Interactive Visualization of Diffusion Image Data and its Models

Gordon Kindlmann

Laboratory of Mathematics in Imaging Department of Radiology Brigham & Women's Hospital Harvard Medical School

Outline

- Intro to modality
- Single tensor parameters, applications
- Beyond single tensor fit
- Visualization of DWI and model

Diffusion imaging detects anisotropy

Kleenex

newspaper

Anisotropy: directional variation in diffusivity

White Matter fiber bundle Cross-section:

Microstructure of bundles directionally constrains water diffusion along fiber direction (LeBihan et al. 1985)

Diffusion-weighted MRI measures "apparent diffusion coefficient" (ADC) along many directions

Tractography

- Path integral of principal eigenvector
- Various parameter settings...

(demo)

Tensor Shape = model parameters

$$D = R\Lambda R^{-1}$$

$$= \begin{bmatrix} v_1 & v_2 & v_3 \\ v_1 & v_2 & v_3 \\ v_2 & v_3 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \begin{bmatrix} v_1 & v_2 & v_3 \\ v_2 & v_3 & v_4 \end{bmatrix}$$

$$\lambda_1 >= \lambda_2 >= \lambda_3$$

Clinical DTI Applications: Model Parameters

- Changes in FA due to pathology
 - Really the mainstay of DTI applications
- Change in FA/trace relationship
 - E.g. Tumor Infiltration Index (Lu et al. '04)
- Less so: Connectivity around tumors
- Point: model parameters are reliably measured, biologically meaningful, clinically significant
- High-level point: don't lose track of why we do imaging and medical image analysis

Beyond the Single Tensor Model

• Two (or more) Tensors

$$A_i = A_0(\alpha e^{-b\mathbf{g}_i^T \mathbf{D}_1 \mathbf{g}_i} + (1 - \alpha)e^{-b\mathbf{g}_i^T \mathbf{D}_2 \mathbf{g}_i})$$

- No model: Spherical harmonics
- Diffusion Orientation, Funk-Radon Transforms
 - ADC peaks != fiber directions
 - Fiber crossing resolution
- Tension with clinical applications

Associated visualizations

Visualization as a data & model inspection

- Visualize underlying DWI data
 - How noisy is it?
 - Does data support complex analysis?
- Inspect relationship of DWI to single tensor model
 - Systematic errors highlight fiber crossings
- General ideas:
 - Use intuition of old (single tensor model) as **guide**
 - Use visualization to illuminate the path forward
 - Experience lends **perspective** to canned routines

Synthetic Data

• (again) using intuition about old as guide to new...

Synthetic Data

• (again) using intuition about old as guide to new...

• (again) using intuition about old as guide to new... ADC profile colored by single-tensor error

Acknowledgements

- ☑ Carl-Fredrik Westin, Orjan Bergmann, Raul San-Jose Estepar, Lauren O' Donnell, Dr. Alex Golby, Dr. Martha Shenton
- ☑ NIH funding: NIBIB T32-EB002177, NCRR P41-RR13218 (NAC), 2-P41-RR12553-07 (CIBC),
 R01-MH050740

thank you