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Background 

• Four papers that contribute to the strategy and 
methodology of the scale-space particles

• Semi-Automatic Generation of Transfer Functions for 
Direct Volume Rendering (1998)

• Curvature-Based Transfer Functions... (2003)

• Diffusion Tensor Visualization with Glyph Packing (2006)

• Delineating White Matter Structure in Diffusion Tensor 
MRI with Anisotropy Creases (2007)



Semi-Automatic Generation of Transfer Functions 
for Direct Volume Rendering (Kindlmann & Durkin)

Volume Visualization Symposium, Visualization ’98

• Used histograms to 
measure relationship 
between scalar values 
and directional 
derivatives along 
gradient direction
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Edge as maxima of f ’, 0-crossing of f ’’
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Curvature-Based Transfer Functions for Direct 
Volume Rendering: Methods and Applications

Kindlmann, Whitaker, Tasdizen, Möller; Visualization ’03
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• Applied implicit surface 
curvature information to 
direct volume rendering

• gradient
• “normal” 
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Curvature-Based Transfer Functions for Direct 
Volume Rendering: Methods and Applications

Kindlmann, Whitaker, Tasdizen, Möller; Visualization ’03

Diffusion Tensor MRI background

D
Model 
Fitting
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Rate of water diffusion in 
nervous system is 
directionally dependent

Kleenex newspaper Anisotropy

d(v) = v · Dv
Tensor Model:



Diffusion Tensor Visualization with Glyph Packing 
(Kindlmann & Westin, Visualization ’06)

Tries to show underlying structures with texture of glyphs
Created with energy-minimizing particle system

Glyphs on grid TractographyGlyph Packing

Diffusion Tensor Visualization with Glyph Packing 
(Kindlmann & Westin, Visualization ’06)



Ridge & Valley background

Isosurfaces collectively show global structure
Individual isosurface depends on isovalue parameter

Isosurfaces

Ridge & Valley background

Ridges & valleys (collectively, creases) more intrinsic
No parameter dependence, more invariant
⇒ Can be better at capturing essential structure

Ridge



Ridge/Valley (Crease) background
Eberly 1994
Constrained extremum
Gradient g
Hessian eigensystem ei,λi

Crease: g orthogonal to 
one or more ei

Eigenvalue gives strength

 Ridge surface: g . e3 = 0;              λ3 < thresh
       Ridge line: g . e3 = g . e2 = 0;   λ3, λ2 < thresh
Valley surface: g . e1 = 0;               λ1 > thresh

g
{ei}

Delineating White Matter Structure in Diffusion Tensor MRI with 
Anisotropy Creases (Kindlmann et al. Medical Image Analysis 2007)

•Goal: automatically delineate 
large-scale white matter structures

• “Sulci for white matter”
•Ridges, valleys: major paths and 

interfaces in between
•Shape, not connectivity
•Smith et. al. “Tract-Based Spatial 

Statistics” NeuroImage ’06

FA



Continuous field: convolution of sampled coefficients with 
continuous reconstruction kernels

k(x)

*
Differentiation: convolve w/ derivative of reconstruction kernel

Measurement (of scalars) by convolution

=

f(t)f[i]

k’(x)

*

f ’(t)

=
f[i]

Non-linear transform of data
k(x)
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f(t)f[i]

*
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*

h[i] = g(f[i])
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Fractional Anisotropy (FA) is non-linear
k(x)

=

f(t)f[i]

*

k’(x)

*

h[i] = g(f[i])

FA

=

h(t) = g(f(t))

FA

!=

FA(D(x,y,z))

|                      Δ|  

FA is non-linear, close-up

D[i,j,k] D(x,y,z)=D[ ] * k()

FA(D[i,j,k]) FA(D[]) * k()

FA(D[]) * k()

|(                  )Δ|



FA from invariants, from coefficients

Hessian(FA) more complicated, but similarly derived

• Crease surface is isosurface 
(zero-crossing) of g . ei, but…

• Eigenvectors lack sign: enforce 
intra-voxel sign consistency

• Propagate eigenvector at one 
corner to all others

• g . e dot products, then MC case 
table

• Schultz et al. TVCG 09: smarter

Modified Marching Cubes for Surfaces

g
e



Coronal slab: tractography

Coronal slab: ridge surfaces



Coronal slab: valley surfaces

Coronal slab: tractography + valleys



6 cases, ridges w/ connected components

Non-linearity of FA makes it interesting to study
Problem of scale-dependence in feature extraction

Background 
Semi-Automatic 
Generation of Transfer 
Functions for Direct 
Volume Rendering (1998)

Curvature-Based Transfer 
Functions... (2003)

Diffusion Tensor 
Visualization with Glyph 
Packing (2006)

Delineating White Matter 
Structure in Diffusion 
Tensor MRI with 
Anisotropy Creases (2007)

Borrowing 
mathematical tools of 

Computer Vision

Leveraging Hessian for 
better local structure

Using energy-minimizing 
particle systems to 

capture 3D structure

Visualization as tool 
for creating & 

evaluating methods of 
anatomic feature 
sampling & extraction 



Scale-Space Particles (SSP)
• Basic Idea: use particle systems to sample crease 

features, and do so in scale-space
• Scale-space: process image and all blurrings of it

• Works in continuous domains of space and scale (no 
Marching-Cubes type discretization)

• Simple to implement: teach particles rules, let them go

• Variety of anatomic features could be creases (ridges & 
valleys, lines & surfaces)

• Biomedical research applications: group studies of brain, 
clinical quantification of anatomic structure, high-
throughput image-based phenotyping

Method Overview
• Particles move/live/die to lower total 

system energy:

• Inter-particle energy      : maintains 
~uniform sampling distance

• Image-particle energy     : draws 
particles towards scale of maximal 
feature strength

• Within an iteration, particles are spatially 
constrained (no energy) to stay within 
crease features
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Methods components

• Interpolation through scale

• Crease constraint enforcement, 
particle-image energy 

• Inter-particle energy 

• System mechanics

• Particle visualization
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Scale interpolation
• Want access to image at any blurring level

• Slow: re-blur at exactly desired blurring level

• Fast: interpolate between discrete pre-blurrings

• Spatial reconstruction: signal processing wisdom

• Reconstruction across scale, between pre-computed 
blurrings: Computer Vision wisdom (Lindeberg)



Diffusion = Gaussian blurring
• Continuous domain: L(x;t) is signal L(x) after time t 

of homogenous and isotropic diffusion 

• 1st time derivative determined by 2nd space derivative

• What is analog for Discrete domain?

L(x; t) = (f(·) ⌅ g(·; t))(x) =
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• “Scale-Space for Discrete Signals” IEEE PAMI 1990

• Formulated very nice analog to continuous Gaussian

•          modified Bessel function of order n

Lindeberg’s Discrete Gaussian
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Lindeberg’s Discrete Gaussian

s=0 s=0.5 s=1.0 s=1.5 s=2.0 s=2.5

• Not same as sampling continuous Gaussian

• s = 0 →[...0  0  1  0  0...], not [...0  0  +∞  0  0...]

• Automatically sums to unity

• Basis for scale interpolation: exact derivative along s  
→ can do Hermite spline instead of linear blend

Scale Interpolation Accuracy

s=1 s=3

s=2 error

Linear

Hermite



Scale Interpolation Accuracy
• Measured error as 

squared difference 
between 
interpolated K[] 
and true K[], 
summed over 
support

• Optimized scale 
sample locations 
by gradient 
descent on error 

Hermite-spline scale interpolation makes scale-
space practical for real-world 3D volumes

Constraint enforcement
• Translate feature definition into update in iterative 

constraint solver; (R)idge, (V)alley;   (L)ine, (S)urface

• Based on Hessian eigenvectors     , eigenvalues 

ẋ = 0� On the feature 

x⇥ x + cẋ; ẋ = (I�T)g

Accurate enough for small updates

vi �i



Particle-Image Energy

• Derivatives naturally go to 0 as scale increases

• Scale-normalized derivatives

• Particle-Image energy

• Draws particles towards scale at which feature appears 
strongest: feature localization along scale

Ei = ��h(xi, si)

Inter-Particle Energy

• Potential function Φ(r,s) guides particle interaction

• Repulsion in space (along r)

• Role of potential well

• Either repulse or attract in scale (along s)
r

Φ₁(r,s) Φ₂(r,s)



Particle Visualization
• Glyph indicates particle’s location in space and scale, 

and shape of local Hessian

• Visualization to debug/evaluate feature extraction

• Tensors D₁ and D₂ visualized with tensor glyphs
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Results

Simple demo:
Isosurfaces vs Creases
Adding particles
(no scale-space)



Results
Φ₁(r,s)

Φ₂(r,s)

D₁ glyphs

Results

Lung, Brain, from paper



• Teem (http://teem.sf.net): collection of C libraries

• Weakened LGPL license

• Particle system in library called “pull”

• No documentation except the source 

• All interpolation (space and scale) in underlying 
library called “gage”

Software

• Not “visualization” per se

• Particle systems from Graphics, Visualization

• Glyphs from Visualization 

• Scale-space, Crease definition from Vision

• Working on anatomical feature extraction

• Visualization to put itself out of business

• Thank you!

Discussion


