

Tensor Field Features

Gordon L. Kindlmann <glk@uchicago.edu>

Tensor Field Features

IEEE VisWeek 2010 Tutorial "Tensors in Visualization"

What is a feature: in vis/computational context

Structure computed from field, processed, visualized Contrast with direct methods (glyphs, colormaps)

Tensor Field Features

What is a feature: in a biomedical context

Geometric model of anatomic structure important for study motivating the data acq. Quantitative measurements of underlying biology Pictures (visualization) may not be central

Qazi 2009 NI 47:T98-T106

Behrens 2003 Nature Neuroscience, 6:750-757 IEEE VisWeek 2010 Tutorial "Tensors in Visualization"

Tensor Field Features

Outline

Feature definitions and considerations

Tractography and its clustering Tractography methods Clustering metrics and methods Cluster representation and display Segmentation from Tensor Distances Differential Structure: Edges, Creases Topological and Lagrangian Structure Discussion

Tractography (deterministic)

Standard: Streamline integration of principle eigenvector

Basser **1998** ISMRM, **2000** MRM 44:625-63

Stream tubes, Zhang **2003** TVCG 9:454-463

Delmarcelle, T. & Hesselink, L. Visualizing Secondorder Tensor Fields with Hyper Streamlines. IEEE Computer Graphics and Applications, **1993**, 13, 25-33

Tensor Field Features

IEEE VisWeek 2010 Tutorial "Tensors in Visualization"

Tractography (Probabilistic)

Explicitly represent uncertainty in path Deterministic tractography ≈ mode Various uncertainties, relates to tensor model choice Produces volume of connectivity values From tensor fields:

Tensor Field Features

Friman 2006 TMI 25:965-978

Sherbondy 2008 JoV 8:1-16

Tractography Clustering

Aims to create anatomically meaningful units Starts with tractography pre-computation

Two ingredients: Distance, Clustering Algorithm

Tensor Field Features

IEEE VisWeek 2010 Tutorial "Tensors in Visualization"

Tractography Clustering, Distance

Inter-tract similarity→distance measures Starts with tractography pre-computation

$$\begin{split} \tilde{d}_{\mu}(F_{i},F_{j}) &= \operatorname{mean}_{\mathbf{p}_{k}\in F_{i}} \operatorname{min}_{\mathbf{p}_{l}\in F_{i}} \|\mathbf{p}_{k} - \mathbf{p}_{l}\| \\ d_{\mu}(F_{i},F_{j}) &= \frac{1}{2} \left(\tilde{d}_{\mu}(F_{i},F_{j}) + \tilde{d}_{\mu}(F_{j},F_{i}) \right) & (\text{Euclidean distance}) \\ \tilde{d}_{H}(F_{i},F_{j}) &= \operatorname{max}_{\mathbf{p}_{k}\in F_{i}} \operatorname{min}_{\mathbf{p}_{l}\in F_{j}} \|\mathbf{p}_{k} - \mathbf{p}_{l}\| \\ d_{H}(F_{i},F_{j}) &= \operatorname{max} \left(\tilde{d}_{H}(F_{i},F_{j}), \tilde{d}_{H}(F_{j},F_{i}) \right) & (\text{Hausdorff distance}) \end{split}$$

Tensor Field Features

Tractography Clustering, Algorithm

Tensor Field Features

IEEE VisWeek 2010 Tutorial "Tensors in Visualization"

Cluster Representation & Display

Representative or "Core" trajectories Reference curve for quantitative comparison Shell or wrapper (Enders 2005 Vis 51-58)

Rasterization to volumes-of-interest Easy integration with other segmentations

Outline

Feature definitions and considerations Tractography and its clustering Tractography methods Clustering metrics and methods Cluster representation and display Segmentation from Tensor Distances Differential Structure: Edges, Creases Topological and Lagrangian Structure Discussion

Tensor Field Features

IEEE VisWeek 2010 Tutorial "Tensors in Visualization"

Tensor Distance Measures

In support of segmentation

Creating geometric models of anatomv Volumetric vs. surfaces $d_{E}(\mathbf{T}^{(1)}, \mathbf{T}^{(2)}) = \sqrt{\sum_{i=1}^{3} \sum_{j=1}^{3} \left(t_{ij}^{(1)} - t_{ij}^{(2)}\right)^{2}}$ Euclidean: t_{ij} or eigensystem $d_{E}(\mathbf{T}^{(1)}, \mathbf{T}^{(2)}) = \sqrt{\langle \mathbf{T}^{(1)} - \mathbf{T}^{(2)}, \mathbf{T}^{(1)} - \mathbf{T}^{(2)} \rangle \rangle}$ $\langle \mathbf{T}^{(1)}, \mathbf{T}^{(2)} \rangle = \sum_{i=1}^{3} \sum_{j=1}^{3} t_{ij}^{(1)} t_{ij}^{(2)} = \sum_{i=1}^{3} \sum_{j=1}^{3} \lambda_{i}^{(1)} \lambda_{j}^{(2)} \langle \mathbf{e}_{i}^{(1)}, \mathbf{e}_{j}^{(2)} \rangle^{2}}$ Non-Euclidian $d_{R}(\mathbf{T}^{(1)}, \mathbf{T}^{(2)}) = \sqrt{\operatorname{tr}\left(\log^{2}(\mathbf{T}^{(1)-1/2}\mathbf{T}^{(2)}\mathbf{T}^{(1)-1/2})\right)}$ Riemannian, Log-Euclidean
Geodesic-Loxodrome
allow shape or orientation-specific

How to evaluate distance measures?

Distance measurement visualization

Segmentation from Distances

Calculate volumetric regions (representing anatomy) based on distances between tensors at voxels

Challenge: low resolution

Wiegel NI 2003 19:391-401

Level sets

Watershed

Region Models

Markov Random Fields

Graph-based

Outline

Feature definitions and considerations Tractography and its clustering Tractography methods Clustering metrics and methods Cluster representation and display Segmentation from Tensor Distances Differential Structure: Edges, Creases Topological and Lagrangian Structure Discussion

Tensor Field Features

IEEE VisWeek 2010 Tutorial "Tensors in Visualization"

Differential Structure: Edges

Gradient of tensor is 3rd order tensor Total magnitude: scalar Can be used for distinguishing regions Pajevic 2002 JMR 154:85-100

Decomposition of D into isotropic, deviatoric

Gradient of the Isotropic Part of D

Gradient of the Anisotropic Part of D IEEE VisWeek 2010 Tutorial "Tensors in Visualization"

Tensor derivative decomposition

Decomposition according to shape, orientation Kindlmann 2007 TMI 26(11):1483-1499

(a) $|\nabla R_1| = |\nabla |\mathbf{D}||$

(c) $|\nabla R_3| = |\nabla \text{mode}|$

Tensor Field Features

IEEE VisWeek 2010 Tutorial "Tensors in Visualization"

Tensor derivative decomposition

Decomposition according to shape, orientation Kindlmann 2007 TMI 26(11):1483-1499

(a) RGB(e1)

Tensor derivative decomposition

Decomposition according to shape, orientation Kindlmann 2007 TMI 26(11):1483-1499

Tensor Field Features

IEEE VisWeek 2010 Tutorial "Tensors in Visualization"

Differential Structure: Creases

Ridges & Valleys: "Creases" For DTI: creases of tensor invariants, like FA

"Ridges in Image and Data Analysis" Eberly '96

Constrained extremum

Gradient g

Hessian eigensystem e_i, λ_i

Crease: g orthogonal to one or more e_i

Eigenvalue gives strength

Ridge surface: $\mathbf{g} \cdot \mathbf{e}_3 = 0$; $\lambda_3 < \text{thresh}$ Ridge line: $\mathbf{g} \cdot \mathbf{e}_3 = \mathbf{g} \cdot \mathbf{e}_2 = 0$; $\lambda_3, \lambda_2 < \text{thresh}$ Valley surface: $\mathbf{g} \cdot \mathbf{e}_1 = 0$; $\lambda_1 > \text{thresh}$

Tensor Field Features

FA ridges surfaces

Studied in both Vis and biomedical areas

Smith 2006 NI 31:1487-1505 Why not connectivity? Tensor Field Features

Kindlmann 2007 MIA 11:492-502

Kindlmann 2009 TVCG 15:1415-1424 IEEE VisWeek 2010 Tutorial "Tensors in Visualization"

Stream surfaces

Analogy to streamlines, propogate surface along medium and minor eigenvectors

Zhang 2003 TVCG 9(4):454-462 Surfaces for areas of planarity

Schultz 2010 TVCG 16:109-119: Surface depends on visit order → ridge surfaces of planar anisotropy

Outline

Feature definitions and considerations Tractography and its clustering Tractography methods Clustering metrics and methods Cluster representation and display Segmentation from Tensor Distances Differential Structure: Edges, Creases Topological and Lagrangian Structure Discussion

Tensor Field Features

IEEE VisWeek 2010 Tutorial "Tensors in Visualization"

Tensor field topology

Based on definitions from vector field topology Loci of points of tensor eigenvalue equality Genericity considerations → lines (co-dim 2) Expressible as crease lines of tensor mode Poor anatomic relevance Schultz 2007 TVCG 13:1496-1503: new fuzzy topology

(c) Type L, no

additional noise

(a) Fiber tracts, no additional noise

(b) Type P, no additional noise

Lagrangian Coherent Structure

Lagrangian Coherent Structure

Quantifies stability of tractography WRT seedpoint A non-local gradient measure

Hlawitschka 2010 JCARS 5(2):125-131

Tensor Field Features

IEEE VisWeek 2010 Tutorial "Tensors in Visualization"

Discussion

Dynamic mix of DTI analysis methods

From Visualization: Tractography

From Machine Learning: Clustering

From Vision: Edges and Creases

From Dynamical Systems: LCS

Interplay between theory and biomedicine

Math structure may or may not be anatomical

Standards for evaluation are complex

Visualization can have scientific impact

Thank you! Questions: glk@uchicago.edu

Acronyms for journals used: NI = NeuroImage MRM = Magnetic Resonance in Medicine TVCG = IEEE Transactions on Visualization and Computer Graphics TMI = IEEE Transactions on Medical Imaging JoV = Journal of Vision MIA = Medical Image Analysis MICCAI = Medical Image Computation and Computer-Assisted Intervention Vis = Proceedings IEEE Visualization JMR = Journal of Magnetic Resonance JCARS = International Journal of Computer Assisted Radiology and Surgery

Tensor Field Features