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Basic message

- There many different kinds of uncertainty
(Rheingans “Ways of not knowing”, Monday)

* There’s at least one more kind of uncertainty
Based on an empirical view of data & visualization
(not sure if relevant for simulation studies?)

- Goal here is to:
Define this kind of uncertainty
Argue for its relevance
Get feedback from you

Work initiated by Maxwell Shron (now data scientist
for OkCupid); collaboration with Thomas Schuliz




One flavor of uncertainty

Variance in measurement of scalar (e.g. length)
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Second flavor of uncertainty

Variance in parameters of model of data

Model: mathematical representation of a hypothesis, parameterized by
physically meaningful degrees-of-freedom, to predict measurements

Finding planets around other stars
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Doppler shift in star light color from planet orbit

http://en.wikibooks.org/wiki/General_Astronomy/Extrasolar_Planets

‘ Jan 2011: Kepler telescope detects rocky planet “Kepler-10b”
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Second flavor of uncertainty

Varlance in parameters of model of data
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light curves dlgd the pw(m(m D(m{\er measurements yielded tight constraints on

the properties 01 Kepler-10b that spth%\t,o its rocky composition: Mp ﬁ 45612
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Mz, Rp =|1.4167093 1R, and pp =|8.8724 g cm™3. Kepler-10b is the smallest

transiting exo;)lanet (“S(‘O\'Pl‘?d to date. http://www.nasa.gov/pdf/509370main_Batalha_N_Kepler-10b.pdf

=> Parameters of models of empirical data are
fundamental qguantities in the scientific method

| DK Jones, Determlnlng and visualizing
uncertainty in estimates of fiber orientation from
diffusion tensor MRI” Magnetic Resonance in
Medicine 49:7-12 (2003)

Rheingans & desJardins, “Visualizing High-
Dimensional Predictive Model Quality.”
Visualization 2000, pp, 493-496.

Second flavor of uncertainty

Variance in parameters of model of data
Synthetic nd low-DOF model

Know something abo ise => compute likelihood
L of the data given particular el parameters

Data - Model (2 DOF) L(pos;height)
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Proposed new flavor of uncertainty

Ambiguity/in choice of model to describe data
L(pos,height)

2 peaks: 4 DOF

| Moite | MA

1 peak: 2 DOF

Goals of visualizing model ambiguity
1) Understand quality/sufficiency
of set of models in novel and
complex imaging modalities
» Modern imaging produces Vodell
multiple values per-voxel
* Discover spatial/anatomic

structure of where models are
descriptive, and where not

Model C




Goals of visualizing model ambiguity
1) Understand quality/sufficiency
of set of models in novel and
complex imaging modalities
» Modern imaging produces Modell
multiple values per-voxel

\ Model C
* Discover spatial/anatomic

I Model D
structure of where models are )
e Algorithm
descriptive, and where not

2) Characterize stability of GUSiEEs k
visualization/analysis with Answer B

: Answer C
respect to changes in model —

Diffusion Tensors from DWI data
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How to quantify model quality?

Can use error (residual) in fit
* More DOF => better fit, but less explanatory

 Various schemes for penalizing high DOF

One method: Bayesian Model Inference
Naturally implements Occam’s Razor
Cleanly includes probabilistic noise model
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Bayes for fitting (one, fixed) model

Find parameters w of model M;that maximize
posterior probability of the measured data D
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Friman et al. “A
Bayesian approach
for stochastic white
matter tractography”

B “IEEE TMI
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Bayes for evaluating a model

Want to quantify: how plausible is model M;, as
a whole, given the data?
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- Evidence: integral of data likelihood over model’s

entire parameter space (not specific to single fit)

- Uncertainty in model choice (of M; vs Mo) is

quantified by comparing evidence(M), evidence(Mx)

- Perhaps Sum(evidence) shows gaps in models?

constant




Evidence plots over 1-D domain

Evidence(x)

data(x) = f(y)
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Evidence plots over 1-D domain

data(x) = f(y) Evidence(x)

Evidence plots over 1-D domain
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Discussion

New opportunity for visualization to help
understand statistics & add scientific value

- Data & models complex; can see how
data can be explained, and where it can’t

- Can show exactly when simple models
suffice, backed up with statistical theory

Open research question: how to visualize
the multiple scalar fields generated by
computing per-pixel model evidences?

Thank you! glk@uchicago.edu




