Sampling and Visualizing Creases with
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* Four papers that contribute to the strategy and
methodology of the scale-space particles

e Semi-Automatic Generation of Transfer Functions for
Direct Volume Rendering (1998)

* Curvature-Based Transfer Functions... (2003)
* Diffusion Tensor Visualization with Glyph Packing (2006)

* Delineating White Matter Structure in Diffusion Tensor
MRI with Anisotropy Creases (2007)




Semi-Automatic Generation of Transfer Functions

for Direct Volume Rendering (Kindimann & Durkin)
Volume Visualization Symposium,Visualization '98

* Used histograms to
measure relationship
between scalar values
and directional
derivatives along
gradient direction

de sradient g=V/f

* Hessian H=V ® Vf

o f = ‘g‘

o {’ = 1
f — 8 -Hg

Edge as maxima of f’, 0-crossing of f” g2

Semi-Automatic Generation of Transfer Functions

for Direct Volume Rendering (Kindimann & Durkin)
Volume Visualization Symposium,Visualization ’98

* Used histograms to
measure relationship
between scalar values
and directional
derivatives along
gradient direction

e gradient g=Vf
: ] * Hessiain H=V ® Vf
[ «f' = |g
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Semi-Automatic Generation of Transfer Functions

for Direct Volume Rendering (Kindimann & Durkin)
Volume Visualization Symposium,Visualization '98

* Used histograms to
measure relationship
between scalar values
and directional
derivatives along
gradient direction

& e gradient g=Vf
* Hessian H=V ® Vf

o f = ‘g‘

”»” 1

o f’ =
@g-Hg

Curvature-Based Transfer Functions for Direct

Volume Rendering: Methods and Applications
Kindlmann, Whitaker, Tasdizen, Moller;Visualization 03

* Applied implicit surface
curvature information to
direct volume rendering

e gradientg =V f

e “normal”’n = —g/|g|
P=1I1-n®n
Hessan H=V @ Vf

G = PHP/|g|
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Curvature-Based Transfer Functions for Direct

Volume Rendering: Methods and Applications
Kindlmann, Whitaker, Tasdizen, Moller;Visualization 03

Diffusion Tensor MRI background

Rate of water diffusion in Kleegex  newsPapel Anisotropy
nervous system is :

directionally dependent

" Tensor Model:
d(v) =v-Dv
Si(b,g;) = Spe™tE D

Model
Fitting

—




Diffusion Tensor Visualization with Glyph Packing
(Kindlmann & Westin,Visualization '06)

Tries to show underlying structures with texture of glyphs
Created with energy-minimizing particle system
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Diffusion Tensor Visualization with Glyph Packing

Kindlmann & Westin,Visualization ’06
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Ridge & Valley background

Isosurfaces collectively show global structure
Individual isosurface depends on isovalue parameter

Ridge & Valley background

.

Ridges & valleys (collectively, creases) more intrinsic
No parameter dependence, more invariant
= Can be better at capturing essential structure




Ridge/Valley (Crease) background

Eberly 1994

Constrained extremum
Gradient g

Hessian eigensystem e,

Crease: g orthogonal to
one or more e,

Eigenvalue gives strength

Ridge surface: g-e; = 0; A < thresh
Ridge line: g-e;=g-e,=0; As, A, <thresh
Valley surface: g-e,=0; A1 > thresh

Delineating White Matter Structure in Diffusion Tensor MRI with
Anisotropy Creases (Kindlmann et al. Medical Image Analysis 2007)

e Goal: automatically delineate
large-scale white matter structures

* “Sulci for white matter”

* Ridges, valleys: major paths and
interfaces in between

e Shape, not connectivity

e Smith et. al. “Tract-Based Spatial
Statistics” Neurolmage '06 S




Measurement (of scalars) by convolution

Continuous field: convolution of sampled coefficients with
continuous reconstruction kernels

f[i] f(t)

k(x)
||‘|.‘ |.*A=

Differentiation: convolve w/ derivative of reconstruction

K'(x) f(t)

f[i]

Non-linear transform of data
fli] k(x)

(g

h(i] = g(f[i])




Fractional Anisotropy (FA) is non-linear
|

- T
t L[| 1

n— k'(x)
‘LJ’

DIij,k] D(x.y,z)=D[] * k()

|V FA(D(x yz

L_y’u'

.-!: 1 ”
(D[IJk]) FA(D[]) * k()
[V(FA(D) * k()




FA from invariants, from coefficients

D=D-(D)I DD = tr(DD7)

D:I::L'Dyy + Da:a:Dzz + Dnyzz
Jo = D2 —_D2 _
Ty Tz
D2,+ D2 + D2,

P IAD= +2D2, +2D2, +2D2,

_ (Dyy + D22)VDsg + (Dog + D22)VDyy + (Dag + Dyy) VD,

S ~2D,,V Dy, — 2D4,V Dy, — 2D,V D,

VQ:VS_VJ2

9
A3 1 Qyug Vs = 2DaaVDiz+ 2Dy VDyy +2D::V D,

Hessian(FA) more complicated, but similarly derived

Modified Marching Cubes for Surfaces

e Crease surface is isosurface
(zero-crossing) of g-e;, but...

 Eigenvectors lack sign: enforce
intra-voxel sign consistency

* Propagate eigenvector at one
corner to all others

e g-e dot products, then MC case
table

e Schultz et al. TVCG 09: smarter




Coronal slab: tractography
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Coronal slab: valley surfaces

Coronal slab: tractography + valle




6 cases, ridges w/ connected components

Non-linearity of FA makes it interesting to study
Problem of scale-dependence in feature extraction

Borrowing
mathematical tools of
Computer Vision

Semi-Automatic
Generation of Transfer

Functions for Direct

Volume Rendering (1998) Leveraging Hessian for

Curvature-Based Transfer better local structure

Functions... (2003)
Using energy-minimizing
particle systems to
capture 3D structure

Diffusion Tensor
Visualization with Glyph
Packing (2006)
Visualization as tool
for creating &
evaluating methods of
anatomic feature
sampling & extraction

Delineating White Matter
Structure in Diffusion

Tensor MRI with
Anisotropy Creases (2007)




Scale-Space Particles (SSP)

* Basic Idea: use particle systems to sample crease
features, and do so in scale-space

* Scale-space: process image and all blurrings of it

* Works in continuous domains of space and scale (no
Marching-Cubes type discretization)

* Simple to implement: teach particles rules, let them go

* Variety of anatomic features could be creases (ridges &
valleys, lines & surfaces)

* Biomedical research applications: group studies of brain,
clinical quantification of anatomic structure, high-
throughput image-based phenotyping

Method Overview

¢ Particles move/live/die to lower total
system energy:

N N
o
argmin & = argmin (1—a)) Ei+~ Y Ejj
{(X,‘,S,‘)},N {(X,‘,S[)},N i=1 2 ,j=1

e Inter-particle energy F;; : maintains
~uniform sampling distance

* |Image-particle energy E;: draws

particles towards scale of maximal
feature strength

+
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W
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.9.
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* Within an iteration, particles are spatially

constrained (no energy) to stay within
crease features

space: x € R?

<




Methods components

* Interpolation through scale | i/ s

space: x € R®

* Crease constraint enforcement, ./ /| -
particle-image energy

* Inter-particle energy \@/
 System mechanics

¢ Particle visualization

Scale interpolation

* Want access to image at any blurring level

* Slow: re-blur at exactly desired blurring level
* Fast:interpolate between discrete pre-blurrings
* Spatial reconstruction: signal processing wisdom

* Reconstruction across scale, between pre-computed
blurrings: Computer Vision wisdom (Lindeberg)




Diffusion = Gaussian blurring

* Continuous domain: L(x;t) is signal L(x) after time t
of homogenous and isotropic diffusion

Last) = (FOg(s)(@) = [ glest)fla - )
g(&t) = exp(—=€2/2t)/V2mt
* |st time derivative determined by 2nd space derivative

OL(xz;t) 182[/(3:;15)
ot 2  Ox2

* What is analog for Discrete domain!

Lindeberg’s Discrete Gaussian
* “Scale-Space for Discrete Signals” IEEE PAMI 1990

* Formulated very nice analog to continuous Gaussmn
Lii;t] = (f*~K[; ZKnt i —n]

Kn;t] = exp(=t)I,(t); s=+Vt= “0"
o I,(t) modifie_d Bessel function of order n
IR (K[t —2 1))
OL|i; t] 1
ot 2
- —— = s(L[s] % [1 =2 1])[4]

ot
(L5t |1 =2 1])[d]
OL[i; 5%




Lindeberg’s Discrete Gaussian

s=0 s=0.5 s—IO s=1.5 s=2.0 s=2.5
* Not same as sampling continuous Gaussian
*s=0—-[.001 00.]not[..0 O +c0 0 O..]

e Automatically sums to unity

* Basis for scale interpolation: exact derivative along s
— can do Hermite spline instead of linear blend

Scale Interpolation Accuracy

Linear

Hermite




Scale Interpolation Accuracy

Reconstruction error

0.12 Uniform, Linear
— Uniform, Hermite
0.10
Non-uniform, Linear
0.08
0.06
0.04

!
0.02 ¢

Non-uniform, Hermite

e Measured error as
squared difference
between
interpolated K]
and true K],
summed over
support

* Optimized scale
sample locations

s by gradient
descent on error

Hermite-spline scale interpolation makes scale-
space practical for real-world 3D volumes

Constraint enforcement

* Translate feature definition into update in iterative
constraint solver; (R)idge, (V)alley; (L)ine, (S)urface

* Based on Hessian eigenvectors V;, eigenvalues A;

| RL RS
defined | g-vo=g-v3=0 | g-v3=0
A sign <A <0 Az <0
strength A X —Aa
~ tangent T ‘ viv) ViV +Vov)

VL | VS
g:-vi=g:v2=0| gvn=0
0< 2,3 < )\.1 0< /1]

P2 Ai
Vv, VoVl +V3V]

x—x+cx; x=(1-T)g

X = (0 = On the feature

Accurate enough for small updates




Particle-lmage Energy

| RL | RS | VL | Vs
defined | g-vp =g-v3 = g-vi=0 | gvi=g:-v2=0 | g-vy =0
lsign M <A <0 ‘ A <0 ‘ 0<lh <A { 0< A
strength A ‘ A | —Aa ‘ 2 ‘ A1
~ tangent T | Vv, | Viv{+Vav, | V3Vy | V2V, +V3V3

* Derivatives naturally go to 0 as scale increases

. . . Y~7 X,S§ - SV X,S
¢ Scale-normalized derivatives ~f( ) 5 fxs)
Hf(x,s) = s“Hf(x,s)

* Particle-lmage energy £, = —vh(x;, s;)

* Draws particles towards scale at which feature appears
strongest: feature localization along scale

Inter-Particle Energy

‘X._x.‘ S._S.
Eij = ®(rij,sij) = D( lo, = le ")

* Potential function ®(r,s) guides particle interaction

* Repulsion in space (along r)
* Role of potential well

* Either repulse or attract in scale (along s)

>, " : /' | ://
g | I“y‘r' ;

Oy(rs) D, (rs)




Particle Visualization

* Glyph indicates particle’s location in space and scale,

and shape of local Hessian

* Visualization to debug/evaluate feature extraction

* Tensors D; and D, visualized with tensor glyphs

(| ALl + [A2] + [As])

\Noo=
10
1 \ RL | RS | VL \&
)\/./ — defined | g-va=g-v3=0 | g-v3=0 | g-vi=g-v2=0 | g-vi=0
i maX()\/,‘)\iD Asign | A3 <2 <0 %<0 0<A < 0<h
strength —A —Aa A A
)\/./ ~ tangent T ‘ ok l viv]+vov) ‘ N V] +v;
1
Hi = NI NI
max(A], A\, AY)
Dy =T + 5;(I—T)
D, = E pivi @ Vi
)

Results

Simple demo:
Isosurfaces vs Creases
Adding particles

(no scale-space)




Results

Lung, Brain, from paper




Software

* Teem (http://teem.sf.net): collection of C libraries
* Weakened LGPL license
* Particle system in library called “pull”

* No documentation except the source

* All interpolation (space and scale) in underlying
library called “gage”

Discussion

* Not “visualization” per se
* Particle systems from Graphics,Visualization
* Glyphs from Visualization
* Scale-space, Crease definition from Vision
* Working on anatomical feature extraction
* Visualization to put itself out of business

* Thank you!




