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Abstract

We examine a definition of instability for steady flows based on kinetic energy which
originated with Reynolds and Orr [37]. Using this definition, we compute the most
unstable mode for Couette flow. We find that instability occurs above a Reynolds
number of about 177. The usual eigenvalue (linear) stability analysis predicts that
there is no instability of Couette flow for any Reynolds number. So the kinetic energy
criterion for instability gives a prediction more in accord with experimental evidence.
We demonstrate the effect of the perturbation on time-dependent flows. For Reynolds
numbers below the critical value, perturbations decay. For Reynolds numbers above
the critical value, perturbations grow initially but in all cases studied they eventually
decay to zero. However, the maximum amplitude and the persistence time of the
perturbations both increase with Reynolds number in all cases studied.

Stability of fluid flow is the subject of many books [6, 15, 18, 19, 24, 31, 34]. Yet standard
theoretical (linear) stability analysis of the simplest flow problems, such as Couette flow,
has caused significant confusion, since it predicts [32, 3] that Couette flow is stable for all
Reynolds numbers, something that is contrary to experimental evidence [9, 40, 30, 43]. In
particular [17, Section 9.3], the standard approximate, linear stability analysis for Couette
flow leads to an eigenproblem for a nonnormal linear system. This fact has stimulated novel
approaches [41, 42, 11] to interpret the linear algebra.

We advocate here a nonlinear analysis [37, 34], with no approximations, which nevertheless
leads to a (very well posed) symmetric linear eigenproblem and a precise condition for (kinetic
energy) instability for Reynolds numbers larger than a critical value associated (nonlinearly)
with the corresponding eigenvalue. We show in Section 9.2 that all instabilities found by
the standard approach are also found in the nonlinear analysis, for any flow problem. The
converse is false as indicated by Couette flow.

Couette flow has been of significant interest for many years [28, 39]. Moreover, in many
ways it is the simplest possible flow problem. Thus it is quite surprising that understanding
of the stability or instability of Couette flow has been equivocal. We do not elaborate on a
possible explanation here, but it is of note that the approach taken here is standard in the



2

Figure 1: Couette flow in a channel.

variational theory of partial differential equations, whose genesis is in the work of Banach
and Hilbert. By contrast, the standard notions of linear stability analysis, for which Couette
flow appears incorrectly to be stable for all Reynolds numbers, has its roots in much earlier
approaches to differential equations, say, the time of Euler or even earlier.

The kinetic energy assessment of stability has been widely known for some time, utilized
by Serrin [37] in work published in 1959. Serrin gives a list of references that also use
this analysis, going back to the original work of Reynolds and Orr but including other
intervening work as well. Perhaps the paper [37] did not have more impact on subsequent
research on instability because Serrin was more focused on stability than instability, and
because computational resources in 1959 would have made it difficult to determine unstable
modes and their evolution with accuracy.

Flow complexity can grow in two ways, one via bifurcations [7] and the other through
instability [20]. The former occurs, for example, in flow in a channel with a sudden expansion
[36, Section 21.3]. The latter refers to the impact of small perturbations on the global flow.
Many models have been proposed for the definition of stability and instability [10]. Here
we use a way [37, 34] to measure instability that is not an approximation in any way. We
review this approach in the following. See [22] for a recent study using this approach.

1 Couette flow

Suppose that (u, p) is a solution of the Navier-Stokes equations

Rut −∆u+Ru · ∇u+∇p = 0 in Ω,

∇·u = 0 in Ω, u = g on ∂Ω,
(1)

in a domain Ω and for t ∈ [0, T ], where R is the Reynolds number. The physical pressure
has been scaled by the Reynolds number R, but this scaling plays no role here. We assume
initial conditions u(x, 0) = u0(x) for x ∈ Ω.

By Couette flow, we mean flow in a domain defined by

Ω = {(x, y) : |x| ≤ L, 0 ≤ y ≤ 1} . (2)

In section 11, we will consider extending this to three dimensions. The boundary conditions
for Couette flow are given by

g(x, y, t) = (y − 1
2
, 0)t (3)
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for all (x, y) ∈ R2. Thus the flow rate is linear, and it has a nonzero component only in the
x direction. The extension of this to three dimensions is to make g constant in z.

The solution of (1) is u = g for all t, with p = 0, as can easily be verified. In particular,
the first two terms in (1) are both zero. The nonlinear term has to be checked more carefully,
but

g · ∇g = gx(g,x) + gy(g,y) = (y − 1
2
)0+ 0(g,y) = 0.

One significant observation is that the solution does not depend on R. The velocity u is
depicted in Figure 1.

2 Flow instability

Now we consider the stability of solutions of (1) for general domains Ω in two or three
dimensions. Suppose that (w, q) is another solution of the Navier-Stokes equations

Rwt −∆w +Rw · ∇w +∇q = 0 in Ω,

∇·w = 0 in Ω, w = g on ∂Ω,
(4)

together with initial conditions w(x, 0) = w0(x) for x ∈ Ω.
Suppose that the only difference between u and w is that they differ slightly at t = 0:

v0 = u0 −w0 ̸= 0. If we define v for all time by

v = u−w,

then we see that v solves the equations

Rvt −∆v +R
(
u · ∇u−w · ∇w

)
+∇o = 0 in Ω,

∇·v = 0 in Ω, v = 0 on ∂Ω,
(5)

where o = p− q and v(t = 0) = v0 = u0 −w0. But

u · ∇u−w · ∇w = u · ∇u− u · ∇w + u · ∇w −w · ∇w = u · ∇v + v · ∇w

= u · ∇v + v · ∇(u− v) = u · ∇v + v · ∇u− v · ∇v.
(6)

Thus the first equation in (5) becomes

Rvt −∆v +R
(
u · ∇v + v · ∇u− v · ∇v

)
+∇o = 0 in Ω. (7)

3 An exact nonlinear bound

Multiplying equation (7) by v, integrating over Ω, and integrating by parts gives

R

2

d

dt

∫
Ω

|v|2 dx+

∫
Ω

|∇v|2 dx+R
(
c(u,v,v) + c(v,u,v)− c(v,v,v)

)
= 0,
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where

c(u,v,w) =

∫
Ω

(u · ∇v) ·w dx. (8)

It is well known [36, Section 20.1.1], that

c(u,v,w) = −c(u,w,v), c(u,v,v) = 0, c(v,v,v) = 0, (9)

since u, v, and w are divergence free and v vanishes on ∂Ω. Moreover

c(v,u,v) =

∫
Ω

(v · ∇u) · v dx =

∫
Ω

vt(∇u)v dx =
1

2

∫
Ω

vt
(
∇u+∇ut

)
v dx.

Thus we find

R

2

d

dt

∫
Ω

|v|2 dx = −
∫
Ω

|∇v|2 dx− R

2

∫
Ω

vt(∇u+∇ut)v dx. (10)

The kinetic energy relation (10) can be found in [37, (4)] and [34, Section 5.6.1].
For all x ∈ Ω and t ∈ [0, T ], the matrix B(x, t) defined by

B(x, t) = ∇u(x, t) +∇u(x, t)t

is symmetric and has trace zero. Thus we expect that B(x, t) will have eigenvalues of both
signs, and in particular it might happen that

−
∫
Ω

|∇v0|2 dx− R

2

∫
Ω

vt
0

(
∇u0 +∇ut

0

)
v0 dx > 0, (11)

in which case ∥v∥L2(Ω) would initially increase. This suggests a criterion for stability.

4 Definition of energy instability

If there exists v0 ∈ H1(Ω)d that

1. ∇·v0 = 0 in Ω,

2. v0 = 0 on ∂Ω, and

3. −1
2
R
∫
Ω
vt
0(∇u0 +∇ut

0)v0 dx >
∫
Ω
|∇v0|2 dx,

then we say the flow is energy unstable at t = 0, motivated by the terminology in [34,
Section 5.6]. Define the space V of divergence-free, vector-valued functions that vanish on
the boundary and are in the Sobolev space H1(Ω)d, that is

V = V d =
{
v ∈ H1(Ω)d : ∇·v = 0 in Ω, v = 0 on ∂Ω

}
. (12)

When necessary, we will write V d to indicate the dimension of Ω in the definition (12), but
otherwise we will assume that the dimension is implicit. In this case, the superscript is just
that, not the power in a Cartesian product as it is for H1(Ω)d. In general, we will omit the
superscript on V .
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Figure 2: Horizontal flow component of the most unstable mode for Couette flow, computed
on the domain (2) with meshsize parameterM = 128 and 700 iterations of the power method
with µ = 0.01: L = 5, λ = −0.01122. The meshsize parameter M is explained in section
8.7. Initial eigenvector approximation is (0, 1).

Definition 4.1 We say that the flow u is energy unstable at t = 0 for Reynolds number R
if

− inf
0 ̸=v∈V

∫
Ω
vt(∇u0 +∇ut

0)v dx∫
Ω
|∇v|2 dx

= sup
0̸=v∈V

−
∫
Ω
vt(∇u0 +∇ut

0)v dx∫
Ω
|∇v|2 dx

>
2

R
. (13)

If by chance

inf
0 ̸=v∈V

∫
Ω
vt(∇u0 +∇ut

0)v dx∫
Ω
|∇v|2 dx

≥ 0,

then the flow is energy stable for all Reynolds numbers R. On the other hand, if (13) holds,
it means there is some v0 that leads to instability.

5 Most unstable mode

The parameter λ defined by

λ = inf
0 ̸=v∈V

∫
Ω
vt(∇u0 +∇ut

0)v dx∫
Ω
|∇v|2 dx

can be identified as a generalized eigenvalue, as follows. Let us introduce some notation
involving bilinear forms:

a(u,v) =

∫
Ω

∇u : ∇v dx, Bu(v,w) =

∫
Ω

vt(∇u+∇ut)w dx. (14)
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Then

λ = inf
0 ̸=v∈V

Bu(v,v)

a(v,v)
, (15)

where we have dropped the subscript 0 on u for the moment. First, let us develop some
bounds on this minimization problem.

5.1 Limits on λ

We can give some bounds on the values of λ in (15). Recall the Poincaré inequality [36]∫
Ω

|v|2 dx ≤ cP

∫
Ω

|∇v|2 dx = cP a(v,v), (16)

valid for all v ∈ V . Then ∣∣Bu(v,v)
∣∣ ≤ 2 sup

x∈Ω
∥∇u(x)∥F

∫
Ω

|v|2 dx

≤ 2 cP sup
x∈Ω

∥∇u(x)∥F a(v,v),
(17)

where ∥·∥F denotes the Frobenius norm. Thus any minimizer λ of (15) must satisfy

|λ| ≤ 2 cP sup
x∈Ω

∥∇u(x)∥F . (18)

We will give an explicit bound on cP for Couette flow in Section 6.1.

5.2 Eigenproblem derivation

Suppose that λ is a minimum of (15) and that v ∈ V satisfies

Bu(v,v) = λ a(v,v).

Let ϵ > 0 and w ∈ V . Then

Bu(v + ϵw,v + ϵw)

a(v + ϵw,v + ϵw)
≥ λ =⇒ Bu(v + ϵw,v + ϵw) ≥ λa(v + ϵw,v + ϵw),

and this holds for all ϵ > 0 and w ∈ V . Expanding, we find

Bu(v,v) + 2ϵBu(v,w) + ϵ2Bu(w,w) ≥ λ
(
a(v,v) + 2ϵa(v,w) + ϵ2a(w,w)

)
= Bu(v,v) + λ

(
2ϵa(v,w) + ϵ2a(w,w)

)
.

(19)

Subtracting Bu(v,v) from both sides and dividing by 2ϵ gives

Bu(v,w) + 1
2
ϵBu(w,w) ≥ λ

(
a(v,w) + 1

2
ϵa(w,w)

)
.

Letting ϵ→ 0, we find
Bu(v,w) ≥ λa(v,w)
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for all w ∈ V . But taking z = −w, we also find

−Bu(v,w) = Bu(v, z) ≥ λa(v, z) = −λa(v,w),

so that we also have
Bu(v,w) ≤ λa(v,w).

Thus we must have
Bu(v,w) = λa(v,w), (20)

for all w ∈ V .
What this shows is that if v is a minimizer of (15), then it solves the eigenproblem (20).

Conversely, if v̂ is any solution of (20), then

Bu(v̂, v̂)

a(v̂, v̂)
=
λa(v̂, v̂)

a(v̂, v̂)
= λ.

Thus v̂ is a minimizer of (15).

5.3 Eigenproblem computation

The solution of (20) can be approximated variationally via: find vλ ∈ Vh such that

a(vλ,w) = λ−1Bu(vλ,w) ∀w ∈ Vh, (21)

where Vh ⊂ V and V is the subset of H1(Ω)d consisting of divergence-free functions vanishing
on the boundary, defined in (12). We can write this in operator form as

λvλ = A−1Bvλ. (22)

Here, the operator A : Vh → Vh is defined by

(Av,w)L2 = a(v,w), ∀w ∈ Vh.

The operator B : Vh → Vh can be defined as the multiplication operator by the function
B = ∇u0 +∇ut

0, followed by the L2 projection onto Vh. Then the operator B also satisfies

(Bv,w)L2 = Bu(v,w), ∀w ∈ Vh.

Note that the functions of the form Bv are not necessarily divergence free.
We can number the eigenvalues λ0 ≤ λ1 ≤ · · · . Some of these are potentially negative.

The power method targets the eigenvector whose eigenvalue is largest in magnitude. Since
we seek the most negative eigenvalue, we must make a shift so that appears to be the largest
in magnitude. So consider the shifted eigenproblem

λµv = (A−1B − µI)v. (23)
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Then the eigenvalues for this problem are

λµ0 ≤ λµ1 ≤ · · · = λ0 − µ ≤ λ1 − µ ≤ · · · .

Using (18), we can choose µ ≥ 0 so that all of the eigenvalues λµi < 0.
The power method iteration for solving (23) can be written in operator form as

Avk = (B − µA)v̂k−1, v̂k = ∥vk∥−1
L2v

k, λµk =
((A−1B − µI)vk,vk)L2

(vk,vk)L2

, (24)

and we expect this to converge to the eigenvector corresponding to the largest (in magnitude)
eigenvalue of A−1(B − µA) [35].

We can unravel the Rayleigh quotient as follows. We have

((A−1B − µI)vk,vk)L2

(vk,vk)L2

=
((A−1B)vk,vk)L2

(vk,vk)L2

+
((−µI)vk,vk)L2

(vk,vk)L2

=
((A−1B)vk,vk)L2

(vk,vk)L2

− µ =
(Bvk, A−1vk)L2

(Avk, A−1vk)L2

− µ

=
Bu(v

k, A−1vk)

a(vk, A−1vk)
− µ.

(25)

Thus the unshifted eigenvalue iterates satisfy

λk =
Bu(v

k, A−1vk)

a(vk, A−1vk)
.

Computationally, it may be easier to evaluate λµk as follows. We have

vk = (A−1B − µI)v̂k−1 = ∥vk−1∥−1
L2 (A

−1B − µI)vk−1. (26)

Turning this around, we have

(A−1B − µI)vk−1 = ∥vk−1∥L2vk. (27)

Increasing indices by 1, we get

(A−1B − µI)vk = ∥vk∥L2vk+1. (28)

Thus

λµk =
∥vk∥L2(vk+1,vk)L2

(vk,vk)L2

=
(vk+1,vk)L2

∥vk∥L2

= (vk+1, v̂k)L2 ,

and so
λk = (vk+1, v̂k)L2 + µ. (29)

Therefore the only ingredients that must be used to compute the eigenvalue approximation
are already defined in the first two steps of (24).
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Figure 3: Horizontal flow component of the most stable mode for Couette flow, computed on
the domain (2) with meshsize parameter M = 256 and 200 iterations of the power method
with µ = −0.01: L = 5, λ = 0.01122. The meshsize parameterM is explained in section 8.7.
Initial eigenvector approximation was given by (42) with the default frequency ω = 3.77.

In variational form, the first equation in (24) reads: find vk ∈ Vh such that

a(vk,w) = Bu(v̂
k−1,w)− µ a(v̂k−1,w) ∀w ∈ Vh. (30)

This can be implemented by various techniques. In the computations reported in Section 6,
we have used the Scott-Vogelius method [36] with quartic Lagrange elements together with
the iterated-penalty method to enforce the divergence constraint.

For v0, we need to pick a function with a non-zero component in the direction of vλ. We
refer to this as the initial eigenvector approximation in the figure captions.

We can also compute the most positive eigenvalue of (22), by choosing the shift µ to be
sufficiently negative. Figure 3 shows the most stable perturbation for L = 5 for Couette flow,
computed using µ = −0.01. It is noteworthy that the perturbations waves run in opposite
directions, but otherwise look essentially identical to the most unstable mode. In addition,
it is interesting that in experiments, waves in both directions are seen [30, Figure 3].

5.4 Rate of growth of instability

From (10), we know that

R
2
d
dt

∫
Ω
|v|2 dx∫

Ω
|∇v|2 dx

= −1− R

2

∫
Ω
vt(∇u0 +∇ut

0)v dx∫
Ω
|∇v|2 dx

= −1− Rλ

2
, (31)

at t = 0. Therefore, at t = 0,

d

dt

∫
Ω

|v|2 dx =
(
− 2

R
− λ

)∫
Ω

|∇v|2 dx. (32)

If λ < 0 and R > −2/λ, then the kinetic energy of the perturbation grows with a positive
rate

r = − 2

R
− λ. (33)

As R increases further, the growth rate r tends to −λ.
We can relate (32) to a more familiar expression for energy growth as follows. First,

define the kinetic energy k(t) =
∫
Ω
|v(x, t)|2 dx. Second, divide (32) by k(t) to get

d

dt
(log k)(0) =

k′(0)

k(0)
= r

∫
Ω
|∇v(x, 0)|2 dx∫
Ω
|v(x, 0)|2 dx

≥ r

cP
, (34)
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where cP is the constant in the Poincaré inequality (16). Thus kinetic energy k grows at
least as fast as an exponential with exponent r/cP , at least initially.

For R = −2/λ, the rate r = 0. Thus the instability is likely hard to see until R is
substantially larger.

5.5 Spaces of perturbations

Suppose that the eigenproblem (21) has several negative eigenvalues

λ1 ≤ λ2 ≤ · · ·λk < 0 (35)

with corresponding eigenfunctions vi. Then any combination of the vi’s can lead to a growing
perturbation, as follows.

The eigenvalue problem may be written as

a(vi,w) = λ−1
i Bu(vi,w) ∀w ∈ V,

where V is the subset of H1(Ω)d consisting of divergence-free functions vanishing on the
boundary, defined in (12). The eigenvectors can be chosen to be orthogonal in the sense that

a(vi,vj) = 0 = Bu(vi,vj) ∀i ̸= j.

For suppose that λi ̸= λj. Then

a(vi,vj) = λ−1
i Bu(vi,vj)

but also
a(vi,vj) = λ−1

j Bu(vi,vj)

using the symmetry of the bilinear forms. This cannot happen unless the forms are zero.
For the case of a subspace of eigenvectors for a single eigenvalue, we can orthogonalize them
with respect to the a(·, ·) bilinear form. But then

Bu(vi,vj) = λja(vi,vj) = 0

as well. This establishes the orthogonalities.
Suppose that we have a mode comprised of several of the unstable modes:

v =
k∑

i=1

cjvj.

Then
−Bu(v,v)

a(v,v)
=

∑k
j=1 c

2
j(−λj)a(vj,vj)∑k

j=1 c
2
ja(vj,vj)

≥ −λk. (36)

Thus
a(v,v) ≤ λ−1

k Bu(v,v),

and the conditions for energy instability at the beginning of Section 4 are satisfied if R >
2/(−λk). Thus for sufficiently large R, the entire span of v1, . . . ,vk can lead to instability.
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(a)

(b)

Figure 4: Flow components of the most unstable mode for Couette flow, computed on the
domain (2) with meshsize parameter M = 256 and 200 iterations of the power method with
µ = 0.01: L = 5, λ = −0.01122. The meshsize parameter M is explained in section 8.7.
Initial eigenvector approximation was given by (42) with the default frequency ω = 3.77. (a)
Horizontal flow component; compare Figure 2. (b) Vertical (cross-channel) flow component.

6 Example: instability of Couette flow

The definition for the Reynolds number R0 given in [26] is

R0 = U0h/ν,

where ν is the kinematic viscosity, the flow rate at the top and bottom of the channel is ±U0,
and 2h is the width of the channel. This is also the definition of Reynolds number used in
[40]. We have chosen a different definition of Reynolds number based on the width of the
channel as the length scale and the maximum flow rate minus the minimum flow rate as the
velocity scale. Since Couette flow is linear in y, we have ∂u

∂y
= U0/h. If we take for simplicity

U0 = h, we get ∂u
∂y

= 1.

In our computations, we took h = 1
2
and U0 = 1

2
, so we find that R0 = 1/4ν = R/4 in

our notation. By numerical simulation, the authors of [26] found instability for R0 ≈ 400,
or R ≈ 1600 in our notation. Also see [25]. Similarly, a growing disturbance was observed
in [40] for R0 ≈ 360± 10. On the other hand, we identified an instability for R >> 178, as
follows.

For Couette flow,

∇u =

0 1 0
0 0 0
0 0 0

 .

(This nonnormal matrix arises in the linear stability analysis of Couette flow [17, 42].) Thus
the variational form Bu(v,w) introduced in (14) takes the form

Bu(v,w) =

∫
Ω

vxwy + vywx dx. (37)
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6.1 Couette eigenvalue bounds

In the material so far, we were agnostic about the choice of dimension d. Now we will restrict
temporarily to the case d = 2. Our computations were carried out on a domain Ω ⊂ R2

defined by (2). We can be a bit more precise than the general estimate (18). To begin with,∣∣Bu(v,v)
∣∣ = 2

∣∣∣ ∫
Ω

vxvy dx
∣∣∣ ≤ ∫

Ω

v2x + v2y dx. (38)

The Poincaré inequality in one dimension reads∫ 1

0

v(y)2 dy ≤ co

∫ 1

0

v′(y)2 dy. (39)

The best constant co is also defined by an eigenvalue problem, and in this case there is an
explicit solution:

co =

∫ 1

0
v(y)2 dy∫ 1

0
v′(y)2 dy

, v(y) = sinπy.

That is,

co =

∫ 1

0
sin2 πy dy

π2
∫ 1

0
cos2 πy dy

=
1

π2
.

Integrating (39) in x, we conclude that for any scalar function v∫
Ω

v2 dx ≤ 1

π2

∫
Ω

(vy)
2 dx ≤ 1

π2

∫
Ω

|∇v|2 dx.

Applying this for each component of a vector function v we find∫
Ω

v2x + v2y dx ≤ 1

π2

∫
Ω

(vx,y)
2 + (vy,y)

2 dx ≤ 1

π2

∫
Ω

|∇v|2 dx.

Applying (38), we find ∣∣Bu(v,v)
∣∣ ≤ 1

π2
a(v,v). (40)

Thus the eigenvalues λ for the Couette problem satisfy

|λ| ≤ 1

π2
.

6.2 Couette eigenvalue computations

The Stokes-like system (30) was solved on the domain (2) using the iterated-penalty method
[36] with the penalty parameter r = 10−4. Typically, only 3 penalty iterations were needed
to reduce the divergence of the numerical solution to the order of 10−12.
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L start vector λ iterations humps R M
5 v ≡ (0, 1) -0.011221 698 6 178.2 128
5 v in (42) -0.011221 100 6 178.2 128
5 v in (42) -0.011222 200 6 178.2 256
7.5 v in (42) -0.011257 200 9 177.1 256
10 v in (42) -0.011268 200 12 177.5 128
10 v in (42) -0.011269 300 12 177.5 256
20 v in (42) -0.011279 200 23 177.3 128
20 v in (42) -0.011280 300 23 177.3 256
40 v in (42) -0.011283 300 47 177.3 512

Table 1: Dependence on channel length parameter L of stability limits λ. The “start vector”
refers to the initial eigenvector approximation. The iterations column lists the number of
power-method iterations used. In the first row, it was the number of iterations required to
reduce the change in λ to less than 10−8. The number H of “humps” is a guesstimate of
the number of periods in the domain, with 2L/H being an estimate of the period length.
R = 2/λ. The meshsize parameter M is explained in section 8.7. For start vectors in (42),
the default frequency ω = 3.77 was used. The shift µ = 0.01 in all cases.

Functions v ∈ V 2 are of the form v = (ψ,y,−ψ,x) for suitable ψ. For such functions,

Bu(v,v) = −2

∫
Ω

ψ,xψ,y dx. (41)

If ψ(x, y) = f(x+ y), then v(x, y) = (f ′(x+ y),−f ′(x+ y)) and

Bu(v,v) = −2

∫
Ω

(
f ′)2 dx.

Functions of this type thus give the maximal contribution to the perturbation form, without
extraneous cancellations. This is consistent with what we see in Figure 2: the most unstable
mode v appears to be a function of x+ y with a definite wave frequency of about 6/5. The
meshsize parameter M is explained in section 8.7.

Of course, the actual modes must satisfy boundary conditions which are not consistent
with this simple form, and so they are more complicated and must be computed numerically.
But we can now try an initial eigenvector approximation of the form

v = (1,−1) sin
(
ω(x+ y)

)
, ω =

6π

5
≈ 3.77 (default). (42)

Using this starting vector, convergence is much faster, as indicated in Table 1.
For all domain length parameters L indicated in Table 1, an oscillatory, nearly periodic

behavior was seen, with a definite wave frequency of about 6/5. The wave pattern is
modulated by a function that goes to zero at the ends of the channel, being fairly constant
in the middle, as shown for L = 20 in Figure 5.
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Figure 5: Horizontal flow component of the most unstable mode for Couette flow, computed
on the domain (2) with meshsize parameterM = 128 and 200 iterations of the power method
with µ = 0.01: L = 20, λ = −0.011279. The meshsize parameter M is explained in section
8.7. Initial eigenvector approximation was given by (42).

The fact that the period is essentially the same for all values of L is consistent with the
fact that the eigenvalues for L = 10, 20, 40 do not differ by much, as summarized in Table 1.

Better eigensolvers may be needed to resolve the modes accurately. On the other hand,
the computed eigenvalues are much less dependent on the number of iterations, since the
eigenvalue error is quadratic in the eigenvector error [5].

Table 1 summarizes the dependence of λ on L. This leads us to conjecture that λL tends
to a limit λ∞ as L→ ∞, where 2L is the channel length.

The results here are consistent with those of [26] who found an unstable mode for R ≈
1600, whereas we identified the most unstable mode for R > 178, or R0 > 45. On the other
hand, the results of Section 5.4 indicate that the growth rate will not be very big until R is
much larger.

6.3 Couette flow symmetry

We can define a symmetry operator S as follows. Let us temporarily change coordinates so
that the domain Ω in (2) is given by

Ω =
{
(x, y) : |x1| ≤ L, |x2| ≤ 1

2

}
. (43)

For any scalar-valued function f , we define

Sf(x) = −f(x1,−x2).

For a vector-valued function v = (v1, v2), we define something more complicated:

Sv(x) = (−v1(x1,−x2), v2(x1,−x2)).

Then the boundary-condition function g for Couette flow defined in (3) satisfies

Sg = g. (44)

This is because g(x) = (x2, 0), and so

Sg(x) = (−(−x2), 0) = g(x).
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One way to think of S is to imagine its effect on a three-dimensional contour plot of the
horizontal flow component v1, as we have plotted frequently. Note that

(Sv)1 = Sv1,

although (Sv)2 ̸= Sv2. A three-dimensional contour plot of a function f of two variables
does two things: it represents the value of f by a color scale, but it also depicts the graph of
f in three dimensions. Thus you see the value-colors placed on the graph at the appropriate
height. If you turn a three-dimensional contour plot upside down, as is done in Figure 13,
by rotating around the x1 axis, then the color scale gets inverted as well as the ordering of
x2. This is precisely what S does.

Although the unperturbed solution u = g for Couette flow is invariant under the action
of S, the perturbations are not. In particular, the operator S switches signs of eigenvalues.
More precisely,

a(Sv,Sv) =

∫
Ω

| − v1,1(x1,−x2)|2 + | − (−v1,2(x1,−x2))|2+

+ |v2,1(x1,−x2)|2 + | − v2,2(x1,−x2)|2 dx = a(v,v) ∀ v ∈ H1(Ω)d,

Bu(Sv,Sv) = 2

∫
Ω

−v1(x1,−x2)v2(x1,−x2) dx = −Bu(v,v) ∀ v ∈ H1(Ω)d,

(45)

for u = g. Thus if v minimizes
Bu(v,v)

a(v,v)
, (46)

with minimum value −λ, then Sv maximizes (46), with maximum value λ. This is confirmed
in Figure 3. Note that (44) and (45) imply that Bu(g,g) = 0.

7 Time-dependent simulations

Since we have predicted time-dependent instabilities, it is natural to consider what they look
like in practice. We know that the kinetic energy norm ∥u−w∥L2(Ω) must increase initially
as a function of time, but we were also curious about the strain energy norm. Thus we
chose to measure ∥∇u−∇w∥L2(Ω) as a function of time. Due to the Poincaré inequality, the
kinetic energy is bounded by a constant times the strain energy. We return to examination
of the kinetic energy in section 8.8.

In Figure 6(a), we see the results of simulations starting with a perturbation determined
via 600 iterations of the power method, for two different Reynolds numbers, R = 10 and
R = 100. The time-stepping scheme for solving (1) used throughout this section is the IMEX
scheme described in section 8.2, together with the iterated-penalty method in section 8.3.
Plotted is ∥∇u−∇w∥L2(Ω) as a function of time, for R = 10 and R = 100. The steeper
curve corresponds to R = 10. For reference, if we think of u as the unperturbed Couette
flow, then

∥∇u∥L2(Ω) = ∥∇g∥L2(Ω) =
√
2L
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R 200 300 600 1600
Tmax 0.52 0.71 0.89 1.01

Table 2: Time Tmax of maximal perturbation as a function of Reynolds number R. Based on
the computations as in Figure 6. These times depend on the size of the initial perturbations.

∥v(t = 0)∥H1 2.104e-07 2.105e-05 2.105e-03 0.2110 2.110 21.10
Tmax 0.955 0.955 0.955 0.892 0.860 0.481

∥v(Tmax)∥H1 2.814e-07 2.815e-05 2.815e-03 0.2825 2.794 24.59

Table 3: Time Tmax of maximal perturbation as a function of initial amplitude for Reynolds
number R = 600. Based on the computations as in Figure 9(a).

for all t. Thus the largest perturbation for R = 10 is about the same size as the unperturbed
Couette flow solution u.

Both of these R values are below the expected threshold for instability, so it is not
surprising to see that the norm ∥∇u−∇w∥L2(Ω) decreases with time. We picked a larger
perturbation at t = 0 for R = 10, and even though the initial perturbation is bigger than
1 in norm, the solution nevertheless returns to Couette flow exponentially in time. For the
larger Reynolds number (R = 100), the behavior is more complex, with a much slower (and
more complex) decay rate. Nevertheless, the perturbation eventually decays at a substantial
rate.

(a) (b)

Figure 6: Behavior of the perturbation of the solution of the time-dependent Navier-Stokes
equations on the domain (2) with L = 5 and meshsize parameter M = 50. The meshsize
parameter M is explained in section 8.7. The initial perturbation was computed using 600
iterations with the initial eigenvector approximation (0, 1). Shown are variation in time of
the norm ∥∇u−∇w∥L2(Ω) (a) for R = 10 and R = 100, and (b) for R = 200, R = 300,
R = 600, and R = 1600.

In Figure 6(b), we see the results of simulations starting with a perturbation determined
via 600 iterations of the power method, for four different Reynolds numbers, R = 200,
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R = 300, R = 600, and R = 1600, up to time T = 1. Now we see that the perturbations
grow initially, as expected. For R = 200, R = 300, and R = 600, the perturbations saturate
before T = 1, and the difference ∥∇u−∇w∥L2(Ω) starts decreasing. The times at which the
perturbations are a maximum are given in Table 2.

Figure 7: State of the perturbation v at T = 0.5, for R = 200. Determined by solving the
time-dependent Navier-Stokes equations on the domain (2) with L = 5, where the initial
perturbation was computed using 600 iterations with the initial eigenvector approximation
(0, 1) and meshsize parameter M = 100. The meshsize parameter M is explained in section
8.7.

7.1 Mode mutation

It is of interest to know what happens when the perturbations reach their maximal size. In
Figure 7 we see the horizontal flow component of the perturbation v = u − w at T = 0.5,
for R = 200 and L = 5. This should be compared to the initial perturbation shown in
Figure 2. For R = 200, T = 0.5 is close to the time when the maximum of ∥∇v∥L2(Ω)

occurs, as indicated in Figure 6(b). We see that the perturbation has become significantly
modified, and presumably this different profile leads to the dissipation of the unstable mode.
In particular, the initial most-unstable mode is converted into a higher-frequency mode,
that then dissipates to zero, as indicated in Figure 8(a). For 5 < t < 7, ∥∇v∥L2(Ω) appears
asymptotic to 0.6e−(5/6)t, as indicated by the thin straight line in Figure 8(a).

Figure 8(b), we see the results of simulations starting with a perturbation determined
for three different Reynolds numbers, R = 600, R = 2000, and R = 4000, up to time T = 1.
These calculations were done with a coarser mesh parameterM = 25 and only 400 iterations
of the power method to expedite the computations. This provides a resolution test via the
case R = 600. We see there are small differences from the case M = 50 shown in Figure
6(b), but the general character is preserved. This gives us confidence in the general form for
R = 2000 and R = 4000.

7.2 Amplitude dependence

In Figure 9(a), we see the results of simulations starting with different perturbations for
Reynolds number R = 600, up to time T = 1. The times at which the perturbations are a
maximum are given in Table 3. For the smallest amplitudes, the maximum occurs at the
same time, but the time at which the maximum occurs decreases as the amplitude increases.
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(a) (b)

Figure 8: (a) Ultimate fate of the perturbation for R = 200. Determined by solving the
time-dependent Navier-Stokes equations on the domain (2) with L = 5, where the initial
perturbation was computed using 600 iterations with the initial eigenvector approximation
(0, 1) and meshsize parameter 100.
(b) Behavior of the perturbation of the solution of the time-dependent Navier-Stokes
equations on the domain (2) with L = 5 and meshsize parameter 25. The initial perturbation
was computed using 400 iterations with the initial eigenvector approximation (0, 1). Shown
are variation in time of the norm ∥∇u−∇w∥L2(Ω) for R = 600, R = 2000, and R = 4000.

Thus lowering the amplitude tends to flatten the curve. The larger amplitudes peak earlier
and also do not reach as high in terms of a factor times the initial perturbation.

We have seen substantial variations in the perturbations as a function of Reynolds
number. Noteworthy is that fact that the rate of growth of the perturbations is much
larger than predicted in Section 5.4. Moreover, the growth rate increases as R increases.
However, the dependence on initial perturbation amplitude is quite different.

Since the nonlinearity of the Navier-Stokes equations is substantial for R = 600, we might
expect that there would be a strong dependence of, say, the solution at T = 1 on the initial
amplitude. However, the dependence in terms of flow profile appears to be minimal. In
Figure 9(a), we see the results of simulations with R = 600 for various initial amplitudes a
for the perturbation. These represent computations of

fa(t) := ∥∇ua(t)−∇wa(t)∥L2(Ω) (47)

as a function of t, where
∇ua(0)−∇wa(0) = aϕ (48)

and ϕ is the most unstable mode computed as in Section 6.2. Only for the largest initial
perturbation does the solution differ in character from the smaller amplitudes. In particular,
it reaches saturation, and then starts to decay, at a smaller time than the generic case.
For the largest amplitude, the initial “perturbation” is larger than the base flow size by a
substantial margin.

For the smaller amplitudes, the profiles fa(t) defined in (47) satisfy fa/fb = ca,b for an
appropriate constant ca,b, to several significant digits (greater than graphical accuracy). This
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is as if the effect of the perturbation were linear, which it appears nearly to be for a not too
big.

(a) (b)

Figure 9: Behavior of the perturbation (47) of the solution of the time-dependent Navier-
Stokes equations on the domain (2) with L = 5. Shown are variation in time of the norm
∥∇u−∇w∥L2(Ω). (a) R = 600. The initial perturbation ϕ was computed using 600 iterations
with the initial eigenvector approximation (0, 1). For larger amplitudes a = 1000, 100, 10, 1,
meshsize parameter M = 50, and smaller amplitudes a = 10−1, 10−3, 10−5, meshsize
parameter M = 25. (b) R = 1600. The initial perturbation ϕ was computed using 100
iterations with the initial eigenvector approximation (42) using ω = 3.77, with meshsize
parameter M = 100.

7.3 Physical interpretation

We can relate the abstract results to physical experiments as follows. Most of our computations
for the time-dependent problems were done in a channel with a 10 to 1 (length to width)
aspect ratio. Thus imagine a channel 10 centimeters wide and 1 meter long. Then the
Reynolds number R is

R =
1000U

ν

if the flow speed difference is U meters per second, and the kinematic viscosity is in centimeters-
squared per second. With these units, the time units in the computations is seconds.

For simplicity, assume that the speed at the bottom is −1
2
U and the speed at the at the

top is +1
2
U . Let T be the time it takes for a fluid particle to go from one end of the channel

to the other end (at the top or bottom), which is 2/U seconds, since U is measured in meters
per second and the channel length is a meter. We could call T = 2/U the exit time:

T =
2000

νR
. (49)

Thus for R = 2000, the exit time T is 1/ν seconds, again with ν given in centimeters-squared
per second. For larger R, T is smaller, and for smaller R is is larger.
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For air at −40 degrees Centigrade, ν = 0.1 centimeters-squared per second, and for water
at +20 degrees Centigrade, ν = 0.01 centimeters-squared per second [21]. Thus for air at
−40 degrees Centigrade and R = 2000, T = 10 seconds; for water at +20 degrees Centigrade
and R = 2000, T = 100 seconds. For air at −40 degrees Centigrade and R = 200, T = 100
seconds; for water at +20 degrees Centigrade and R = 200, T = 1000 seconds. Therefore
our calculations for R = 200 indicate that the perturbation will dissipate long before the
exit time. These data and more are summarized in Table 4.

fluid ν temperature R = 20000 R = 2000 R = 200
water 0.010 20 C = 68 F T = 10 T = 100 T = 1000
air 0.100 −40 C =−40 F T = 1 T = 10 T = 100

motor oil 10W 12.95 −17.78 C = 0 F T = 0.008 T = 0.077 T = 0.772

Table 4: Kinematic viscosity coefficients ν and exit times T defined in (49) for various fluids
[21] at various Reynolds numbers R. The units for ν are cm2/second and the unit for T is
seconds.

It may seem odd that a higher viscosity leads to a shorter exit time. What this means
is as follows. For a larger viscosity, you have to have a larger velocity U to get the same
Reynolds number R. For example, for motor oil (10W, at zero degrees F), to achieve R = 200
you need to pump our channel at a speed U = 2.59 meters per second. At slower speeds, the
flow will be stable, as indicated in Figure 6. For less viscous fluids, instabilities arise at more
modest pumping rates. Thus for the same speeds, less viscous fluids are more unstable, as
we expect. This makes it easier to study instabilities in water than in air.

It may seem surprising that air appears to be more viscous than water. This is a result of
the fact that the kinematic viscosity is defined by dividing the (dynamic or absolute) viscosity
by the density, and water is about one thousand times denser than air. The absolute viscosity
of air and water differ by a factor of about 100 in the opposite ratio. However, the ratio is
very dependent on temperature. The viscosity of air increases with temperature, whereas
water viscosity decreases as a function of temperature.

8 Time-dependent computational details

The implicit Euler method for solving the equations (1), or (4), can be written in variational
form as follows: find ûn ∈ V + g such that

R

∆t
(ûn − ûn−1,v) + a(ûn,v) +Rc(ûn, ûn,v) = 0 ∀v ∈ V, (50)

where g = (2y − 1, 0) for the Couette problem. Thus we can write ûn = un + g for un ∈ V ,
simplifying to

R

∆t
(un − un−1,v) +

(
a(un,v) + a(g,v)

)
+Rc(un + g,un + g,v) = 0 ∀v ∈ V.
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The nonlinear term simplifies via

c(un + g,un + g,v) = c(un,un + g,v) + c(g,un + g,v)

= c(un,un,v) + c(un,g,v) + c(g,un,v) + c(g,g,v).
(51)

But g · ∇g = (2y − 1)gx,x = 0, so c(g,g,v) = 0 for all v. Define a symmetrized nonlinear
form via

ĉ(u,w,v) = c(u,w,v) + c(w,u,v). (52)

Thus un ∈ V is defined by solving

R

∆t
(un,v) + a(un,v) +R

(
c(un,un,v) + ĉ(un,g,v)

)
=

R

∆t
(un−1,v)− a(g,v) (53)

for all v ∈ V . Notice that the base solution, which we have referred to here as û, satisfies
û = g for all t if there is no perturbation at t = 0. So u = û − g corresponds directly to
(minus) the perturbation v that we are interested in studying, even though we are computing
it as a solution of Navier-Stokes, as opposed to using the equation (7) which also defines
v. Thus the formulation (58) gives us a direct way to assess the perturbation v = u − w
described in Section 2.

8.1 Basic stability

The basic Euler method (53) enjoys some numerical stability properties, as follows. Choose
v = un in (53) and use (9) to get

R

∆t
∥un∥2L2(Ω) + ∥∇un∥2L2(Ω) +Rc(un,g,un) =

R

∆t
(un−1,un)− a(g,un). (54)

But for any v ∈ V , integration by parts shows that

a(g,v) =

∫
Ω

∇g : ∇v dx =

∫
Ω

vx,y dx = 0,

due to the boundary conditions satisfied by v. Thus (54) becomes

R

∆t
∥un∥2L2(Ω) + ∥∇un∥2L2(Ω) +RBg(u

n,un) =
R

∆t
(un−1,un)

=
R

∆t
∥un∥2L2(Ω) −

R

∆t
(δun,un),

(55)

where δun = un−un−1. The standard stability estimate is obtained by applying the Cauchy-
Schwarz inequality and the arithmetic-geometric mean inequality to the first line in (55) to
yield

R

2∆t
∥un∥2L2(Ω) + ∥∇un∥2L2(Ω) +RBu(u

n,un) ≤ R

2∆t
∥un−1∥2L2(Ω),

which means that ∥un∥L2(Ω) ≤ ∥un−1∥L2(Ω) for R sufficiently small. But we can also use (55)
to get

R

∆t
(δun,un) + ∥∇un∥2L2(Ω) +RBu(u

n,un) = 0. (56)
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Thus if un is close to the most unstable mode and R is sufficiently large, we must have
(δun,un) > 0. Of course, all of this assumes that we have solved the nonlinear system (53)
exactly.

8.2 The nonlinear system

Let us introduce some notation to simplify discussion and implementation. Define τ = R/∆t
and

ã(u,v) = τ (u,v) + a(u,v), ag(u,v) = ã(u,v) +R ĉ(u,g,v). (57)

With this notation, (53) becomes

ag(u
n,v) +Rc(un,un,v) = τ (un−1,v)− a(g,v) (58)

for all v ∈ V .
There are many different strategies for solving (58) for un. But the simplest is to evaluate

the nonlinear term at the previous time step, yielding what is called an IMEX (linearly
IMplicit–nonlinearly EXplicit) scheme [23]: find un ∈ V such that

ag(u
n,v) = −Rc(un−1,un−1,v) + τ (un−1,v)− a(g,v) (59)

for all v ∈ V . This can be simplified since

ĉ(u,g,v) = c(u,g,v) + c(g,u,v) = −c(u,v,g)− c(g,v,u)

= −
∫
Ω

gt
(
∇v +∇vt

)
u dx,

(60)

but in any case, this term makes the linear system to be solved in (59) nonsymmetric. On
the other hand, we can show that this system is coercive, as follows.

We have

|ĉ(v,g,v)| =
∣∣∣ ∫

Ω

gt
(
∇v + (∇v)t

)
v dx

∣∣∣ ≤ 2∥g∥L∞(Ω) (a (v,v))
1/2 (v,v)1/2

≤ 1

2R
a (v,v) + 2R∥g∥2L∞(Ω) (v,v) .

(61)

Therefore (61) implies that

ag(v,v) = ã(v,v)−R

∫
Ω

gt
(
∇v + (∇v)t

)
v dx

≥ 1
2
a(v,v) + (τ − 2R2∥g∥2L∞(Ω)) (v,v) ≥ 1

2
ã(v,v)

(62)

for τ ≥ 4R2∥g∥2L∞(Ω). For Couette flow, ∥g∥L∞(Ω) =
1
2
, so this condition reduces to τ ≥ R2,

or ∆t ≤ 1/R. In our computations in section 7, we chose ∆t = (10R)−1 to be conservative.
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8.3 Iterated penalty method

Implementation of the IMEX scheme (59) also requires a strategy for staying in (or near)
the divergence-free space V . We can write (59) as

ãR(u
n,v) = F n(v) ∀v ∈ V,

F n(v) = −Rc(un−1,un−1,v) +
R

∆t
(un−1,v)− a(g,v),

(63)

where

ãR(u,v) = ã(u,v)−R

∫
Ω

gt
(
∇v + (∇v)t

)
u dx.

Then the iterated penalty method for (63) takes the form

ãR(ũ
ℓ,v) + ρ(∇· ũℓ,∇·v) = F n(v)− (∇·wℓ,∇·v) ∀v ∈ V,

wℓ+1 = wℓ + ρ ũℓ,
(64)

where we start with w0 ≡ 0. This is guaranteed [4] to converge since ãR(u,v) is coercive,
in view of (62). Once this converges, we set un = ũℓ. If desired, we also have the pressure
pn = −∇·wℓ. In most of our time-dependent computations, we chose ρ = 105.

8.4 Long-time simulations

Longer-time simulations are required to examine the fate of perturbations for larger Reynolds
numbers. We can define the persistence time TP for a perturbation by the inequality

∥∇v(t)∥L2(Ω) < ∥∇v(0)∥L2(Ω) ∀t > TP . (65)

Note that, as we have defined it, TP is not necessarily the first time t > 0 that

∥∇v(t)∥L2(Ω) = ∥∇v(0)∥L2(Ω)

for some t > 0. As we see in Figure 11, the norm ∥∇v(t)∥L2(Ω) is not monotonic in t for
t > Tmax. We estimate persistence times for several values of R in Table 5.

To simulate longer evolution of perturbations, another approach is available. Instead of
integrating (1) with an initial perturbation, we can instead directly integrate (7). Then the
evolution equation for v is

vt −
1

R
∆v + g · ∇v + v · ∇g − v · ∇v +∇ô = 0 in Ω,

where ô is a suitably scaled pressure. Note that we have simplified the equation by using the
fact that the unperturbed solution u = g = (2y− 1, 0) for the Couette problem for all time.
The idea is that v will be small, so that we can approximate (7) with all advection terms
handled explicitly. The corresponding implicit Euler method can be written in variational
form as follows: find vn ∈ V such that

(vn+1, z) +
1

τ
a(vn+1, z) = (vn, z)−∆t ĉ(vn,g, z) +

1

τ
c(vn,vn, z) ∀z ∈ V. (66)
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We can write (66) as

ã(vn+1, z) = F n(z) ∀z ∈ Vh,

F n(z) = τ (vn, z)−R ĉ(vn,g, z) +Rc(vn,vn, z).
(67)

Then the iterated-penalty method for (67) takes the form

ã(ṽℓ, z) + ρ(∇· ṽℓ,∇· z) = F n(z)− (∇·ωℓ,∇· z) ∀z ∈ Wh,

ωℓ+1 = ωℓ + ρ ṽℓ,
(68)

where we start with ω0 ≡ 0. This is guaranteed [4] to converge since ã(u, z) is coercive.
Once this converges, we set vn+1 = ṽℓ. If desired, we also have the pressure ôn+1 = −∇·ωℓ.

In Figure 11(a), computations of the norm ∥∇v∥L2(Ω of the solution v of (7) are depicted
for R = 1600, R = 3000, and R = 10000. These were done on the domain (2) with
L = 5 and meshsize parameter M = 50, using the scheme (67), combined with the iterated-
penalty method (68). The values of ∆t used are indicated in Table 5. For reference, for the
unperturbed solution u, ∥∇u∥L2(Ω = ∥∇g∥L2(Ω =

√
2L.

The key to success of the new scheme was to take the penalty parameter ρ to scale with
τ . Otherwise, the iterated-penalty method was slow to converge and the divergence of the
solution was not small. Sometimes, this led to significant inaccuracies in the H1 norm of
v, and ultimately to instability of the numerical solution (i.e., blow-up). In most of our
time-dependent computations reported in this and subsequent sections, we picked ρ = 10τ .
This formula may make ρ too small for smaller R and larger ∆t, but it was used successfully
for the computations reported in Table 5.

We chose to stop at R = 105 since various changes occur for much larger Reynolds
numbers. For example, the drag crisis [16] occurs for R < 106. This may be related to a
change in boundary conditions due to the high flow rate such as slip (u · n = 0) boundary
conditions, with suitable friction coefficient [12]. However, our numerical methods were
capable of computing for R ≥ 106.

Another approach is just to solve (67) in Wh and then project vn+1 back to Vh via the
Stokes projection. More precisely, we solve

ã(v̂n+1, z) = τ (vn, z)−R ĉ(vn,g, z) +Rc(vn,vn, z) ∀z ∈ Wh. (69)

Then we use the iterated-penalty method

a(ṽℓ, z) + ρ(∇· ṽℓ,∇· z) = a(v̂n+1, z)− (∇·ωℓ,∇· z) ∀z ∈ Wh,

ωℓ+1 = ωℓ + ρ ṽℓ,
(70)

where we start with ω0 ≡ 0. This is guaranteed [4] to converge since a(u, z) is coercive.
Once this converges, we set vn+1 = ṽℓ. If desired, we also have the pressure ôn+1 = −∇·ωℓ.
However, this was not more efficient than using (68) which converged quickly with the
appropriate ρ values. On the other hand, for even larger Reynolds numbers, it may be
necessary to use the modified approach.
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8.5 Movie

In Figure 7, we presented the state of the perturbation for R = 200 at the time near where
it is maximal. This gives a good indication of how the perturbation gets modified before it
begins to dissipate. Here we extend this to a complete time series for R = 1600 out to time
T = 5 where it is exponentially decreasing.

In Figure 10, we present a time series of the horizontal velocity of the perturbation v
at different times for R = 1600. The scale in the figure changes after T = 2.0 as the
perturbation dissipates. The figures were computed with algorithm (66) with ∆t = 0.001.

We see how the perturbation transforms from the initial unstable mode into something
where the waves run in the opposite direction, somewhat analogous to the most stable mode.
However, its character is more complex in nature. The behavior of perturbations for larger
Reynolds numbers is similar (data not shown).

As the perturbation evolves in time, the wavetrain transitions from an upper-left to lower-
right orientation (at t=0) to an upper-right to lower-left orientation, which we begin to see
for t ≥ 1. For t > 5 this waveform elongates, and we can see in Figure 12 the result for
t = 10 and R = 105.

8.6 Second-order time stepping

Although the scheme (66) has proved quite effective for Reynolds numbers up to 104, it
becomes prohibitive for larger Re. Thus we developed a simple scheme that is second-order
in time by a simple modification:

1

∆t
(vn+1 − vn, z) +

1

2R

(
a(vn+1, z) + a(vn, z)

)
= −ĉ(Evn,g, z) + c(Evn, Evn, z) (71)

for all z ∈ V , where Evn is obtained by extrapolation:

Evn =
3

2
vn − 1

2
vn−1 ≈ vn+

1
2 .

Multiplying (71) by 2R and defining τ = 2R/∆t, we see that (71) can be written

ã(vn+1, z) = F n(z) ∀z ∈ Vh,

F n(z) = τ (vn, z)− a(vn, z)− 2R ĉ(Evn,g, z) + 2Rc(Evn, Evn, z).
(72)

Then we use the iterated-penalty method (68) as before, with ρ proportional to τ .
This allowed cheaper and more accurate simulations for R ≥ 104. On the other hand,

we required ∆t ≤ 0.001 in many cases to obtain stable computations. But this allowed
computations on finer meshes as were required for larger Re.
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t=0.0

t=0.5

t=1.0

t=1.5

t=2.0

t=3.0

t=4.0

t=5.0

Figure 10: Time series for R = 1600. Evolution of perturbation on the domain (2) with
L = 5 and meshsize parameter M = 100, computed using 100 iterations with the initial
eigenvector approximation (42) with ω = 3.77. The time-stepping scheme used was the
first-order scheme described in section 8.4 with ∆t = 0.001.
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R 1600 3000 10000 30000 100000
Tmax 1.01 1.06 1.13 1.21 1.36
TP 2.23 2.98 4.21 6.73 9.30
∆t 2.5×10−3 2.5×10−3 1×10−3 1×10−3 5×10−4

M 100 120 150 150 250
U 0.0273 0.0318 0.0420 0.0530 0.0688

Table 5: Time Tmax of maximal perturbation as a function of Reynolds number R and
the corresponding value of ∆t (for the second-order scheme) and meshsize parameter M
for the computations as in Figure 11. TP is the persistence time defined in (65) and U =
∥∇u(t = Tmax)∥L2(Ω).

8.7 Interpreting the meshsize parameter M

We utilized the FEniCS Project code dolfin for all of the computations, and the meshes
were generated with mshr [2]. What we refer to as the meshsize parameter M is the input
to mshr. We can visualize what this means in Figure 13 which depicts the domain (2) with
L = 5 andM = 100. Shown is the horizontal flow component of the approximate eigenvector
after five iterations of the power-method. The view is from the underside compared to the
standard views which appear in other figures, to emphasize the mesh.

Figure 14 illustrates the impact of meshsizeM on a time-dependent computation. Shown
is the same computation as done in Figure 11(b), but with 5 different meshsize parameters
M . For M = 50, we get the tantalizing impression that the instability may be persistent
in time, being self-sustaining [44]. But reducing the meshsize unfortunately disabuses us of
this fantasy.

The initial doubling of the mesh parameter (from M = 50 to M = 100) has the biggest
impact, with subsequent increases reaching a point of diminishing returns. Note that the
finer meshes lead to a sharpening of the peak in the perturbation, making it higher but also
making it reach its maximum sooner. In all candor, the curve for M = 250 is likely not
yet converged. For smaller Reynolds numbers, we confirmed convergence by doing slightly
larger computations.

In Figure 15, we compare the horizontal flow patterns for perturbations at t = 1 for
various Reynolds numbers. We see little difference in form. The amplitude differences given
in Table 5 are more significant. The main issue we see with regard to mesh refinement is the
sharp boundary layer on the channel walls. We see how this develops in Figure 10 and then
persists for t ≥ 1. Eventually, boundary-layer issues also develop at the ends of the channel.
For more detail on the boundary layer, see Figure 16.

Due to the substantial requirements for spatial accuracy, we investigated using specialized
meshes. Malkus splits [27] are based on quadrilateral decompositions of a domain. These
can be generated in doflin for the domain in (2) with the command

RectangleMesh(Point(-L, 0.0), Point(L, 1.0), mx, my,’crossed’)

This will generate a base rectangular decomposition with mx rectangles in the x-direction
and mx rectangles in the y-direction.
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(a) (b)

Figure 11: Behavior of the solution v of the perturbation equations (7) on the domain (2)
with L = 5. Shown is variation in time of the norm ∥∇v∥L2(Ω) using an initial perturbation
computed using 100 iterations with the initial eigenvector approximation (42) using frequency
ω = 3.77. (a) R = 1600, R = 3000, and R = 10000, computed with the scheme (67) together
with the iterated-penalty method (68) with meshsize parameterM = 100 and ∆t as indicated
in Table 5. (b) R = 30000 and R = 100000, computed with the scheme (71) together with
the iterated-penalty method (72) with meshsize parameter M = 50 and ∆t as indicated in
Table 5.

Figure 12: Perturbation at t = 10 for R = 105 computed with the second-order scheme with
∆t = 0.0005 and M = 250.

In the general case, each quadrilateral is triangulated by adding the diagonals of the
quadrilateral, giving an overall triangulation of the domain. In our case, we used squares.
The meshsize parameter m in Table 6 for Malkus splits is the number of squares in the y
direction. The number of the squares in the x-direction was thus 2mL. In Table 6, we report
some simulations using Malkus splits. Although the Malkus splits are quite effective for the
eigenproblem solution, as indicated in Table 6, their use in time-stepping simulations did
not provide a substantial improvement in efficiency.

In Figure 16, we depict the perturbations at t = 1 for R = 1600 and R = 104 both
computed using Malkus splits with different mesh parameters m. This form of visualization
allows the assessment of the width of the boundary layer, because each dot represents a
particular unknown in the mesh. The mesh for R = 104 has twice as many nodal points in
each direction, and yet fewer points in the boundary layer. Thus we see how the boundary
layer is getting narrower as the Reynolds number R increases. Note that the horizontal row
of dots is on the boundary.



8.8 Kinetic versus strain energy 29

Figure 13: Illustration of meshsize parameter M = 100 using mshr [2] on the domain (2)
with L = 5.

L start vector λ iterations m
5 v in (42) -0.0112168 100 2
5 v in (42) -0.0112206 100 5
5 v in (42) -0.0112206 100 10
5 v in (42) -0.0112206 100 20
5 v in (42) -0.0112216 200 5
5 v in (42) -0.0112216 200 10
10 v in (42) -0.0112684 200 10

Table 6: Using Malkus splits to study dependence on channel length parameter L of stability
limits λ; compare Table 1. The “start vector” refers to the initial eigenvector approximation.
The iterations column lists the number of iterations used. The meshsize parameter m for
Malkus splits is the number of squares in the y direction. The number of the squares in the
x-direction was thus 2mL. For start vectors in (42), the default frequency ω = 3.77 was
used. The shift µ = 0.01 in all cases.

8.8 Kinetic versus strain energy

Our theory of instability was based on kinetic energy, but so far we have reported the
behavior of strain energy. The time-dependent behavior of kinetic energy is more prosaic,
nearly independent of Reynolds number. Figure 17 depicts the latter.

8.9 Numerical instabilities

The time-stepping schemes in sections 8.4 and 8.6 are not inherently stable. Their stability
relies on accuracy (staying close to the true solution). As remarked in section 8.4, it is critical
to keep essentially exact divergence-zero to avoid instability. But in addition, instability
arises if the mesh size and time-step size are not sufficiently small. Figure 18 gives some
examples that occur for R ≥ 104.

We see that instabilities can occur at different times, and they can occur for both the
first-order scheme in section 8.4 and the second-order scheme in section 8.6. In the former
case, stability is recovered by the second-order scheme for a significantly larger time step.

There are some relationships between the time-step size and the meshsize to determine
numerical stability. Of course, reducing the time step always improves stability. But reducing
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Figure 14: Mesh dependencies for R = 105. For M = 50, computed with the first-order
time-stepping scheme in section 8.4 with ∆t = 0.0001. For M ≥ 100, computed with the
second-order time-stepping scheme in section 8.6 with ∆t = 0.001 for M = 100, 150 and
∆t = 0.0005 for M = 200, 250.

the spatial mesh size may not. For example, for R = 105, M = 150 is stable for ∆t = 0.001
(this is depicted in the middle curve in Figure 14), whereas M = 200 is not stable for this
time step. Thus the coarser mesh introduces some numerical dissipation that stabilizes the
time-stepping scheme.

8.10 Not the worst

The dynamic development of the most unstable mode has been addressed via several simulations
in the previous sections. One might hope that some sort of order would appear from this.
For example, it might be conjectured that, starting with the most unstable mode would lead
to the perturbation that would grow the most and be the most persistent. Unfortunately,
this is not the case.

In Figure 19, we depict the evolution for two similar perturbations for R = 3000, both
seeded with an initial perturbation generated by 100 steps of fixed-point iteration, but each
started with a different initial eigenvector approximation of the form (42) but with two
different frequencies, ω = 3.77 (see Figure 4) and ω = 1 (see Figure 20).

Comparing Figure 4, we see that the initial perturbation in Figure 20 is not so different.
It is the less exact mode in Figure 20 that leads to the the largest growth and persistence
time in Figure 19. Thus small variations can have a significant impact on the dynamic
evolution of initial perturbations.
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R = 1600

R = 3000

R = 10000

Figure 15: Horizontal flow profile for different Reynolds numbers at time t = 1. Evolution
of perturbation on the domain (2) with L = 5, starting with the eigenvector computed
using 100 iterations with the initial eigenvector approximation (42) with ω = 3.77. For
R = 1600, the time-stepping scheme used was the first-order scheme described in section 8.4
with ∆t = 0.001. For the others, the time-stepping scheme used was the second-order scheme
described in section 8.6 with ∆t = 0.0025 for R = 3000 and ∆t = 0.001 for R = 10000.

9 Energy stability comparisons

There are many definitions of instability [10], and we have not attempted to compare them
all. But we can relate some details of the energy stability/instability definition to other
concepts. The most important comparison is with the standard definition of instability by
a linear analysis.

9.1 Linearization

The standard approach to flow stability [34, 17] has been to consider the linearization of (7).
This has been widely used. For example, Chandrasekhar states [6, page 3] “in this book we
shall be concerned only with the linear stability theory.”

The linear stability analysis is based on an equation obtained from (7) by dropping the
nonlinear (quadratic) term in v. We denote by ṽ the solution of the resulting linear equation:

Rṽt −∆ṽ +R
(
u · ∇ṽ + ṽ · ∇u

)
+∇õ = 0 in Ω.

∇· ṽ = 0 in Ω, ṽ = 0 on ∂Ω,
(73)

The idea of the linear instability analysis is to look for a solution of (73) of the form

ṽ(t) = eλt ṽ0.

We see that this generates an eigenproblem for v0 and λ, as follows.
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Figure 16: Perturbation at t = 1 computed using Malkus splits with the second-order scheme
for (top) R = 1600 with m = 5 and ∆t = 0.0025 and (bottom) R = 10000 with m = 10 and
∆t = 0.001.

Write the spatial operator in (73) as

Au
Rṽ = P

(
−∆ṽ +R(u · ∇ṽ + ṽ · ∇u)

)
, (74)

where P is the projection onto the space V , defined in (12), of divergence-free, vector-valued
functions that vanish on the boundary and are in the Sobolev space H1(Ω)d. Then there is
a solution of (73) of the form ṽ(t) = eλtv0 if there is an eigensolution of

Au
Rṽ0 = λṽ0.

Note how this differs from energy instability. In the linear stability analysis, the form of the
instability does not change, it just grows. In energy stability analysis, the perturbation is
not constrained in this way.

Let m(R) denote the supremum of the real parts of the spectrum of the operator Au
R

defined in (74). It is known [32] that for Couette flow

m(R) ≤ −C/R

for a constant C > 0. Based on this, it has been concluded that Couette flow is stable for
all R. We have seen, by a different approach, that this is not the case. We now explore the
differences in approaches in more detail.

9.2 Energy stability versus linear stability analysis

There is not a simple relationship between linear stability analysis, based on the eigenstructure
of the operator Au

R in (74), and energy stability, even though certain ingredients of the
analysis are related. Let us write

Au
R = −P (∆ +Ru · ∇+RBu),
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Figure 17: Variation in time of the kinetic energy ∥v∥L2(Ω) of the solution v of the
perturbation equations (7) on the domain (2) with L = 5 using the schemes indicated
in Figure 11.

where Bu is defined by
Buv = v · ∇u

and P is the projection onto V , the space defined in (12). The eigenvalue problem for linear
stability analysis is

Au
Rv = µv. (75)

By contrast, the eigenvalue problem for energy stability can be written as

−1
2
P (∆)−1

(
Bu + (Bu)t

)
v = λv.

Clearly, Au
R and −1

2
P (∆)−1

(
Bu + (Bu)t

)
are not related in a simple way. And at the most

simplistic level, for energy instability, we are looking for λ < 0, whereas for eigenvalue
instability, we are looking for µ > 0. At the next level, linear stability analysis can lead to
eigenproblems for nonnormal operators, whereas nonlinear (energy) stability analysis leads
an eigenproblems for a symmetric operator.

Although there is no obvious connection between the two instability criteria, if there is
an eigensolution

Au
Rv = −P (∆ +Ru · ∇+RBu)v = µv, (76)

arising from linear (eigenvalue) instability analysis, then we can take the L2 inner-product
with v to get

−
∫
Ω

|∇v|2 dx− R

2

∫
Ω

vt
(
∇u+∇ut

)
v dx = µ

∫
Ω

|v|2 dx,
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Figure 18: Instabilities for R = 104, 3 × 104, 105 for the time-stepping schemes in sections
8.4 and 8.6. Shown is variation in time of the norm ∥∇v∥L2(Ω) of the solution v of the
perturbation equations (7) on the domain (2) with L = 5 using the schemes indicated
started with an initial perturbation computed using 100 iterations with the initial eigenvector
approximation (42) using frequency ω = 3.77.

after simplifications as done in the derivation of (10).
Thus an eigenvector v for (76), characterizing linear (eigenvalue) instability, implies

energy instability if µ > 0, but v is not necessarily the most unstable mode given by
the eigenproblem (20). Nor is it even necessarily any eigenvector of the eigenproblem
(20). Therefore eigenvalue (linear) instability implies energy instability, but not conversely.
Moreover, eigenvalue (linear) stability analysis suggests an instability at a particular Reynolds
number, somewhat like bifurcation analysis [1, 8]. By contrast, energy instability implies
instability for all Reynolds numbers above a certain threshold, at least in the case that the
base flow u does not depend on R.

The nonlinear (energy) analysis is (1) exact and (2) more general. It captures all of the
unstable modes, not just special ones. There are no approximations.

If you have some perturbation ectv coming from (75), is not so easy to prove that adding
such a perturbation gives a (nearby) solution of Navier-Stokes. To do so would require some
sort of stability of the base flow. But if the base flow is unstable, then the reasoning is
contradictory. The basic argument of linear stability analysis can be written as

eigensolution (75) + stability =⇒ instability.

So it is fundamentally flawed. It is understandable how such finer points of logic might have
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Figure 19: Behavior of the solution v of the perturbation equations (7) on the domain (2)
with L = 5 and meshsize parameter M = 100, using the scheme (67), together with the
iterated-penalty method (68). Shown is variation in time of the norm ∥∇v∥L2(Ω) using an
initial perturbation computed using 100 iterations with the initial eigenvector approximation
(42) using two different frequencies, ω = 1 and ω = 3.77, for R = 3000 and ∆t = 2.5× 10−4.

Figure 20: The initial perturbation on the domain (2) with L = 5 and meshsize parameter
M = 100, computed using 100 iterations with the initial eigenvector approximation (42)
with ω = 1.

been spurned as mathematical rigor mortis [33], but in this case it clearly gave the wrong
result.

9.3 Energy stability versus Newton’s method

Newton’s method for solving the stationary Navier-Stokes equations [36, section 20.3] involves
inversion of the system associated with the variational form

a(v,w) +R ĉ(u,v,w), (77)

where
ĉ(u,w,v) = c(u,w,v) + c(w,u,v),

and c(u,w,v) is defined in (8). Moreover [36, (20.35)]

ĉ(u,v,v) = Bu(v,v) ∀v ∈ V. (78)
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where the bilinear form Bu(v,v) was defined in (14). If the Newton system (77) is singular,
then there is a v ∈ V such that

a(v,w) +R ĉ(u,v,w) = 0 ∀w ∈ V. (79)

Choosing w = v and combining (78) and (79), we find that

a(v,v) +RBu(v,v) = 0.

Thus singularity of the system (77) corresponds to an eigenvalue of (20) equal to

λ = −2/R.

Singularity of the Newton system often corresponds to a bifurcation [1, 8].

10 Function space view

What we have done is to construct a function F given by

F (u) = (vu, λu)

for all u ∈ V + g, where (vu, λu) solves the eigenproblem (20). We can define the unstable
set V U

g by

V U
g = {u ∈ V + g : λu < 0} .

Then we have divided V + g into two sets, V U
g and its complement, the latter being the

stable set. In the time-dependent calculations for Couette flow, we initially get a solution
near u+ϵvu. It is thus natural to ask about F (u+ϵvu) to see if it indicates greater instability
or less instability. In the time-dependent calculations for Couette flow, it appears to be more
unstable initially. If F is sufficiently smooth, we can write

F (u+ ϵvu) = (vu + ϵv′, λu + ϵλ′) +O
(
ϵ2
)
.

If λ′ < 0, then the instability is increasing. The easiest way to compute λ′ may be to
just solve the time-dependent Navier-Stokes equations. But this is a standard eigenvalue
perturbation problem, so it is possible to determine equations for v′ and λ′, as follows.

Suppose that
A−1Buv = λv

and
A−1Bu+ϵv(v + ϵv′) = (λ+ ϵλ′)(v + ϵv′) +O

(
ϵ2
)
.

Note that
Bu+ϵv = Bu +Bϵv = Bu + ϵBv.

Therefore

A−1Bu+ϵv(v + ϵv′) = A−1Buv + ϵ
(
A−1Bvv + A−1Buv

′)+ ϵ2A−1Bvv
′

= λv + ϵ
(
A−1Bvv + A−1Buv

′)+ ϵ2A−1Bvv
′.

(80)
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Similarly
(λ+ ϵλ′)(v + ϵv′) = λv + ϵ

(
λ′v + λv′) + ϵ2λ′v′. (81)

Equating terms of order ϵ, we find

A−1Bvv + A−1Buv
′ = λ′v + λv′

which we can re-write as

A−1Buv
′ − λv′ = λ′v − A−1Bvv. (82)

Equation (82) is uniquely solvable in the set

Vv = {w ∈ V : (v,w) = 0} ,

provided that λ is a simple eigenvalue of A−1Bu and

(λ′v − A−1Bvv,v) = 0.

Thus

λ′ =
(A−1Bvv,v)

(v,v)
.

This can be computed by solving Aw = Bvv and setting

λ′ =
(w,v)

(v,v)
.

λ

stabilityinstability

?

Figure 21: Cartoon of the time-dependent behavior of the instability for Couette flow. The
dashed line indicates the boundary between the stable (λ > 0) and unstable (λ < 0) regions.

In Figure 21, we depict what happens with the instability for Couette flow. Initially,
the perturbation grows, indicating that λ′ < 0. But then the perturbation saturates,
and it eventually dissipates to zero. In the figure, the large black dot indicates the initial
perturbation, and the curve attached to it indicates the time evolution of the perturbation.
Initially, it moves to the left, where solutions are more unstable. But then it turns around
and moves toward the stable region. At some point it passes the dashed line indicating the
boundary between the stable and unstable regions.
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With this function-space view of the evolution of instabilities, an intriguing possibility
would be a cycle in the unstable region, indicated by the dot-dashed curve surrounding the
question mark in Figure 21. This would indicate an instability that, once initiated, would
continue to cycle forever, that is, one that is self-sustaining [44].

Another space of functions potentially of interest are the steady solutions of Navier-
Stokes:

Vg,R =
{
u ∈ V + g : −∆u+Ru · ∇u ∈ ∇L2(Ω)

}
.

Then the unstable steady solutions are

V U
g,R = {u ∈ Vg,R : λu < −2/R} .

For a given g, a set of solutions uR could go in and out of the unstable set as R varies. This
is because the set V U

g,R is changing as R varies.

11 Three-dimensional perturbations

Couette flow and plane Poiseuille flow are exact models of three-dimensional flows that
are independent of the third coordinate. Other important flow problems are also of this
form. The unstable modes found via a two-dimensional analysis thus also represent flows
that are constant in the third coordinate. But what if we pose them as three-dimensional
flow problems, relaxing the requirement that the instabilities be independent of the third
coordinate? What sort of instabilities arise in this case? Do they occur for lower Reynolds
numbers? Such questions are addressed here.

Couette flow and plane Poiseuille flow represent flow domains that are infinite in the third
coordinate. For computational purposes, the third coordinate z must be truncated artificially
via |z| ≤ L. Thus it is of interest to know how such three-dimensional perturbations depend
on L. In comparing with experimental results, L would be defined in the experiment.
Another approach would be to look for modes that are periodic in the third dimension,
with period L. We can then ask:

� how does the smallest eigenvalue depend on L?

� for what L is the smallest eigenvalue minimized?

� or does it occur that the most unstable mode in three dimensions is actually independent
of the third coordinate?

We will show that in some cases the most unstable mode in three dimensions is actually
two-dimensional. In particular, we will show that this is true for Couette flow, so we have
found the most unstable, three-dimensional perturbation already.

Given the general importance of these questions, we will generalize beyond Couette flow.
We will still restrict to base flows u that are two-dimensional. Thus the general form of such
flows has strain rate given by

∇u+∇ut =

a(x, y) b(x, y) 0
b(x, y) −a(x, y) 0

0 0 0

 (83)
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if ∇·u = 0. Here we focus on the case a ≡ 0, with

B(v,w) =

∫
Ω

(vxwy + vywx)b(x, y) dx. (84)

Generalizing (15), we consider the eigenvalue problem

λ = inf
0̸=v∈V

∫
Ω
(vxwy + vywx)b(x, y) dx

a(v,v)
, (85)

We will be more precise about the domain of integration, and the number of variables, in
the subsequent discussion.

11.1 Eigenproblem structure

Having the third component vz nonzero contributes nothing to the numerator in (15), or
more generally in (85), so the most unstable modes would be expected to be of the form
v = (vx, vy, 0). The formal proof of this can be done by introducing an appropriate subspace
of the space V 3 defined in (12):

V2 = V 3
2 =

{
v ∈ V 3 : vz ≡ 0

}
. (86)

Let P : V → V2 be the projection defined by

P (vx, vy, vz) = (vx, vy, 0).

These definitions make sense for dimension d = 2 and d = 3, but the main significance is the
case d = 3. Note that∫

Ω

|∇(Pv)|2 dx =

∫
Ω

|∇vx|2 + |∇vy|2 dx

≤
∫
Ω

|∇vx|2 + |∇vy|2 + |∇vz|2 dx =

∫
Ω

|∇v|2 dx,
(87)

where now Ω is assumed to be a three-dimensional domain. When λ < 0

λ = inf
0 ̸=v∈V

∫
Ω
vt(∇u0 +∇ut

0)v dx∫
Ω
|∇v|2 dx

= inf
0̸=v∈V

∫
Ω
(Pv)t(∇u0 +∇ut

0)(Pv) dx∫
Ω
|∇v|2 dx

≥ inf
0 ̸=v∈V

∫
Ω
(Pv)t(∇u0 +∇ut

0)(Pv) dx∫
Ω
|∇(Pv)|2 dx

= inf
0 ̸=v∈V2

∫
Ω
vt(∇u0 +∇ut

0)v dx∫
Ω
|∇v|2 dx

.

(88)

But since V2 ⊂ V , (83) implies

inf
0 ̸=v∈V2

∫
Ω
vt(∇u0 +∇ut

0)v dx∫
Ω
|∇v|2 dx

≤ inf
0 ̸=v∈V

∫
Ω
vt(∇u0 +∇ut

0)v dx∫
Ω
|∇v|2 dx

≤ inf
0 ̸=v∈V2

∫
Ω
vt(∇u0 +∇ut

0)v dx∫
Ω
|∇v|2 dx

.

(89)



11.2 Periodic modes 40

Therefore

inf
0 ̸=v∈V2

∫
Ω
vt(∇u0 +∇ut

0)v dx∫
Ω
|∇v|2 dx

= inf
0 ̸=v∈V

∫
Ω
vt(∇u0 +∇ut

0)v dx∫
Ω
|∇v|2 dx

.

Thus we have proved the following result.

Lemma 11.1 For two-dimensional base flows, the most unstable mode in the restricted space
V2 results in the same eigenvalue as the general case (85).

Note that the lemma does not say that the most unstable perturbation is independent
of z. It just says that it does not point in the z-direction. However, we will now show that
perturbations periodic in the z-direction yield the same most-negative eigenvalue when (84)
holds.

11.2 Periodic modes

It is natural to look for three-dimensional modes that are periodic in z, with some period,
say 2π/L. Thus we can seek

λ3L = inf
0 ̸=v∈V 3,L

2

∫
ΩL

2vxvyb(x, y) dx dy dz∫
ΩL

|∇v|2 dx dy dz
, (90)

where

V 3,L
2 =

{
v ∈ V 3

2 : v has period 2π/L in z
}
, ΩL = {(x, y, z) : (x, y) ∈ Ω, |z| ≤ 2π/L} .

We contrast (90) with the two-dimensional approximation

λ2 = inf
0 ̸=v∈V 2

2

∫
Ω
2vxvyb(x, y) dx dy∫
Ω
|∇v|2 dx dy

, (91)

where V 2
2 is the original space (12) defined on the two-dimensional domain Ω. Note that there

is a natural inclusion V 2
2 ⊂ V 3,L

2 where we view v ∈ V 2
2 as constant in z. Correspondingly,

let us define

a2(v,w) =

∫
Ω

∇v : ∇w dx dy ∀v,w ∈ V 2,

aL(v,w) =
L

2π

∫
ΩL

∇v : ∇w dx dy dz ∀v,w ∈ V 3,L
2 ,

BL(v,w) =
L

2π

∫
ΩL

(
vxwy + vywx

)
b(x, y) dx dy dz ∀v,w ∈ V 3,L

2 .

(92)

Note that
aL(v,w) = a2(v,w) ∀ v,w ∈ V 2

2 . (93)

Since the most unstable mode that is constant in z is in V 3,L
2 ,

λ3L ≤ λ2. (94)
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For any v ∈ V 3,L
2 , we can do a Fourier series expansion

v =

√
L

2π
v0 +

√
L

π

( ∞∑
k=1

vk cos(kLz) +wk sin(kLz)

)
, (95)

where vk,wk ∈ V 2
2 , and v0 = w0. More precisely, we define vk,wk ∈ V 2

2 by

vk(x, y) =

√
L

π

∫ π/L

−π/L

v(x, y, z) cos(kLz) dz,

wk(x, y) =

√
L

π

∫ π/L

−π/L

v(x, y, z) sin(kLz) dz,

(96)

for k > 0, and

v0(x, y) =

√
L

2π

∫ π/L

−π/L

v(x, y, z) dz. (97)

A key observation is that, for v ∈ V 3,L
2 , ∇·v = vx,x + vy,y since vz ≡ 0, so each vk is

divergence free, and so vk ∈ V 2
2 . Note that for k > 0∫ π/L

−π/L

L

π
cos2(kLz) dz =

∫ π/L

−π/L

L

π
sin2(kLz) dz = 1.

Thus v has been expanded in an orthonormal basis. If λ2 ≤ 0, then (91) and (93) imply

−BL(v,v) = −2

∫
Ω

v0x v
0
y b(x, y) dx dy − 2

∑
k>0

∫
Ω

(
vkx v

k
y + wk

x w
k
y

)
b(x, y) dx dy

≤ (−λ2)
(
a2(v0,v0) +

∑
k>0

(
a2(vk,vk) + a2(wk,wk)

))
= (−λ2)

(
aL(v

0,v0) +
∑
k>0

aL(v
k,vk) +

∑
k>0

aL(w
k,wk)

)
= (−λ2)aL(v,v)

(98)

Thus we conclude that
−λ3L ≤ −λ2. (99)

Combining (99) and (94), we have proved the following result.

Theorem 11.1 Suppose that B(·, ·) is of the form (84). Let λ2 be the most negative eigenvalue
for the two-dimensional eigenvalue problem (91), and let λ3L be the most negative eigenvalue
for the three-dimensional eigenvalue problem (90). If λ2 ≤ 0, then

λ3L = λ2

for any L > 0.
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11.3 Decaying modes

We can apply the techniques of section 11.2 to perturbations that are not periodic in z. For
example, let us consider ones that decay sufficiently fast to be in a Sobolev space. This
corresponds in a sense to the limit L→ 0 in the periodic problem. Thus we define

λ30 = inf
0 ̸=v∈V 3

2

∫
Ω0

2vxvyb(x, y) dx dy dz∫
Ω0

|∇v|2 dx dy dz
, (100)

where
Ω0 = {(x, y, z) : (x, y) ∈ Ω, z ∈ R} . (101)

We again contrast (100) with the two-dimensional approximation (91). Note that there is
not a natural inclusion V 2

2 ⊂ V 3
2 , so we need to replace this concept which was used to prove

(94).
Let us begin by abstracting the argument in the periodic case. We choose a complete,

orthonormal basis {ϕi : i = 0, 1, . . .} in one-dimension and expand v ∈ V 3
2 via

v =
∞∑
k=0

vkϕk, (102)

where vk ∈ V 2
2 is defined by

vk(x, y) =

∫ ∞

−∞
v(x, y, z)ϕk(z) dz,

for k ≥ 0. For example, we can take the basis functions to be Hermite functions (polynomials
multiplied by e−z2) [14]. Again, for v ∈ V 3

2 , ∇·v = vx,x + vy,y since vz ≡ 0, so each vk is
divergence free.

For clarity, let us define, for all v,w ∈ V 3
2 ,

a0(v,w) =

∫
Ω0

∇v : ∇w dx dy dz,

B0(v,w) =

∫
Ω0

(
vxwy + vywx

)
b(x, y) dx dy dz.

(103)

Note that

a0(v,v) =
∞∑
k=0

∫
Ω

|vkx,x|2 + |vkx,y|2 + |vky,x|2 + |vky,y|2 dx dy =
∞∑
k=0

a2(vk,vk) . (104)

If λ2 ≤ 0, then (91) and (104) imply

−B0(v,v) = −2
∑
k≥0

∫
Ω

vkx v
k
y b(x, y) dxdy ≤ (−λ2)

∑
k≥0

a2(vk,vk)

= (−λ2)
∑
k≥0

a0(v
k,vk) = (−λ2)a0(v,v).

(105)
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Thus we conclude that −λ30 ≤ −λ2, and thus

λ2 ≤ λ30. (106)

Now we derive a replacement for (94). Define a function χϵ by

χϵ(z) =


1
2
ϵ ϵ|z| ≤ 1

1
2
(1 + ϵ− ϵ|z|) 1 ≤ ϵ|z| ≤ 1 + ϵ

0 ϵ|z| ≥ 1 + ϵ ,

(107)

for all ϵ > 0. Note that |χ ′
ϵ(z)| ≤ 1

2
ϵ for all z. Let v ∈ V 2

2 be arbitrary (nonzero). Define
vϵ = χϵv ∈ V 3

2 . Then

|∇vϵ(x, y, z)|2 =


1
2
ϵ|∇v(x, y)|2 ϵ|z| ≤ 1

1
2
(1 + ϵ− ϵ|z|)|∇v(x, y)|2 + 1

2
ϵ|v(x, y)|2 1 ≤ ϵ|z| ≤ 1 + ϵ

0 ϵ|z| ≥ 1 + ϵ .

Thus

a0(v
ϵ,vϵ)−

∫
Ω

|∇v(x, y)|2 dx dy =

∫
1
ϵ
≤|z|≤ 1

ϵ
+1

∫
Ω

|∇vϵ(x, y)|2 dx dy dz.

Therefore∣∣∣a0(vϵ,vϵ)−
∫
Ω

|∇v(x, y)|2 dx dy
∣∣∣ ≤ ϵ

∫
Ω

|∇v(x, y)|2 + |v(x, y)|2 dx dy ≤ Cϵ, (108)

where C depends only on v. Similarly,∣∣∣B0(v
ϵ,vϵ)−

∫
Ω

2vxvyb(x, y) dx dy
∣∣∣ ≤ ϵ

∫
Ω

|b(x, y)| |v(x, y)|2 dx dy ≤ Cϵ, (109)

where C depends only on v and b. Choose C to be the larger of the constants in (108) and
(109). Then for ϵ sufficiently small,

λ30 ≤
B0(v

ϵ,vϵ)

a0(vϵ,vϵ)
≤

∫
Ω
2vxvyb(x, y) dx dy + Cϵ∫

Ω
|∇v(x, y)|2 dx dy − Cϵ

≤
∫
Ω
2vxvyb(x, y) dx dy∫

Ω
|∇v(x, y)|2 dx dy

+ C ′ϵ,

(110)

where C ′ depends only on C and v. Since ϵ > 0 was arbitrary, we conclude that

λ30 ≤
∫
Ω
2vxvyb(x, y) dx dy∫

Ω
|∇v(x, y)|2 dx dy

. (111)

Since v ∈ V 2
2 was arbitrary, (91) implies

λ30 ≤ λ2. (112)

Combining (112) and (106), we have proved the following result.
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Theorem 11.2 Suppose that B0(·, ·) is of the form (84). Let λ2 be the most negative
eigenvalue for the two-dimensional eigenvalue problem (91), and let λ3L be the most negative
eigenvalue for the three-dimensional eigenvalue problem (100). If λ2 ≤ 0, then

λ2 = λ30.

That is, the three-dimensional problem cannot yield a lower eigenvalue.

11.4 Not all perturbations are 2D

Let us emphasize that the assumption (84) is essential in Theorems 11.1 and 11.2. By
contrast, if

∇u+∇ut =

1 0 0
0 −1 0
0 0 0

 (113)

then

Bu(v,v) =

∫
Ω

v2x − v2y dx. (114)

For any two-dimensional, divergence-free vector field v = (ψ,y,−ψ,x, 0), we would have

Bu(v,v) =

∫
Ω

ψ2
,y − ψ2

,x dx.

In this case, it suggests that we should take ψ with small variation in y, which would mean
vx would be nearly constant. On the other hand, a vector field v = (0, ψ,z,−ψ,y)

t has

Bu(v,v) =

∫
Ω

−ψ2
,z dx,

which is consistently negative. This three-dimensional perturbation can then have a significant
contribution to instability for flows of the form (113).

It is interesting to examine the three-dimensional perturbation v = (0, ψ,z,−ψ,y)
t for the

Couette problem: 0
ψ,z

−ψ,y

t 0 1 0
1 0 0
0 0 0

 0
ψ,z

−ψ,y

 =

 0
ψ,z

−ψ,y

tψ,z

0
0

 = 0. (115)

Similarly a vector field v = (ψ,z, 0,−ψ,x)
t has ψ,z

0
−ψ,x

t0 1 0
1 0 0
0 0 0

 ψ,z

0
−ψ,x

 =

 ψ,z

0
−ψ,x

t  0
ψ,z

0

 = 0. (116)

Thus neither of these three-dimensional perturbations play a role in Couette flow.
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11.5 Representation for V 3
2

Although it does not play a role in our proof of Theorems 11.1 and 11.2, it is useful to know
whether or not the representation of a divergence-free vector field with only two components
is still a two-dimensional curl of a scalar-valued function. For functions in V 3

2 , there is a
simple representation.

Lemma 11.2 Functions v ∈ V 3
2 are of the form v = (ψ,y,−ψ,x, 0) for suitable ψ.

Proof. While this is obvious for v independent of z, it requires justification when v
depends on z. Since ∇·v = 0, we know that v = ∇×w:

v = (vx, vy, 0) = ∇×w = det

 i j k
∂x ∂y ∂z
wx wy wz


= i(wz,y − wy,z) + j(wx,z − wz,x) + k(wy,x − wx,y)

= (wz,y,−wz,x, 0)− (wy,z,−wx,z, 0).

(117)

Since vz = 0, we must have wy,x = wx,y, which means that the vector field (wx, wy) is a
gradient:

ŵ = (wx, wy) = ∇x,yϕ, (118)

for each z. Thus
(wy,z,−wx,z, 0) = (ϕ,zy,−ϕ,zx, 0).

Therefore
v = (vx, vy, 0) = (ψ,y,−ψ,x, 0), where ψ = wz − ϕ,z.

However, both wz and ϕ can depend on z.
To clarify the existence of ϕ as claimed in (118), we modify the standard proof and define

ϕ(0, 0, z) = 0 and

ϕ(x, y, z) =

∫ 1

0

(x, y) · ŵ(tx, ty, z) dt. (119)

Here we are making the simplifying assumption that Ω is star-shaped with respect to
the origin 0. For a more complex domain, the integration path would need to be more
complicated. With the definition (119), we find

ϕ,x(x, y, z) =

∫ 1

0

wx(tx, ty, z) + xtwx,x(tx, ty, z) + ytwy,x(tx, ty, z) dt

=

∫ 1

0

wx(tx, ty, z) + xtwx,x(tx, ty, z) + ytwx,y(tx, ty, z) dt

=

∫ 1

0

∂

∂t

(
twx(tx, ty, z)

)
dt = wx(x, y, z).

(120)

Similarly, we can prove that ϕ,y(x, y, z) = wy(x, y, z). This completes the proof of Lemma
11.2.
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12 Bounds for Couette perturbations

A general solution w of (4) for the domain (2) and with boundary conditions g in (3) satisfies
certain bounds that limit the global growth of the perturbed solutions. Multiply (4) by w
(dot product), integrate over Ω, and integrate by parts to get

1

2

∂

∂t
∥w∥2L2(Ω) + ν

∫
Ω

|∇w|2 dx = ν

∮
∂Ω

n ·
(
(∇w)tg

)
ds

= ν

∮
∂Ω

n ·
(
(∇g)tg

)
ds+ ν

∮
∂Ω

n ·
(
(∇v)tg

)
ds.

(121)

The first boundary integral in (121) can be evaluated since

(∇g)tg =

(
0 0
1 0

)(
y − 1

2

0

)
=

(
0

y − 1
2

)
.

Thus

n · (∇g)tg =

{
1
2

top and bottom of ∂Ω

0 inlet and outlet of ∂Ω.

Therefore ∮
∂Ω

n ·
(
(∇g)tg

)
ds = 2L =

∫
Ω

1 dx.

Thus
1

2

∂

∂t
∥w∥2L2(Ω) + ν

∫
Ω

(
|∇w|2 − 1

)
dx = ν

∮
∂Ω

n ·
(
(∇v)tg

)
ds. (122)

Ignoring the small term involving v, this says that ∥w∥L2(Ω) can grow only when |∇w| < 1.
This seem contradictory, but in fact it describes something like a governor on a motor. If it
goes too fast, it slows down. Note that |∇g| = 1.

The expression (122) can be modified as follows. First of all

|∇w|2 − 1 = |∇(v + g)|2 − 1 = |∇v|2 + 2∇v · ∇g.

But ∫
Ω

∇v · ∇g dx =

∫
Ω

vx,y dx = 0

since v is zero on ∂Ω. Similarly

∂

∂t
∥w∥2L2(Ω) =

∂

∂t
∥v + g∥2L2(Ω) =

∂

∂t
∥v∥2L2(Ω) + 2

∫
Ω

vt · g dx.

Thus expression (122) becomes

1

2

∂

∂t
∥v∥2L2(Ω) +

∫
Ω

vt · g dx+ ν

∫
Ω

|∇v|2 dx = ν

∮
∂Ω

n ·
(
(∇v)tg

)
ds. (123)
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The derivation of (121) stems from the divergence theorem∫
Ω

∇·w dx =

∮
∂Ω

w · n ds,

applied to w = (∇u)tv, and using the formula

∇·
(
(∇u)tv

)
= (∆u) · v +∇u : ∇v. (124)

To prove (124), we expand using indices:

∇·
(
(∇u)tv

)
=

∑
i

(
(∇u)tv

)
i,i
=

∑
ij

(uj,ivj),i

=
∑
ij

(
uj,iivj + uj,ivj,i

)
= (∆u) · v +∇u : ∇v.

(125)

Thus ∫
Ω

(∆u) · v +∇u : ∇v dx =

∮
n · (∇u)tv ds,

and so

−
∫
Ω

(∆u) · v dx =

∫
Ω

∇u : ∇v dx−
∮

n · (∇u)tv ds,

confirming (121).

13 Conclusions

We have utilized a technique to predict instability of a given fluid flow profile. It involves
solving a symmetric eigenproblem. It rigorously identifies a mode leading to a growth in
amplitude of kinetic energy due to a perturbation to the given flow. We have applied
the technique to Couette flow and have predicted a critical Reynolds number above which
such instability can occur. For even larger Reynolds numbers, additional unstable modes
may appear, identified as eigenvectors of the eigenproblem we describe. Thus for very high
Reynolds numbers, there could be a very high-dimensional space of perturbations that lead
to energy instability.

For Couette flow, we have also investigated how the most unstable mode grows or decays,
depending on Reynolds number, by solving the time-dependent Navier-Stokes equations with
perturbed initial values. We have seen that the perturbations grow in time at a rate that
increases as the Reynolds number increases. Moreover, they reach a greater magnitude and
remain persistent for longer times for larger Reynolds numbers.

14 Future Research

We can extend the basic results developed here in many directions. Potential flow provides
an exact, steady solution of the Navier-Stokes equations, independent of the Reynolds
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number, with slip (u · n = 0) boundary conditions, with suitable friction coefficient. We
are extending the results derived here to slip boundary conditions, with application to flow
around a cylinder [12], where (113) holds instead of (84). Boundary-layer flow is very similar
to Couette flow in mathematical structure, in particular satisfying (84), as we show in a
companion paper.

Despite our identification of energy-unstable modes, as well as the rate of their initial
growth in kinetic energy, we cannot say in general how much growth ultimately occurs.
Although we have given examples for Couette flow, we do not have a general theory to
predict the ultimate fate of the unstable modes. The identified perturbations may in some
cases quickly dissipate. Nor can we say how likely such a perturbation is to occur. Thus
further study is required to understand the physical implications of the unstable modes. In
fact, what we have not done so far is multifactorial. In addition to the growth and likelihood
questions, we introduce some more precise questions as follows.

1. What is the most unstable mode for plane Poiseuille flow and pipe flow? How does
this compare with the mode found by Orszag [29]?

2. The original experiments of Couette were done using concentric, counter-rotating
cylinders, with fluid in between the cylinders. What is the most unstable mode for
such a flow domain?

3. A low-frequency instability has been observed [13, 38] in pipe flow that interacts with
high frequency perturbations in a feed-back loop. Can energy instability explain this
in any way?

4. For the most unstable mode, exactly how does the perturbation grow in time for
Couette flow? For other flows?

5. How many eigenvalues are there satisfying (35)? What do the eigenfunctions look like?
This question applies to all flow problems, but begin with Couette.

6. Experiments [40] and simulations [26] have observed instabilities in Couette flow for
R ≈ 1600, about eight times higher than for our observed most energy-unstable mode.
Can this discrepancy be explained by other eigenvalues satisfying (35)? Or is there a
threshold where the rate of growth r defined in (33) must be sufficiently high for the
instability to be observed on the relevant time scales?

7. In more complex flow geometries, the solution u depends on the Reynolds number R,
so statements about instabilities will be different. The question is about stability
of a solution uR that depends on R, and there will be a resulting eigenvalue λR
corresponding to the most unstable mode. Then the condition for instability is −λR >
2/R. If this holds for one R, then by continuity it probably holds for an interval of R
values, but this interval does not need to be infinite in extent as it is in the Couette flow
case. The simplest such system might be flow in a sudden expansion. For R sufficiently
large, there are multiple solutions, after a pitchfork bifurcation [36] at R = R0. Is there
an energy instability for a smaller value of R < R0? For R > R0? How does the most
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unstable mode depend on R? Begin initially with a two-dimensional problem and
then see how this changes with three-dimensional versions as described previously for
Couette flow. Check to see if (84) holds.

8. What about airfoils? First consider two-dimensional problems as done here for Couette
flow. How different are three-dimensional problems in which we allow three-dimensional
perturbations?

9. Do energy instabilities relate in any way to the drag crisis [16]?

10. It appears from our computations that the most unstable mode for Couette flow is
essentially periodic in the streamwise (horizontal) flow direction. What if we pose the
problem as periodic in this direction, with period p, and we compute λp. What value
of p minimizes λp?

11. It appears from our computations that the lowest eigenvalue λ defined in (15) is simple
for Couette flow. Can this be proved?
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