Scientific Visualization at University of Chicago

Gordon L. KindImann glk@uchicago.edu

Let's recap some Calculus
 Taylor expansion of scalar field
 $f\left(\mathbf{x}_{0}+\varepsilon\right)=f\left(\mathbf{x}_{0}\right)+\nabla f\left(\mathbf{x}_{0}\right) \cdot \varepsilon+o(|\varepsilon|)$

$$
\nabla f\left(\mathbf{x}_{0}\right) \cdot \varepsilon=\left|\nabla f\left(\mathbf{x}_{0}\right)\right||\varepsilon| \cos \theta
$$

Just kidding ...

Actually, not really kidding
I teach a Scientific Visualization class
Scientific Visualization depends on math Math is just one principle for Sci Vis Perception, Signal processing, Systems I work to make the principles intuitive

CMSC 23710/33710, Scientific Visualization
Mechanics: UChicago on quarters
10 weeks of classes $=$ not a lot of time
No standing curriculum for programming
No engineering, not much applied math + CS
Both undergrad \& grad students
Many from outside CS
Plan: develop different Info Vis class Joint with Booth business school?

What are the principles?

Types of Data $=$ Symmetries of Data

Perception (e.g. Color): natural axes
Convolution \& Differentiation

Structure of Raster Data and meta-data

S. S. Stevens '46

On the Theory of Scales of Measurement

S. S. Stevens

FOH BEVEN YRATS A COMOMTTEEE of the Britial Assodiatian for the Advewosaent of Seiesce debatod the problere of nectourement. Appointed in 1932 to represent Beetion \boldsymbol{A} (Msthematical and Plyvical Seiences) and Sestion J (Poyahalogy), the sommittee was instructed to ounsidor and report upen the possibility of "quantitative estimates of seasory eventor"-beaning siaply; Is it peedile to measure haman sensation 1 Deliberatisa lod anly to disagreemeat, maialy shout what is meant by the tern medwinement. An interim report in 1938 found one member comptaining that his oolleagos
by the formal (mathemstiasl) properties of the seales. Furthernaure-and this is of great eonsern to meerel of the afiesces-the atatistical masipulation that ean Ingitimately be applied to empirisal dete depeod upos the type of exale against which the dats are ardered.

A. Custimontion of Scuns of Mensurierse

Paraphrasing N. f. Cangbell (Final Report, R 340), we may say that messurement, is the broadest sease, is deftaed as the nasignomest of monernls to objeets or events mocording to rules. The feot that

Stevens' 4 scales of measurements

Scale	Dasic Empletical Operations	Mathemstical Group Straeture	Perniesible Statistica (invarinntive)
Nominal Categorical Qualitative	Determleatioe of equality	Pernutation greap $x^{\prime}=f(a)$ $f(x)$ measa say one-to-one subatitutisa	Number of cheea Mode Coatlingency correlation
Ordinal	Determination of greater or leas:	Isotonde grosp $e^{\prime}=f(a)$ f(a) menne any monotomic fincrenalig function	Medien Perventiles
Interval	Determination of equality of intervals or differemces	Gsnerst Mnear group $z^{\prime}=a s+6$	Meas Standand deviation Rank-order correlation Product-moment correlation
Ratio	Determination of equality of ratios	Sixilarity ${ }^{\text {orasps }}$	Coefliclent of variation

- Let's ponder examples of these ...

What are the principles?

Types of Data $=$ Symmetries of Data

Perception (e.g. Color): natural axes

Convolution \& Differentiation

Structure of Raster Data and meta-data

Simple perceptual psychology

What is this thing structuring our \Rightarrow Luminance interpretation of images?

How is color best organized?

Colormap for interval data

Coloring of interval values should be symmetric under addition of constant (should convey intrinsic ordering)

Is elevation "interval" data?

Or is elevation "ratio" data?

What are the principles?

Types of Data $=$ Symmetries of Data

Perception (e.g. Color): natural axes

Convolution \& Differentiation

Structure of Raster Data and meta-data

Convolution in 1D and 2D

2D Convolution examples 1

2D Convolution examples 2

2D Convolution examples 3

Hann-windowed sinc $\operatorname{sinc}(x)=\sin (\pi x) /(\pi x)$

What are the principles?

Types of Data $=$ Symmetries of Data

Perception (e.g. Color): natural axes
Convolution \& Differentiation
Structure of Raster Data and meta-data

Arecibo Message

- Radio telecope in Puerto Rico

\author{

- built in 1964, renovated in 1974
}
- To celebrate: sent message to M13 in Hercules (25,000 light years away)

The Message

1679 bits were encoded as 2380 MHz plus and minus 10 Hz
00000010101010000000000001010000010100000001001000100010001001011001010 10101010101010010010000000000000000000000000000000000000110000000000000 00000011010000000000000000000110100000000000000000010101000000000000000 00011111000000000000000000000000000000001100001110001100001100010000000 00000011001000011010001100011000011010111111011111011111101111110000000000 00000000000000001000000000000000001000000000000000000000000000010000000 00000000001111110000000000000111110000000000000000000000011000011000011
 10111110000000000000000000000000010000001100000000010000000000011000000 00000000010000011000000000011111100000110000001111100000000001100000000 00000100000000100000000100000100000011000000010000000110000110000001000 00000001100010000110000000000000001100110000000000000110001000011000000 00011000011000000100000001000000100000000100000100000001100000000100010 00000001100000000100010000000001000000010000010000000100000001000000010 00000000000110000000001100000000110000000001000111010110000000000010000 00010000000000000010000011111000000000000100001011101001011011000000100 11100100111111101110000111000001101110000000001010000011101100100000010 10000011111100100000010100000110000001000001101100000000000000000000000 00000000000011100000100000000000000111010100010101010101001110000000001 010101000000000000000010100000000000000111110000000000000000111111111100 00000000001110000000111000000000110000000000011000000011010000000001011 00000110011000000011001100001000101000001010001000010001001000100100010 00000001000101000100000000000010000100001000000000000100000000010000000 0000000100101000000000001111001111101001111000

A 1-D sequence of bits in time How will an alien understand this list of bits? (will have different symbols than "0" "1") No meta-information!

Understanding the message

- Perhaps some "visual" representation of bits

- But why not green and red, or foo and bar?
- Aliens notice $1679=23 \times 73$...
- Perhaps its not a linear sequence: 2-D array ...
- Two ways of sequencing values in 2D array ...
- Various ways of laying them out in 2D space ...
- Then decipher it

5 basic pieces of image metadata

- Interpretation of individual values
- units, scalars, vectors, tensors, measurement frame
- Dimension of array
- dimension of domain sampled
- \# axes, or \# indices for getting a single sample
- Choice of axis ordering (fast-to-slow, or slow-to-fast)
- Culturally specific
- \# samples along each axis
- "640-by-480 image" or "N-by-M matrix"
- Image location \& Orientation of each Axis
- Summarized by affine transform

What are the principles?

Types of Data = Symmetries of Data

Perception (e.g. Color): natural axes

Convolution \& Differentiation

Structure of Raster Data and meta-data

What else? Are these the right ones?

Teaching strategy

Illustrate \& Engage underlying principles Have to connect with intuition/experience
Principles should hold regardless of discipline
Grading based on projects (only)
Write-up plus code
Be able to communicate in prose ${ }_{\text {(but rot a publicaion) }}$ Implement methods themselves (no black boxes) Readings geared towards projects
"... must reflect understanding of readings" Programming environment balance

Easy to use: Python
Powerful: Python wrappers around Teem
http://teem.sf.net
Teaching strategy, cont.

Teach discipline of testing visualization code on custom-made synthetic data

Marching Squares cases ...

Teaching strategy, cont.
Teach discipline of testing visualization code on custom-made synthetic data
Marching Squares cases ...

Every case used at least once

Teaching strategy, cont.
Teach discipline of testing visualization code on custom-made synthetic data
Marching Squares cases ...

Future Goals for teaching Sci Vis

Better ways communicating the math We need a Mechanical Universe for Scientific Visualization (see youtube)
Better languages/tools for easily implementing heavy-weight computing
Volume rendering, streamlines: rewarding but slow
May have to invent a new language Need to determine principles to use Need a good first-principles textbook (open to suggestions)

Thank you glk@uchicago.edu

