Anisotropy Creases And Extremal Surfaces

Gordon Kindlmann¹, Xavier Tricoche², Carl-Fredrik Westin¹

¹ Laboratory of Mathematics in Imaging Department of Radiology Brigham & Women's Hospital Harvard Medical School ²

² Scientific Computing and Imaging Institute University of Utah

INSTITUTI

UNIVERSITY of UTAH

Why not something global, like an isosurface?

Isosurfaces show global structure ...

Isosurfaces show global structure ...

Creases for DTI?

- Goal: model large-scale white matter structures
 - Robust + Repeatable
 - Few or Zero Parameters
 - "Sulci for white matter"
- Basic Idea: Creases of FA
 - Ridges: "cores"
 - Valleys: interfaces
 - Shape, not connectivity

Crease feature definition (Eberly 1994)

Constrained extremum

Gradient g

Hessian eigensystem e_i , λ_i

Crease: **g** orthogonal to one or more **e**_i

Eigenvalue gives strength

Ridge surface: $\mathbf{g} \cdot \mathbf{e}_3 = 0$; $\lambda_3 < \text{thresh}$

Ridge line: $\mathbf{g} \cdot \mathbf{e}_3 = \mathbf{g} \cdot \mathbf{e}_2 = 0$; λ_3 , λ_2 < thresh Valley surface: $\mathbf{g} \cdot \mathbf{e}_1 = 0$; λ_1 > thresh

Slice Inspection: $RGB(e_1)$ (original data)

Slice Inspection: $RGB(\mathbf{e}_1)$

Slice Inspection: FA

Slice Inspection: ridge strength: $max(0,-\lambda_3)$

Slice Inspection: $sqrt((\mathbf{g} \cdot \mathbf{e}_3)^2 + (\mathbf{g} \cdot \mathbf{e}_2)^2)$

Cute pictures. Where are the geometric models?

Modified Marching Cubes for Surfaces

Crease surface is isosurface (zero-crossing) of $\mathbf{g} \cdot \mathbf{e}_i$, but... Eigenvectors lack sign: enforce intra-voxel sign consistency Propagate eigenvector at one corner to all others $\mathbf{g} \cdot \mathbf{e}$ dot products, then MC

case table

(torus demo)

3-D Results: coronal fibers

3-D Results: ridge surfaces

3-D Results: valley surfaces

3-D Results: brainstem valley surfaces

Cute models. What do they represent?

Extremal Surfaces (Amenta SIGGRAPH '04)

Generalization of MLS (moving least squares) Implicit surface generation from scattered point set Minimize distance to local planar weighted fit of points

Ingredients:

- Scalar function
- Line field

Ridge surfaces:

Line field is minor eigenvector of Hessian

Why not minor eigenvector of tensor field itself?

Figure 4: Streamlines (red) of a vector field n(x), and iso-contours (blue) of an energy function s(x). The heavy blue line is the extremal surface determined by n and s, running neatly along the "valley" in the energy landscape and passing through the minima of s. The streamlines of n and the iso-contours of s are tangent at the surface points. Here n and s were computed using the point-set surface for surfels introduced in Section 7; the input surfels are shown as black diamonds, with the long diagonal pointed in the direction of the surfel normal.

Discussion & Ongoing Work

- Novel Aspects:
 - Application of computer vision to DTI
 - Extracting geometry from differential DTI structure
- Scale space: interfaces are easier than "cores"
- Connected components!
- Crease line extraction; line vs. surface decision
- Evaluation on more datasets
- So, what you do with this?

Acknowledgements

- NIH funding: NIBIB T32-EB002177, NCRR P41-RR13218 (NAC), 2-P41-RR12553-07 (CIBC), R01-MH050740
- Data: Dr. Susumu Mori, Johns Hopkins University, NIH R01-AG-20012-01, P41-RR15241-01A1
- URL for paper + software info: http://lmi.bwh.harvard.edu/~gk/miccai06/

thank you

