Symmetry and Continuity in Visualization and Tensor Glyph Design

Gordon L. Kindlmann

Topic

- Symmetry and Continuity
 - General: for colormaps, scalar vis ...
 - Specific: glyphs for symmetric tensors
- Experiences with superquadric tensor glyphs (VisSym '04)
- What we at Dagstuhl can do together:
 - Design a more general tensor glyph
 - Formulate principles of Vis design & evaluation
- I'm junior; tell me what I'm missing

Symmetry

$$T(D) \approx D \Rightarrow V(T(D)) \approx V(D)$$

- Extending notation from van Wijk "Value of Visualization" Vis '05
- Symmetry: transformation T leaves thing unchanged
- Vis has same symmetries as data, no more, no less
- Tufte "Chart junk": avoid showing structure that does not reflect actual information
- Stevens 1946 "Scales of Measure": nominal, ordinal, interval, ratio

Symmetry

Coloring (or effectiveness of coloring) of **nominal** values should be symmetric under permutation

Symmetry $V(D+c) \approx V(D) \quad V(D+c) \neq V(D)$

Coloring of **interval** values should be symmetric under addition of constant (like a translation)

Symmetry

 MRI samples measured in frequency space ⇒ location of spatial pixels is arbitrary (translation = phase)

Glyph packing invariant WRT translation of sample location

Anti-symmetry

$$T(D) \approx -D \Rightarrow V(T(D)) \approx -V(D)$$

- Coloring of **ratio** values should be anti-symmetric under negation (like a reflection)
- Example of coloring divergence of vector field

Continuity

$$V(D+\epsilon) \approx V(D)$$

• Small changes in **data** → small changes in Vis

Continuity

$$V(D, S + \epsilon) \approx V(D, S)$$

- Small changes in **parameters** → small changes in Vis
- Failures of continuity:
 - Gimbal lock in rotations or fixed up-vectors
 - Small changes in isovalue cause large changes in isosurface orientation: high flowline curvature κ_f

Continuity

Flowline Curvature κ_f highlights "discontinuity" (or at least uncertainty) in isosurface visualization

Symmetric Tensors

$$\mathbf{D}^\mathsf{T} = \mathbf{D}$$

- (different meanings of "symmetry")
- Applications: Diffusion tensors
 - Only positive eigenvalues, glyphs exist
- Hessian, Rate of Strain, Strain/Stress
 - Positive and negative eigenvalues, no glyphs!
 - Missed opportunities for vis applications
- This is a basic, unsolved vis problem

Symmetric Tensors

• Real eigenvalues, orthogonal eigenvectors

Symmetric Tensors

$$\lambda_{1} = \lambda_{2} = \lambda \Rightarrow$$

$$\mathbf{D} = \lambda_{1} \mathbf{e}_{1} \otimes \mathbf{e}_{1} + \lambda_{2} \mathbf{e}_{2} \otimes \mathbf{e}_{2}$$

$$= \lambda (\mathbf{e}_{1} \otimes \mathbf{e}_{1} + \mathbf{e}_{2} \otimes \mathbf{e}_{2})$$

$$= \lambda \mathbf{I}$$

- Everything is an eigenvector, tensor has no intrinsic orientation ⇒ glyph must be circle or sphere
- Regardless of $\lambda > 0$ or $\lambda < 0 \Rightarrow$ can't use shape to indicate sign of λ in isotropic case $\mathbf{D} = \lambda \mathbf{I}$

Tensor Glyph Design

- Want glyph for (symmetric) tensors with all necessary
 symmetry and continuity properties
- How to show eigenvalue sign?
- Made worksheets for designing 2D tensor glyphs
 - Let's solve a visualization **modest** challenge
- Keep 3D extension in mind
 - 2D glyphs as cross-sections of 3D glyphs
- Keefe et al.TVCG 14(4) Scientific Sketching for Collaborative VR Visualization Design (2008)

Final points

- We have **basic** visualization research to do
 - Specific: Tensor glyphs in 2D and 3D
 - General: Formulating visualization principles: symmetry, continuity, ambiguity, what more?
- Visualization research not dead (Lorensen '04)
 - Not only about bringing existing commodity visualization tech to customers/collaborators
 - Not only about showing more data (quantity)
 - Inviting new customers/collaborators by creating new visualization technology for different data qualities and different physical phenomena