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Fiber Tractography 
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Pierpaoli et al., 1997 

Virtual Hospital (www.vh.org) 

Integrate paths along e1 
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•  Want robust way of getting at major fiber structure 
•  Less parameter tuning; closer to data 

•  Automatic landmarks for non-rigid registration 
•  Fiber tract skeleton: �Sulci for white matter� 

•  Enable group differences on tensor attributes 

•  Surgical planning of tumor resection 
•  Measure tract deformation, asymmetry 

Why �tracts without tractography� 

DTI 10,000s 
of fibers 

anatomical 
regions 

Standard pipeline: 
ROI analysis/ 

clustering 

•  DTI shows major fiber orientation 
•  Don�t want to blur adjacent & orthogonal tracts 

Registration challenge 

T2 FA RGB(e1) 
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Tensor shape parameterizations (Ennis & Kindlmann 2006) 

tr(D) = Dxx+Dyy+Dzz 
|D| = sqrt(tr(DTD)) 
 
E = deviatoric(D) 
    = D - trace(D)*I/3 
 
Mode = det(E/|E|) 
(Criscione 2000) |D| |E|/|D| ≈ FA mode 

Spherical Coordinates 

tr(D) |E| mode 

Cylindrical Coordinates 
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Geometry of mode and eigenvalues 
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Human brain dataset (2x2x3 mm, 3T, 5 B0 + 30 DWI) 

Purpose of visualizations: develop intuition for 
relationship between the spatial patterns of 
invariants and the underlying anatomy 

Software Demo 
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•  Vector Field Topology (Helman & Hesselink 1989) 

•  Critical points: v = 0 

•  Paths connecting critical points 

•  Separatrices decompose field 

•  Applied to tensor fields (Delmarcelle & Hesselink 1994) 

•  Degenerate points: 2 or 3 eigenvalues equal 

•  Decompose field into eigenvector flows 

Method 1: Tensor Field Topology 

•  Generically are lines (co-dimension 2, counting argument) 

•  Zheng et al. 2004, 2005 

•  Explicit root finding on 

   Tensor Discriminant: 

D3 = (λ1-λ2)2 (λ1-λ3)2 (λ2-λ3)2 

Points where 2 eigenvalues equal 

Numerically find simultaneous 
roots of seven cubic polynomials 

Zheng 2004 Synthetic Elastic Stress Tensor 



•  Densely sampled discriminant in 
sagittal slice, at different scales (σ)%

Degenerate Tensors in Real Data? 

σ = 1 σ = 2 σ = 3 
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•  Medial Axis Transform (Blum 1973) 
•  For binary Images 

•  Ridges and Valleys 
•  For gray-scale images 
•  Saint-Venant 1852, Haralick 1983, Pizer et al. 1994, 

Eberly et al. 1994, Morse 1994, Koenderick & van 
Doorn 1994, Lindeberg 1996, and others … 

Method 2: Ridge/Valley Detection 
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•  Taylor expansion → Hessian 

•  Eigenvectors(H): 2nd-order structure orientation 
•  Extrema when g orthogonal to constraint surface 
•  Crease: Gradient orthogonal to one or two ei 

•  ridge surface: g . e3 = 0; λ3 < thresh 
•  valley line: g . e1 = 0; g . e2 = 0; λ1,λ2 < thresh 

Crease feature definition (Eberly 1994) 
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2D Ridge Line Example 

f f & isophotes 

|g . e2| λ2 < thresh 

ridge line 
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Basic Idea 
Discriminant (λ1-λ2)2 (λ1-λ3)2 (λ2-λ3)2 = 0 

  ⇒ Two eigenvalues equal 

          ⇒ Mode at global extrema (-1 or 1) 

+ = 

•    Generalize tensor field topology 
•    Crease features in tensor mode 
•    Crease features in FA 

•  Create smooth continuous tensor field 

•  1st, 2nd derivatives of field (rank 3,4 tensors) 

•  Gradient, Hessian of invariant  

•  Initial results 

Crease features of tensor invariants 



Continuous tensor field: convolution of sampled 
coefficients with continuous reconstruction filters 

w(x) 

* = 
f(t) f [k] 

To differentiate: convolve with derivative of 
reconstruction filter 

Measurement by convolution 

f �(t) 
= * 

w�(x) f [k] 

Pajevic 2002 

Computing invariant derivatives 

Hessian(FA), Hessian(mode) more involved 
Why: Invariants and     don�t commute; storage 



Initial results 

RGB(e1) FA 

Initial results 

|   (FA)| FA ridge surface 



Initial results 

FA 

�λ3(H(FA)) 

1- |e3(H(FA)) . e1(D)| 

FA ridge surface, 
weighted 
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Initial results 

FA ridge surface, 
weighted 

FA 

1- |e3(H(FA)) . e1(D)| 



Discussion & Ongoing Work 

•  Contributions 

•  Extracting geometry from differential structure 

•  Combining tensor topology & crease detection 

•  Scale space: interfaces versus cores 

•  Tensor eigensystem orientation 

•  Crease lines 

•  Evaluation on more datasets 
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