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Diffusion Weighted, Diffusion Tensor MRI
Single Tensor Model (Basser 1994) A, (b, g) = Aoe_bngDgi
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Fiber Tractography o

Integrate paths along e, W Celeyyl
\ o B=|e, 2|

Pica))aoli etal., 1997

Virtual Hospital (www.vh.org)
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Why “tracts without tractography”

Standard pipeline:
DT| 10,000s ROI analysis/ anatomical

of fibers clustering regions

Want robust way of getting at major fiber structure

. Less parameter tuning; closer to data
Automatic landmarks for non-rigid registration

. Fiber tract skeleton: “Sulci for white matter”

. Enable group differences on tensor attributes
Surgical planning of tumor resection

. Measure tract deformation, asymmetry

Registration challenge

RGB(e,)
DTI shows major fiber orientation

Don’ t want to blur adjacent & orthogonal tracts
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Space of Tensor Shape
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Tensor shape parameterizations (nnis & kindimann 2006)

Cylindrical Coordinates

tr(D) |E|

tr(D) = Dxx+Dyy+Dzz . :
ID| = sqrt(tr(D'D)) Sphrlcal Coordinates

E = deviatoric(D)
=D - trace(D)*I/3

Mode = det(E/|E|)
(Criscione 2000) ID| |E|/|D| = FA mode

Geometry of mode and eigenvalues

= cos~!(mode)/3
tr(D)/3 + 1/2/3 |E| cos(©)
tr(D)/3 + 1/2/3 |E| cos(© — 27/3)
tr(D)/3 + 1/2/3 |E| cos(© + 27/3)

orthotroplc linear
mode = mode = 1

st
XX




Software Demo

Human brain dataset (2x2x3 mm, 3T, 5 BO + 30 DWI)

Purpose of visualizations: develop intuition for
relationship between the spatial patterns of
invariants and the underlying anatomy

Mode
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Method 1: Tensor Field Topology

Vector Field Topology (Helman & Hesselink 1989)

. Critical points: v=20

-/ {—-

Paths connecting critical points

. Separatrices decompose field

Applied to tensor fields (peimarcelle & Hesselink 1994)
Degenerate points: 2 or 3 eigenvalues equal

Decompose field into eigenvector flows

Points where 2 eigenvalues equal

Generically are lines (co-dimension 2, counting argument)

Zheng et al. 2004, 2005
. L D3(T) = fo(T)? + fur(T)? + fy2(T)* + fus(T)*+
Explicit root finding on 15,1 (T)? + 15f.2(T)? + 15f.3(T)?

Tensor Dlscrlmlnant ‘ Too(TH — T32) + Too(Tor — Téz) + Tu1 (T52 — Too) +
Tll(T122 - T(;-,l) + T22(T020 - lex) + T22(T022 - T122)
D3 - ()\.1')\.2)2 ()\.1 ')\.3)2 (}\2'}\.3)2 s = Ti2(Th-Th) — (T& + Ta) + 2(T11Too + T22Too
~T11T22)) + To1To2(2To0 — T22 — T11)
= Toa(2(T5, — TH) — (T61 + Ti2) + 2(T22T11 + TooTna
~T22T00)) + T12T01(2T11 — Too — T22)
= To1(2(T§, — T) — (T2 + T) + 2(TooTa2 + Tia Taz
—To0T11)) + To2T12(2T22 — T11 — Too)
7‘12(7‘022 - Tgx) + To1To2(T11 — T22)
To2(TE — TS) + Ti2To1(Te2 — Too)
Tor (T — Tk) + To2Ti2(Too — T11)

Numerically find simultaneous
roots of seven cubic polynomials

Zheng 2004 Synthetic Elastic Stress Tensor




Degenerate Tensors in Real Data?

Densely sampled discriminant in
sagittal slice, at different scales (o)

o=1 o=2 o=3
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Method 2: Ridge/Valley Detection

Medial Axis Transform (Blum 1973)
. For binary Images

Ridges and Valleys

. For gray-scale images

. Saint-Venant 1852, Haralick 1983, Pizer et al. 1994,
Eberly et al. 1994, Morse 1994, Koenderick & van
Doorn 1994, Lindeberg 1996, and others ...

Crease feature definition (ebery 1994)

Morse 1994

Taylor expansion — Hessian

f(xo +d) ~ f(x0) + d-g(xo) + d"H(xo)d/2
of [0x
g=Vf= [ of /0y
of [0z

0*f/ox*  8°f/oxzdy O%f/0x0z
H= [ 0°f|oxdy 0°f/oy*  8%f/Oydz ]
0°f|0xdz O°f)0ydz O°f)02*

Eigenvectors(H): 2nd-order structure orientation
Extrema when g orthogonal to constraint surface
Crease: Gradient orthogonal to one or two e,

. ridge surface: g-e; = 0; A; < thresh

. valley line: g-e,;=0; g-e,=0; A A, < thresh




2D Ridge Line Example

f & isophotes \\ :

ridge line

|9 e, A\, < thresh
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Basic Idea

= Two eigenvalues equal

= Mode at global extrema (-1 or 1)

@G
VAN

Generalize tensor field topology

Crease features in tensor mode
Crease features in FA

Crease features of tensor invariants

Create smooth continuous tensor field

1st, 2nd derivatives of field (rank 3,4 tensors)

Gradient, Hessian of invariant

Initial results




Measurement by convolution

Continuous tensor field: convolution of sampled
coefficients with continuous reconstruction filters

* =

|

To differentiate: convolve with derivative ¢
reconstruction filter

f[K]

(x) f' (1)

"
L * AL NN
Pajevic 2002 \/

Computing invariant derivatives
J2 — D.'L':L‘Dyy + Da:a:-Dzz + Dyy-Dzz

D:,+ D2 + Dz,

RASIDDAS +2D2, +2D2, +2D2,

VJ2 — (Dyy + Dzz)vD:tz + (Dwz + Dzz)VDyy at (Dz'-’t + Dil!y)v-Dzz
—2D,,VD,, —2D,,VD,, —2D,,VD,,

vQ = VS -VJ,

9
VFA = 3 l g \/5 ! v§ = 2DseVDas 42Dy, V Dy, +2D.. VD,

_ —5tr(D)Jz + 27det(D) 4+ 2tr(D)S
mode = \/@ R = =
Hessian(FA), Hessian(mode) more involved
Why: Invariants and V don’ t commute; storage




FA ridge surface

Initial results
Initial results




Initial results

FA ridge surface,
weighted

Initial results




Initial results

FA ridge surface

Initial results

) 4

Sa(H(FA))

FA ridge surface,
weighted




Discussion & Ongoing Work

Contributions

. Extracting geometry from differential structure

. Combining tensor topology & crease detection

Scale space: interfaces versus cores
Tensor eigensystem orientation

Crease lines

Evaluation on more datasets

Acknowledgements

Xavier Tricoche

. Scientific Computing & Imaging Institute, University of Utah
Daniel Ennis

. Radiologic Sciences Laboratory, Stanford University
Laboratory of Mathematics in Imaging

. Carl-Fredrik Westin, Director
. Lauren O’ Donnell, Raul San-Jose Estepar

Psychiatric Neuroimaging Laboratory
. Martha Shenton, Director

Golby Lab
. Alexandra J. Golby, Director

NIH T32 EB002177




