumor; in Figure 17(b),
the fibers seem to be destroyed: the structure around the tumor is not moved,
but in the tumor area no fibers are present.

Tumors and their surrounding edema often cause gross changes in the
neural fibers around them. DTI can benefit tumor growth study and surgery
planning by modeling these changes geometrically. Scalar index analysis com-
plement the geometrical modeling by quantifying these changes.
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(a) (b)

Fig. 17. Two cases of adult tumor brain. (a) shows the fibers are pushed by the
tumor. (b) shows no fiber in the tumor area, indicating the destruction of neural
structures there.

Multiple sclerosis

Multiple sclerosis (MS) is a chronic disease of the central nervous system
that predominantly affects young adults during their most productive years.
Pathologically, MS is characterized by the presence of areas of demyelination
and T-cell predominant perivascular inflammation in the brain white matter.
Recent studies on MS have shown an elevated mean diffusivity and reduced
diffusion anisotropy [76] in MS lesion areas. The lesions with more destructive
pathology are generally shown to have the highest diffusivity.

Analyzing the interrelationship between the MS lesion and the affected
fiber pathways might help in understanding the mechanism of the axonal
damage. The visualization of DTI models with coregistered MS lesion masks
in Figure 18 can be utilized to determine the relationship between focal lesions
and the neuronal tracts that are anatomically related. Figure 18(b) suggests
the different effects that the focal lesions might have on the fibers. Note that
the streamtubes sometimes continue through the lesions (A) and sometimes
break within them (B). Figure 18(c) depicts only the fiber pathways that are
confined in the lesion area.

MS lesions are often dispersed and show different levels of severity. Visual-
izing the affected tracts can clarify the various effects of the lesions. Also, the
connection of partially damaged tracts to the gray matter might help explain
the disabling effect of MS.

HIV neurodegeneration

Human immunodeficiency virus (HIV) is an aggressive disease that affects
multiple organ systems and body compartments, including the central ner-
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(a) (b) (c)

Fig. 18. Visualization of coregistered DTI and MS lesion models. (a) The whole
brain with streamtubes, streamsurfaces, lesion masks and ventricles. (b) A closeup
view of white matter fibers near the MS lesions. The streamtubes around the lesion
area give some clues about white matter structural changes there. (c) The same
brain and view as (a) but showing only streamtubes that contact the lesions, thus
clarifying the white matter structures involved.

vous system (CNS). Structural imaging studies of HIV patients’ brains reveal
morphometric changes in the subcortical gray and white matter regions [77].
However, because of the relatively poor sensitivity of structural imaging to
white-matter abnormalities in patients with mild HIV [78], the relationship
between cognition and white-matter abnormalities in structural MRI has not
been fully determined. These limitations can be overcome by DTI. Recent
DTI studies have demonstrated abnormalities among patients with HIV, even
in the absence of white-matter abnormalities on fluid-attenuated inversion re-
covery (FLAIR) structural MRI scans [79, 80]. Most recently, Ragin et al. [81]
reported strong relationships between whole-brain fractional anisotropy and
severity of dementia among a small cohort of HIV patients (n = 6).

In cases such as HIV infection, where the white-matter structural changes
may be too subtle to detect with structural imaging, DTI can be used to
quantify the changes.

4.4 Myocardial Structure

Diffusion tensor MRI can also be used to measure directionally constrained
diffusion applies to tissues outside the nervous system. Understanding the
complex muscular structure of the mammalian heart is another important
application. The efficiency of the heart is due in part to its precise arrange-
ment of myofibers (contractile muscle cells), especially the myocardium (the
muscular wall) of the left ventricle, which responsible for pumping blood to
the rest of the body. The pattern of myofiber orientation in the myocardium
is helical : between the epicardium and endocardium (outer and inner surface)
there is roughly a 140 degree rotation of myofiber orientation, from -70 to
+70 degrees. Computational simulations of heart dynamics require an accu-
rate model of the myofibral orientation in order to model both the contractile



Visualization and Applications of DTI 25

mechanics of the myocardium and the pattern of electrical wave propaga-
tion within it [82]. The principal eigenvector as measured by DT-MRI has
been confirmed to align with the myofiber orientation [13, 14]. Recent work
(Figure 4.4) has applied superquadric tensor glyphs to visualize the myofiber
twisting, and to inspect other anatomical features revealed by DT-MRI [83].

Fig. 19. Visualization of transmural twist of myofibers in canine myocardium, seen
in a short axis slice. The edges of the superquadric glyphs help show the flat incli-
nation at midwall and the differences among the eigenvalues at various locations.

As is clear from the descriptions above, the applications of DTI are in-
creasingly diverse. Associated with the breadth of application areas is a need
for a wide variety of visualizations techniques. Characterizing a tumor’s ef-
fect on white matter integrity is based on fiber tracking, while the effect of
neurodegenerative diseases may be quantified in terms of anisotropy metrics,
and myocardial structure is described by a continuous rotation of the princi-
pal eigenvector. Successfully applying DTI to new research areas and prob-
lem domains demands that visualization tools be flexible enough to support
experimentation with the range of techniques, so as to evaluate the appropri-
ateness of each. This in turn requires that the modes of interaction efficiently
support the exploration and parameter setting needed for creating visualiza-
tions, ideally in a manner friendly to application-area experts who may not
be visualization experts. DTI visualization methods and their application will
remain an active research area.

5 Open Problems

We have presented several visualization techniques for DTI data that have
been proposed in the last decade. These methods try to show the relevant
information to physicians and researchers such that they can get insight on
the data. These methods usually simplify the tensor information or are not
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able to show its continuity. Further study of methods where the global whole
tensor information can be shown is necessary.

In clinical practice, anisotropy indices, such as FA or trace, are commonly
used. Although, they show just a few information of the tensor, their vi-
sualization is similar to what radiologies are used to, and they are easy to
understand and quantify. Other popular visualization techniques are based
on tractography or fiber tracking, probably due to its direct analogy from
streamlines to fibers. However, most of these techniques require some input
from the user(e.g., seed point) and therefore they are user dependent. Impor-
tant information can be missed if the user fails to give the right input. This
might be quite challenging for data sets of patients where there is no real
clue about what to expect. Non user dependency is critical for comparison
and evaluation of diseases. Some methods have tried to achieve that by recon-
structing linear structures in the whole volume so that all data is shown. The
main problems in this case are the computational cost and the huge amount
of data to inspect. Therefore, there is the need of good navigation tools that
allow the user to inspect the data easily. For example, grouping or clustering
of data without losing the detail can help the navigation. In order to explore
the data, it is critical that the interaction is intuitive and in real-time. Interac-
tion is also important for the setting of parameters, such as, transfer functions
or thresholds (e.g., cl in fiber tracking to define areas with linear structure).
This is necessary to explore new applications of DTI data and to robustly
analyze the results. Visualization of uncertainty measures can also help in the
analysis of data.

At the moment, quantification can be done based on anisotropy indices.
However quantification is an open problem in DTI when more DTI information
is used. It is possible to evaluate the data qualitatively, however quantitative
evaluation is difficult and needs further research. Quantification is important
to get clinical acceptance. It should be possible to evaluate the methods and
generate statistics and distinguish between diseased and non-diseased data. It
should be possible to build models according to the different parameters that
influence the results such as age, and sex.

Validation is an important issue for DTI. There have been few valida-
tion studies to be able to conclude that what is measured corresponds with
the anatomy [1, 13]. At the moment and to our knowledge, there is no gold
standard to validate the results of the techniques developed in this field.

One main open problem is the communication between different scientific
fields to advance in the use of DTI in clinical practice. It is important that
the physicians and technicians are able to communicate in a way the neces-
sary software and tools to advance in the clinical investigations for DTI are
developed.

We presented several potential applications for DTI. However due to the
open problems presented before there are few applications that are being com-
monly used in clinical environments. There is research in which applications
DTI can be used in daily practice, or brings interesting new insight.
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Finally, although not dealt in this chapter, a main research issue is the
protocols for DTI data acquisition in order to improve quality and reduce
scanning times. Furthermore in image processing a lot of research has been
devoted to scalar and less to vector images, but few research has been done in
image processing techniques for tensor data. Filters for noise removal, interpo-
lation, feature extraction, etc. are of relevant importance for the development
of DTI. Second order diffusion tensor does not contain enough information
to disambiguate areas where a voxel contains non-coherent linear structures.
New representations for diffusion that show its more complex behavior are
being researched. Visualization and image processing techniques might need
to adapt to the complexity of this new data.

6 Conclusions

DTI is the only modality that allows the visualization of tissue microstructure
(e.g., white matter or muscle) in vivo. Meaningful visualizations are crucial
to analyze and get insight in high-dimensional data such as DTI. We have
presented several visualization techniques that have been developed in recent
years. All visualization techniques have their advantages and disadvantages
compared to the others. A combination of different visualization techniques
might be the best solution to provide most insight in the data. However,
there still essential disadvantages that need to be overcome, such as user
dependency.

Several potential applications for DTI have also been presented. A lot of
research is being done in the study of white matter. The study of muscle such
as the heart can also benefit from DTI. The goals of the research can differ
from understanding, development and diagnoses. All these applications show
the power of DTI to be able to see what some years ago was impossible. The
variety and amount of applications of DTI is constantly increasing.

DTI is a relative young and exciting new field of research that brings
together several disciplines. Research in each of these disciplines is crucial to
achieve fruitful results in the application and use of DTI data.
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