Crease Features of Tensor Invariants

or,

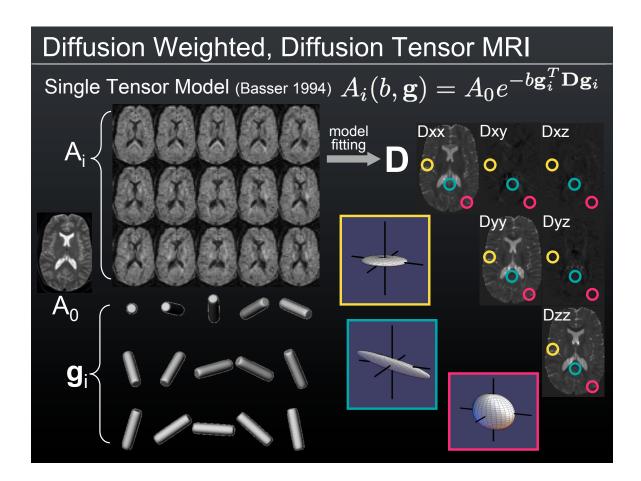
Modeling White Matter Fiber Tracts Without Tractography

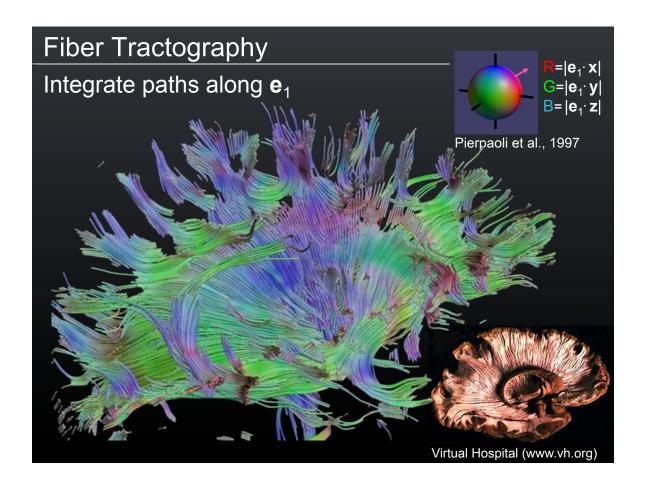
Gordon Kindlmann

Laboratory of Mathematics in Imaging Department of Radiology Brigham & Women's Hospital Harvard Medical School gk@bwh.harvard.edu

- Background: DTI and fiber tracking
- Goal: Extracting white matter structure
- Invariants for measuring shape
- Method 1: Tensor field topology
- Method 2: Crease feature detection
- Combination: Fiber structures and boundaries
- Discussions & Ongoing Work

- Background: DTI and fiber tracking
- Goal: Extracting white matter structure
- · Invariants for measuring shape
- Method 1: Tensor field topology
- Method 2: Crease feature detection
- Combination: Fiber structures and boundaries
- Discussions & Ongoing Work





- · Background: DTI and fiber tracking
- Goal: Extracting white matter structure
- · Invariants for measuring shape
- Method 1: Tensor field topology
- Method 2: Crease feature detection
- Combination: Fiber structures and boundaries
- Discussions & Ongoing Work

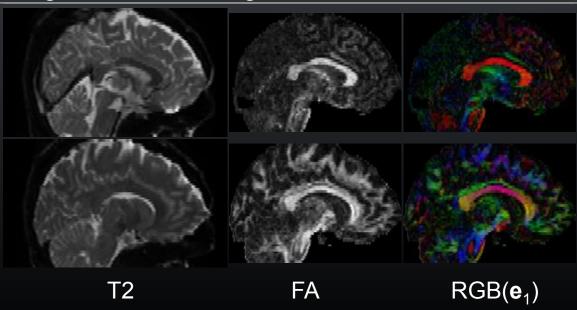
Why "tracts without tractography"

Standard pipeline:

DTI 10,000s ROI analysis/ anatomical clustering regions

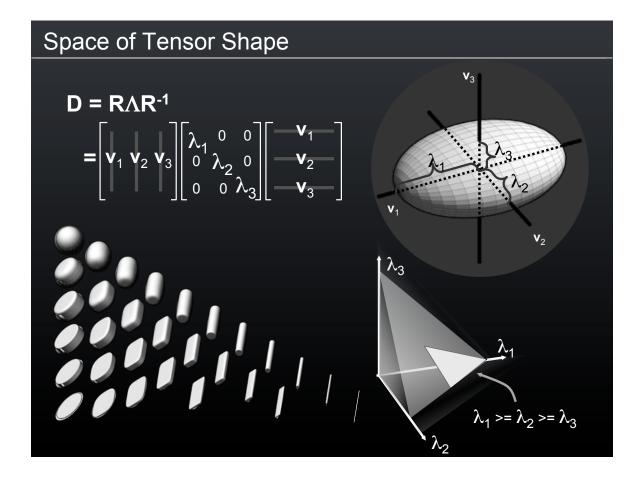
- Want robust way of getting at major fiber structure
 - · Less parameter tuning; closer to data
- Automatic landmarks for non-rigid registration
 - · Fiber tract skeleton: "Sulci for white matter"
 - Enable group differences on tensor attributes
- Surgical planning of tumor resection
 - Measure tract deformation, asymmetry

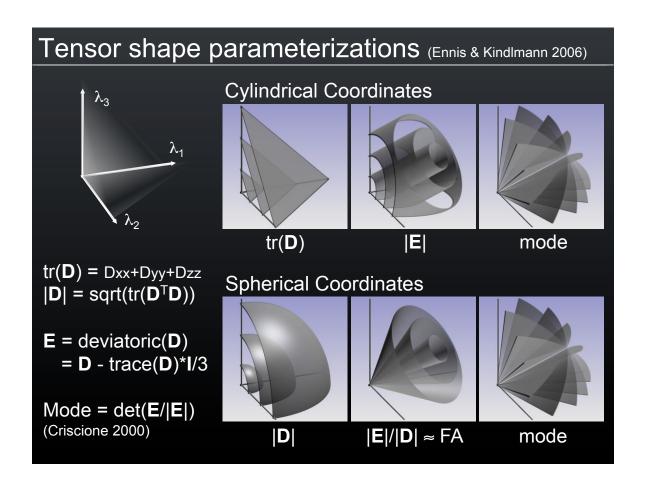
Registration challenge

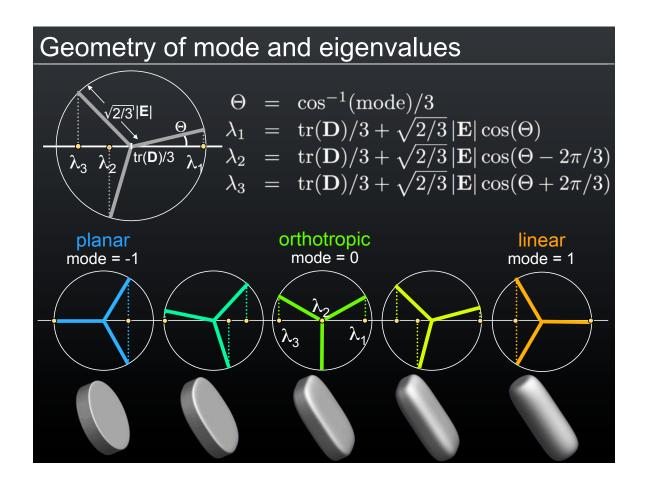


- DTI shows major fiber orientation
- Don't want to blur adjacent & orthogonal tracts

- Background: DTI and fiber tracking
- Goal: Extracting white matter structure
- Invariants for measuring shape
- Method 1: Tensor field topology
- Method 2: Crease feature detection
- Combination: Fiber structures and boundaries
- Discussions & Ongoing Work



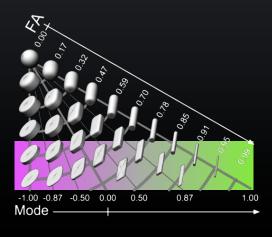




Software Demo

Human brain dataset (2x2x3 mm, 3T, 5 B0 + 30 DWI)

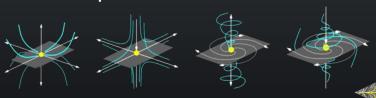
Purpose of visualizations: develop intuition for relationship between the spatial patterns of invariants and the underlying anatomy



- · Background: DTI and fiber tracking
- Goal: Extracting white matter structure
- · Invariants for measuring shape
- Method 1: Tensor field topology
- Method 2: Crease feature detection
- Combination: Fiber structures and boundaries
- Discussions & Ongoing Work

Method 1: Tensor Field Topology

- Vector Field Topology (Helman & Hesselink 1989)
 - Critical points: $\mathbf{v} = 0$



- · Paths connecting critical points
- · Separatrices decompose field
- Applied to tensor fields (Delmarcelle & Hesselink 1994)
 - Degenerate points: 2 or 3 eigenvalues equal
 - Decompose field into eigenvector flows

Points where 2 eigenvalues equal

- · Generically are lines (co-dimension 2, counting argument)
- · Zheng et al. 2004, 2005
- Explicit root finding on

$$D_3(T) = f_x(T)^2 + f_{y1}(T)^2 + f_{y2}(T)^2 + f_{y3}(T)^2 + 15f_{z1}(T)^2 + 15f_{z2}(T)^2 + 15f_{z3}(T)^2$$

Tensor Discriminant:

$$D_3 = (\lambda_1 \text{-} \lambda_2)^2 (\lambda_1 \text{-} \lambda_3)^2 (\lambda_2 \text{-} \lambda_3)^2$$

$$f_{y1}(T) = f_{y2}(T) =$$

$$f_x(T) = T_{00}(T_{11}^2 - T_{22}^2) + T_{00}(T_{01}^2 - T_{02}^2) + T_{11}(T_{22}^2 - T_{00}^2) + T_{11}(T_{12}^2 - T_{01}^2) + T_{22}(T_{00}^2 - T_{11}^2) + T_{22}(T_{02}^2 - T_{12}^2)$$

$$f_{y1}(T) = T_{12}(2(T_{12}^2 - T_{00}^2) - (T_{02}^2 + T_{01}^2) + 2(T_{11}T_{00} + T_{22}T_{00}) + T_{12}(T_{00}^2 - T_{12}^2)$$

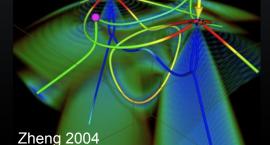
$$f_{y2}(T) = \begin{array}{c} -T_{11}T_{22})) + T_{01}T_{02}(2T_{00} - T_{22} - T_{11}) \\ f_{y2}(T) = & T_{02}(2(T_{02}^2 - T_{11}^2) - (T_{01}^2 + T_{12}^2) + 2(T_{22}T_{11} + T_{00}T_{11} \\ -T_{22}T_{00})) + T_{12}T_{01}(2T_{11} - T_{00} - T_{22}) \end{array}$$

$$f_{y3}(T) = egin{array}{ll} T_{01}(2(T_{01}^2 - T_{22}^2) - (T_{12}^2 + T_{02}^2) + 2(T_{00}T_{22} + T_{11}T_{22} \\ -T_{00}T_{11})) + T_{02}T_{12}(2T_{22} - T_{11} - T_{00}) \end{array}$$

$$f_{z1}(T) = T_{12}(T_{02}^2 - T_{01}^2) + T_{01}T_{02}(T_{11} - T_{22})$$

$$f_{z2}(T) = T_{02}(T_{01}^2 - T_{12}^2) + T_{12}T_{01}(T_{22} - T_{00})$$

$$f_{z3}(T) = T_{01}(T_{12}^2 - T_{02}^2) + T_{02}T_{12}(T_{00} - T_{11})$$



Numerically find simultaneous roots of seven cubic polynomials

Synthetic Elastic Stress Tensor

Degenerate Tensors in Real Data? Densely sampled discriminant in sagittal slice, at different scales (σ) $\sigma = 1$ $\sigma = 2$ $\sigma = 3$

- Background: DTI and fiber tracking
- Goal: Extracting white matter structure
- . Invariants for measuring shape
- Method 1: Tensor field topology
- Method 2: Crease feature detection
- Combination: Fiber structures and boundaries
- Discussions & Ongoing Work

Method 2: Ridge/Valley Detection

- · Medial Axis Transform (Blum 1973)
 - For binary Images
- Ridges and Valleys
 - · For gray-scale images
 - Saint-Venant 1852, Haralick 1983, Pizer et al. 1994, Eberly et al. 1994, Morse 1994, Koenderick & van Doorn 1994, Lindeberg 1996, and others ...



lorse 1994

Crease feature definition (Eberly 1994)

Taylor expansion → Hessian

$$f(\mathbf{x}_0 + \mathbf{d}) \approx f(\mathbf{x}_0) + \mathbf{d} \cdot \mathbf{g}(\mathbf{x}_0) + \mathbf{d}^{\mathrm{T}} \mathbf{H}(\mathbf{x}_0) \mathbf{d}/2$$
$$\mathbf{g} = \nabla f = \begin{bmatrix} \partial f/\partial x \\ \partial f/\partial y \\ \partial f/\partial z \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} \partial^2 f/\partial x^2 & \partial^2 f/\partial x \partial y & \partial^2 f/\partial x \partial z \\ \partial^2 f/\partial x \partial y & \partial^2 f/\partial y^2 & \partial^2 f/\partial y \partial z \\ \partial^2 f/\partial x \partial z & \partial^2 f/\partial y \partial z & \partial^2 f/\partial z^2 \end{bmatrix}$$

- Eigenvectors(**H**): 2nd-order structure orientation
- Extrema when **g** orthogonal to constraint surface
- · Crease: Gradient orthogonal to one or two ei
 - ridge surface: $\mathbf{g} \cdot \mathbf{e}_3 = 0$; $\lambda_3 < \text{thresh}$
 - valley line: $\mathbf{g} \cdot \mathbf{e}_1 = 0$; $\mathbf{g} \cdot \mathbf{e}_2 = 0$; $\lambda_1, \lambda_2 < \text{thresh}$

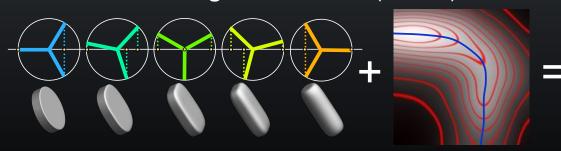
2D Ridge Line Example $f \quad \text{f a isophotes} \\ |\mathbf{g} \cdot \mathbf{e}_2| \quad \lambda_2 < \text{thresh}$

- Background: DTI and fiber tracking
- Goal: Extracting white matter structure
- · Invariants for measuring shape
- Method 1: Tensor field topology
- · Method 2: Crease feature detection
- Combination: Fiber structures and boundaries
- Discussions & Ongoing Work

Basic Idea

Discriminant $(\lambda_1 - \lambda_2)^2 (\lambda_1 - \lambda_3)^2 (\lambda_2 - \lambda_3)^2 = 0$

- ⇒ Two eigenvalues equal
- ⇒ Mode at **global** extrema (-1 or 1)

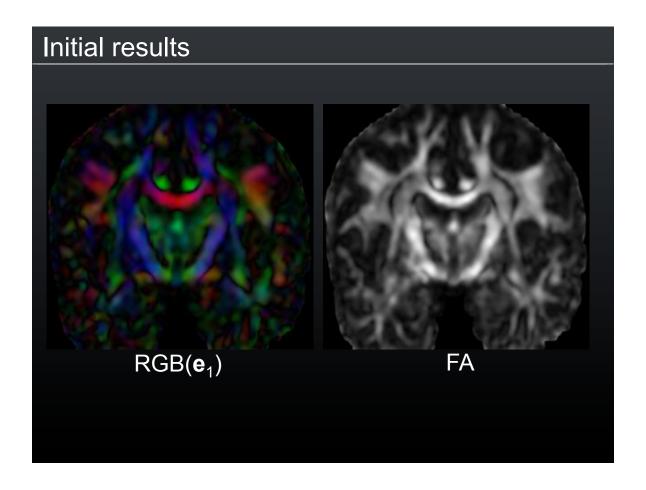


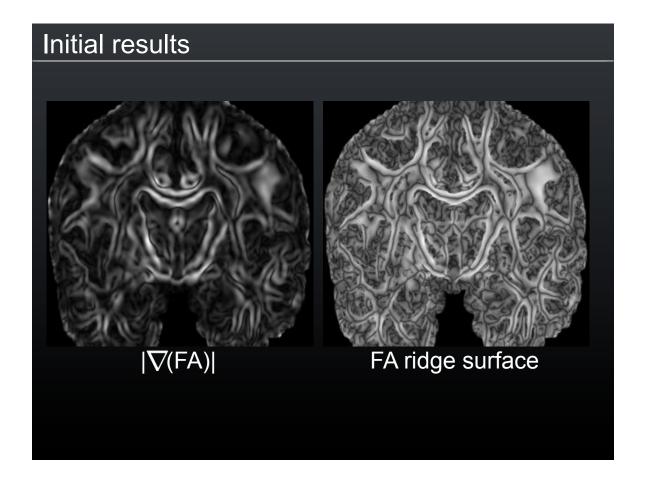
- Generalize tensor field topology
 - · Crease features in tensor mode
 - Crease features in FA

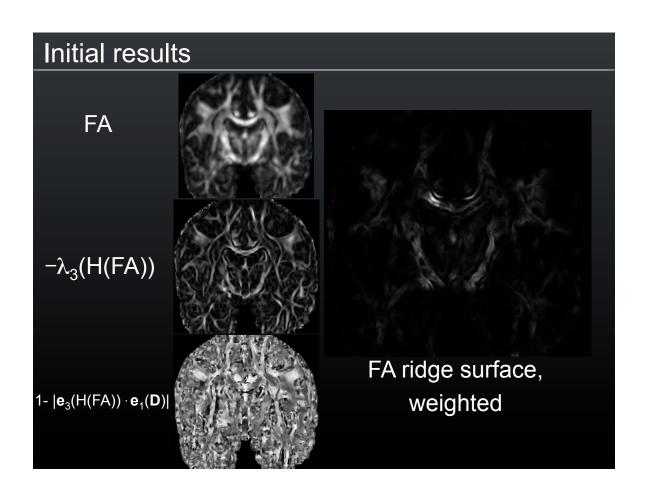
Crease features of tensor invariants

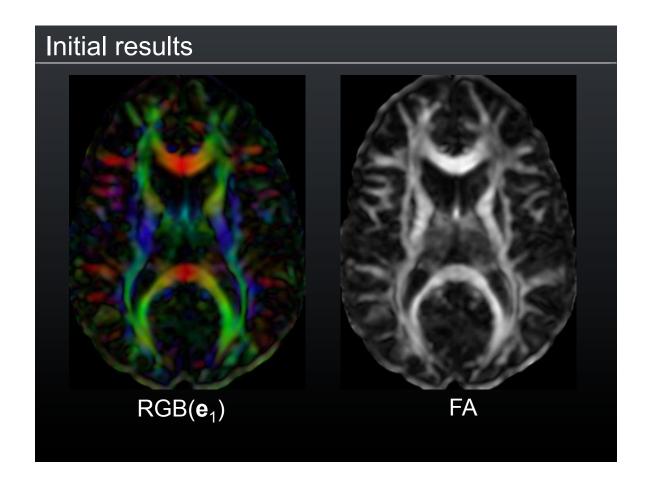
- Create smooth continuous tensor field
- 1st, 2nd derivatives of field (rank 3,4 tensors)
- · Gradient, Hessian of invariant
- Initial results

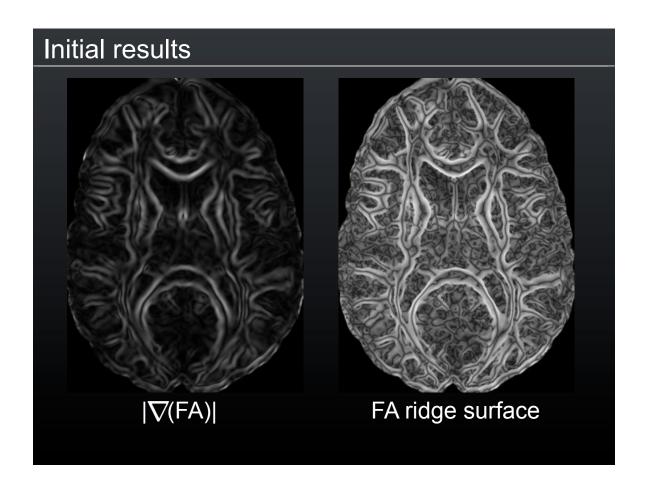
Computing invariant derivatives $J_2 = \frac{D_{xx}D_{yy} + D_{xx}D_{zz} + D_{yy}D_{zz}}{-D_{xy}^2 - D_{xz}^2 - D_{yz}^2}$ FA = $3\sqrt{\frac{Q}{S}}$ $Q = \frac{S - J_2}{9}$ $S = \mathbf{D}:\mathbf{D} = \frac{D_{xx}^2 + D_{yy}^2 + D_{zz}^2}{+2D_{xy}^2 + 2D_{xz}^2 + 2D_{yz}^2}$ $\nabla J_2 = \frac{(D_{yy} + D_{zz})\nabla D_{xx} + (D_{xx} + D_{zz})\nabla D_{yy} + (D_{xx} + D_{yy})\nabla D_{zz}}{-2D_{xy}\nabla D_{xy} - 2D_{xz}\nabla D_{xz} - 2D_{yz}\nabla D_{yz}}$ $\nabla Q = \frac{\nabla S - \nabla J_2}{9}$ $\nabla FA = \frac{3}{2}\left(\sqrt{\frac{1}{SQ}}\nabla Q - \sqrt{\frac{Q}{S^3}}\nabla S\right) \quad \nabla S = \frac{2D_{xx}\nabla D_{xx} + 2D_{yy}\nabla D_{yy} + 2D_{zz}\nabla D_{zz}}{+4D_{xy}\nabla D_{xy} + 4D_{xz}\nabla D_{xz} + 4D_{yz}\nabla D_{yz}}$ $\operatorname{mode} = \frac{R}{\sqrt{Q^3}} \quad R = \frac{-5\operatorname{tr}(\mathbf{D})J_2 + 27\operatorname{det}(\mathbf{D}) + 2\operatorname{tr}(\mathbf{D})S}{54}$ $\operatorname{Hessian}(FA), \, \operatorname{Hessian}(\operatorname{mode}) \, \operatorname{more} \, \operatorname{involved}$ $\operatorname{Why: \, Invariants \, and \, \nabla \, \operatorname{don'} \, t \, \operatorname{commute; \, storage}$

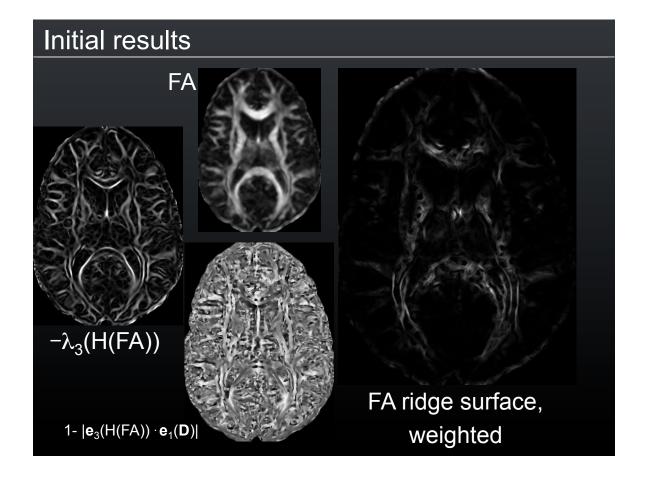












Discussion & Ongoing Work

- Contributions
 - Extracting geometry from differential structure
 - Combining tensor topology & crease detection
- Scale space: interfaces versus cores
- Tensor eigensystem orientation
- · Crease lines
- · Evaluation on more datasets

Acknowledgements

- Xavier Tricoche
 - · Scientific Computing & Imaging Institute, University of Utah
- Daniel Ennis
 - Radiologic Sciences Laboratory, Stanford University
- Laboratory of Mathematics in Imaging
 - · Carl-Fredrik Westin, Director
 - · Lauren O' Donnell, Raul San-Jose Estepar
- Psychiatric Neuroimaging Laboratory
 - · Martha Shenton, Director
- · Golby Lab
 - · Alexandra J. Golby, Director
- . NIH T32 EB002177