Anisotropy Creases And
 Extremal Surfaces

Gordon Kindlmann ${ }^{1}$, Xavier Tricoche ${ }^{2}$, Carl-Fredrik Westin ${ }^{1}$
${ }^{1}$ Laboratory of Mathematics in Imaging
Department of Radiology
Brigham \& Women's Hospital

Harvard Medical School

${ }^{2}$ Scientific Computing and Imaging Institute University of Utah

Diffusion weighted imaging, tensor imaging

Is tractography/clustering the only way to get geometric models out of DTI?

Why not something global, like an isosurface?

Isosurfaces show global structure ...

Isosurfaces show global structure ...

.... but don't always show salient structure

Creases!

Creases (ridges and valleys) do capture salient structure

Goal: model large-scale white matter structures

- Robust + Repeatable
- Few or Zero Parameters
- "Sulci for white matter"

Basic Idea: Creases of FA

- Ridges: "cores"
- Valleys: interfaces
- Shape, not connectivity

Crease feature definition (Eberly 1994)

Constrained extremum
Gradient g
Hessian eigensystem $\mathrm{e}_{\mathrm{i}}, \lambda_{\mathrm{i}}$
Crease: g orthogonal to one or more \mathbf{e}_{i}

Eigenvalue gives strength
Ridge surface: $\mathbf{g} \cdot \mathbf{e}_{3}=0 ; \lambda_{3}<$ thresh
Ridge line: $\mathbf{g} \cdot \mathbf{e}_{3}=\mathbf{g} \cdot \mathbf{e}_{2}=0 ; \lambda_{3}, \lambda_{2}<$ thresh
Valley surface: $\mathbf{g} \cdot \mathbf{\epsilon}_{1}=0 ; \lambda_{1}>$ thresh

2-D Synthetic Scalar Example

How do you measure derivatives in the tensor field?

Measurement (of scalars) by convolution
Continuous field: convolution of sampled coefficients with continuous reconstruction kernels

Differentiation: convolve w/ derivative of reconstruction kernel

Non-linear transform of data

Fractional Anisotropy (FA) is non-linear

FA is non-linear, close-up

FA from invariants, from coefficients

$$
\begin{aligned}
& \mathrm{FA} \equiv \sqrt{\frac{3 D: D}{2 \mathrm{D}: \mathbf{D}}} \quad D=\mathbf{D}-\langle\mathbf{D}\rangle \mathbf{I} \quad \mathbf{D}: \mathbf{D}=\operatorname{tr}\left(\mathbf{D D}^{T}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \nabla J_{2}=\begin{array}{r}
\left(D_{y y}+D_{z z}\right) \nabla D_{x x}+\left(D_{x x}+D_{z z}\right) \nabla D_{y y}+\left(D_{x x}+D_{y y}\right) \nabla D_{z z} \\
-2 D_{x y} \nabla D_{x y}-2 D_{x z} \nabla D_{x z}-2 D_{y z} \nabla D_{y z}
\end{array} \\
& \nabla Q=\frac{\nabla S-\nabla J_{2}}{9} \\
& \nabla \mathrm{FA}=\frac{3}{2}\left(\sqrt{\frac{1}{S Q}} \nabla Q-\sqrt{\frac{Q}{S^{3}}} \nabla S\right) \quad \nabla S=\begin{array}{c}
2 D_{x x} \nabla D_{x x}+2 D_{y y} \nabla D_{y y}+2 D_{z z} \nabla D_{z z} \\
+4 D_{x y} \nabla D_{x y}+4 D_{x z} \nabla D_{x z}+4 D_{y z} \nabla D_{y z}
\end{array}
\end{aligned}
$$

Hessian(FA) more complicated, but similarly derived

Cute math.
Does it work?

Slice Inspection: RGB(\mathbf{e}_{1}) (original data)

Slice Inspection: RGB(\mathbf{e}_{1})

Slice Inspection: FA

Slice Inspection: |VFA|

Slice Inspection: ridge strength: $\max \left(0,-\lambda_{3}\right)$

Slice Inspection: $\left|\mathbf{g} \cdot \mathrm{e}_{3}\right|$ (modulated by strength)

Cute pictures.
Where are the geometric models?

Modified Marching Cubes for Surfaces

- Crease surface is isosurface
 (zero-crossing) of $\mathbf{g} \cdot \mathbf{e}_{\mathrm{i}}$, but...
- Eigenvectors lack sign: enforce intra-voxel sign consistency
- Propagate eigenvector at one corner to all others
g•e dot products, then MC case table

3-D Results: coronal fibers

3-D Results: ridge surfaces

3-D Results: valley surfaces

3-D Results: valley surfaces with fibers

3-D Results: brainstem fibers

3-D Results: brainstem ridge surfaces

3-D Results: brainstem valley surfaces

3-D Results: combined results

(coronal slab brain demo)

Cute models.
What do they represent?

Extremal Surfaces (Amenta SIGGRAPH '04)

Generalization of MLS (moving least squares)
Implicit surface generation from scattered point set
Minimize distance to local planar weighted fit of points
Ingredients:

- Scalar function
. Line field

Ridge surfaces:
Line field is minor eigenvector of Hessian

Why not minor eigenvector of tensor field itself?

Figure 4: Streamlines (red) of a vector field $n(x)$, and iso-contours (blue) of an energy function $s(x)$. The heavy blue line is the extremal surface determined by n and s, running neatly along the "valley" in the energy landscape and passing through the minima of s. The streamlines of n and the iso-contours of s are tangent at the surface points. Here n and s were computed using the point-set surface for surfels introduced in Section 7; the input surfels are shown as black diamonds, with the long diagonal pointed in the direction of the surfel normal.

Discussion \& Ongoing Work

- Novel Aspects:
- Application of computer vision to DTI
- Extracting geometry from differential DTI structure

Scale space: interfaces are easier than "cores"
Connected components!
Crease line extraction; line vs. surface decision
Evaluation on more datasets

So, what you do with this?

Acknowledgements

- NIH funding: NIBIB T32-EB002177, NCRR P41RR13218 (NAC), 2-P41-RR12553-07 (CIBC), R01-MH050740
- Data: Dr. Susumu Mori, Johns Hopkins University, NIH R01-AG-20012-01, P41-RR15241-01A1
- URL for paper + software info: http://Imi.bwh.harvard.edu/~gk/miccai06/

