
Closest Substring Problems for
Regular Languages

Yo-Sub Han1, Sang-Ki Ko2, Timothy Ng3, and Kai Salomaa4

1 Department of Computer Science, Yonsei University, South Korea
emmous@yonsei.ac.kr

2 AI Research Center, Korea Electronics Technology Institute, South Korea
sangkiko@keti.re.kr

3 David R. Cheriton School of Computer Science, University of Waterloo, Canada
tim.ng@uwaterloo.ca

4 School of Computing, Queen’s University, Canada
ksalomaa@cs.queensu.ca

Abstract. It is well known that given a finite set of strings of equal length,
the Consensus String problem—the problem of deciding whether or
not there exists a consensus string whose distance is at most r from every
string in the given set—is proven to be NP-complete. A similar problem
called the Closest Substring problem asks whether there exists a string
w of length ` such that each string in a given set L has a substring whose
distance is at most r (called radius) from w. As the Closest Substring
problem is a generalized version of the Consensus String problem, it is
obvious that the problem is NP-hard for a finite set of strings. We show
that the Closest Substring problem for regular languages represented
by nondeterministic finite automata (NFAs) is PSPACE-complete. The
main difference from the previous work is that we consider an infinite
set of strings, which is recognized by an NFA as input instead of a finite
set of strings. We also prove that the Closest Substring problem for
acyclic NFAs lies in the second level of the polynomial-time hierarchy ΣP

2

and is both NP-hard and coNP-hard.

Keywords: closest substring problem, computational complexity, regular
languages, edit distance

1 Introduction

It is a very important task to find the consensus string for detecting data
commonalities from a set of strings in many practical applications such as
computational biology [4], coding theory [9], data compression [10], and so forth.

There are several definitions of a consensus string for a set of strings. Frances
and Litman defined the consensus string based on the concept of the radius [9].
The radius of a string w with respect to a set S of strings is the smallest number r
such that the distance between w and any string in S is bounded by r. They
consider the Hamming distance as a distance metric between two strings of equal
length that counts the number of positions where they differ. It is known that

2 Yo-Sub Han, Sang-Ki Ko, Timothy Ng, and Kai Salomaa

Language class Complexity (Lower/upper bound)

A set of strings NP-complete [9]

Sub-regular (acyclic (non)deterministic FAs) (coNP,NP)-hard / ΣP
2

Regular ((non)deterministic FAs) PSPACE-complete
Context-free PSPACE-hard / EXPTIME
Context-sensitive Undecidable

Table 1. The complexity results for the Closest Substring problem when l and r
are given in unary.

the Consensus String problem based on radius is NP-complete even when the
strings are given over the binary alphabet [9].

Another important related problem is the Closest Substring problem [9]:

Instance: a set of k strings s1, s2, . . . , sk and two positive integers r, l ∈ N.
Question: does there exist a string s of length l such that, for each
i ∈ {1, . . . , k}, there exists a substring s′i of length l in si such that the
Hamming distance between s and s′i is at most r?

Note that the Closest Substring problem is also NP-hard since the Con-
sensus String problem is a special case of the Closest Substring problem.
Fellows et al. [8] investigated the problem from the parameterized complexity
point of view and proved that the Closest Substring problem is W[1]-hard
with respect to k. Later, Marx [13] showed that the problem is W[1]-hard even if
both r and k are parameters. Recently, Schmid [16] investigated a variant where
the length differences of the input strings are bounded.

We study the Closest Substring problem for regular languages which is
to find a closest substring from a given regular language represented by an FA.
In this setting, we consider a set of infinite number of strings instead of a finite
set of strings in the classical consensus string problems. Moreover, we consider
an arbitrary fixed edit-distance where the costs of the edit operations are not
necessarily unit cost. Formally, the following problem is considered:

Instance: a regular language L represented by an FA and integers r, l ∈ N.
Question: does there exist a string w (called a consensus substring) of
length l such that every string w′ ∈ L has a substring whose distance is
at most r from w?

Recently, the same authors investigated a similar problem for multiple regular
languages where we try to find a consensus string which is within a given radius r
from each of regular languages [11]. We also notice that all complexity upper
bounds we prove in the paper can be applied to the cases when we have NFAs
as input and all lower bounds hold for deterministic FAs (DFAs). The main
complexity results are presented in Table 1.

Closest Substring Problems for Regular Languages 3

2 Preliminaries

We provide important definitions and notation, and formulate several variants of
our problem.

Basic definitions. The cardinality of a finite set S is denoted |S|. The symbol
Σ always stands for a finite alphabet. The set of all strings over Σ is Σ∗, the set
of nonempty strings is Σ+ and the set of strings of length at most m is Σ≤m.
The empty string is ε. The complement of a language L over alphabet Σ is Lc

(= Σ∗ − L). For w ∈ Σ∗, infix(w) is the set of infixes, or substrings, of w.
A nondeterministic finite automaton (NFA) is a tuple A = (Σ,Q, δ,Q0, F)

where Σ is the input alphabet, Q is the finite set of states, δ : Q×Σ → 2Q is the
multivalued transition function, Q0 ⊆ Q is the set of initial states and F ⊆ Q is
the set of final states. In the usual way δ is extended to a function 2Q×Σ∗ → 2Q

and the language accepted by A is L(A) = {w ∈ Σ∗ | δ(Q0, w) ∩ F 6= ∅}. The
automaton A is a deterministic finite automaton (DFA) if |Q0| = 1 and δ is a
single valued function Q×Σ → Q. It is well known that the DFAs and NFAs
recognize the class of regular languages [19].

Edit distance and some technical properties. Atomic edit operations on a
string x consist of substituting an element of Σ by another element of Σ, deleting
an element of Σ from x, or inserting an element of Σ into x. We recall that a
function d : Σ∗ ×Σ∗ → N0 is a distance if it satisfies, for all x, y, z ∈ Σ∗,

(i) d(x, y) = 0 if and only if x = y, (identity)
(ii) d(x, y) = d(y, x), and (symmetry)
(iii) d(x, z) ≤ d(x, y) + d(y, z). (triangle inequality)

The Levenshtein distance dL(x, y) between strings x and y is the smallest
number of atomic edit operations that transform x into y [7, 12, 14]. We can
define the cost function for the edit distance by assigning unit cost to every edit
operation. We also use the Hamming distance as a metric for measuring the
difference between two strings. Note that the Hamming distance between two
strings is the number of positions at which the symbols are different. In other
words, the Hamming distance only allows substitutions and must be restricted
to equal-length strings. We denote the Hamming distance between two strings x
and y by dH(x, y).

The neighbourhood of radius r of a language L [14] under the distance d
is defined as E(L, d, r) = { x ∈ Σ∗ | (∃y ∈ L) d(x, y) ≤ r }. The distance
d is additive if for any decomposition w = w1w2 ∈ Σ∗, and radius r ≥ 0,
[E(w, d, r) =

⋃
r1+r2=r E(w1, d, r1) · E(w2, d, r2).

Note that the Levenshtein distance dL and the Hamming distance dH are
both additive [5]. Unless explicitly mentioned otherwise, we consider the problem
with respect to an arbitrary, but fixed, additive edit distance de : Σ∗ ×Σ∗ → N0.
That is, the costs of the individual edit operations in (Σ × {ε})× (Σ × {ε}) are
constants, but not necessarily unit cost.

4 Yo-Sub Han, Sang-Ki Ko, Timothy Ng, and Kai Salomaa

We recall a result on the nondeterministic state complexity of neighbourhoods
of regular languages. The result is originally due to Povarov [15] who states it for
the Hamming distance neighbourhoods. However, exactly the same construction
works for any additive integral distance metric, where the costs of elementary
edit operations are non-negative integers [14]. We add to the statement of the
result a time bound needed for the construction.

Proposition 1 ([14, 15]). Let A be an NFA with n states and r ∈ N. The
neighbourhood of L(A) of radius r with respect to the additive distance d can be
recognized by an NFA B with n · (r+ 1) states. The NFA B can be constructed in
time that depends polynomially on n and r.

Problem definition. For w,w′ ∈ Σ∗ the minimum infix distance, (mininfix
distance, for short), from w to w′ is defined as dminfix(w,w′) = min{de(w, y) |
y ∈ infix(w′)}.

That is, dminfix(w,w′) is the smallest edit distance between w and a substring
of w′. In particular, dminfix(w,w′) is always at most |w|. Note that the mininfix
distance measure is not, in general, symmetric. For example, dminfix(b, ab) = 0
and dminfix(ab, b) = 1 when a, b ∈ Σ.

For w ∈ Σ∗ and L ⊆ Σ∗ we define the inner distance between w and L as

dinner(w,L) =

{
sup{dminfix(w,w′) | w′ ∈ L} if L 6= ∅,
∞ otherwise.

The inner distance between w and L is the largest minimum infix distance between
w and a string of L. From the definition it follows that dinner(w,L) ≤ |w|.

A consensus substring of a language L has a bounded mininfix distance to
any other string of the language L.

Definition 2. A string w is a radius r consensus substring of language L if
dinner(w,L) ≤ r.

In other words, w is a radius r consensus substring of L if and only if every
w′ ∈ L can be decomposed to w′ = xyz where de(w, y) ≤ r.

We consider the algorithmic problem of determining the existence of a con-
sensus substring of a given length for a regular language. Hence, the Closest
Substring problem for NFAs (respectively, DFAs) asks, for a given NFA (re-
spectively, DFA) A, whether or not L(A) has a length ` consensus substring of
radius r. The complexity of the problem can be different depending on whether
the length and the radius are part of the input instance, or they are considered
as constants. While the standard assumption is that integers given as input are
encoded in binary, we also study several problems where some integers are given
in unary.

3 The closest substring problem for NFAs is
PSPACE-complete

Before tackling the main problem, we observe several relationships among the
following input values: the language L ⊆ Σ∗, the length ` ∈ N of a consensus

Closest Substring Problems for Regular Languages 5

string, and the radius r ∈ N. We denote by min(L) the length of the shortest
string in L. First we observe the following relationship.

Lemma 3. Consider an edit distance de and let cmindel be the smallest deletion
cost of a symbol of the alphabet Σ. Let L ⊆ Σ∗ be a non-empty language and
r ∈ N. If L has a length ` consensus substring w ∈ Σ∗ of radius r, then
` ≤ min(L) + r

cmindel
holds.

Proof. Suppose that x is a shortest string in L and w has length greater than
min(L) + r

cmindel
. Then, since the cost of deletions (and insertions) is at least

cmindel, no substring of x can be transformed into w by a sequence of edit
operations with cost r. ut

Lemma 3 says that the length ` of a consensus substring should be bounded
by a value that depends on the shortest string in L and the radius r. We can
also observe the following fact.

Lemma 4. Consider an edit distance de over alphabet Σ and let cmaxdel be the
largest cost of an individual deletion operation. Let L ⊆ Σ∗ be a non-empty
language and r ∈ N. Then, every string w ∈ Σ∗ of length ` ≤ r

cmaxdel
is a radius

r consensus substring of L.

Proof. Let ` ∈ N. If ` ≤ r
cmaxdel

, then any string w of length ` can be aligned
with the empty string at cost at most r simply by deleting all symbols, which
means that the inner distance from w to L is at most r. ut

Based on Lemma 3 and Lemma 4, we consider different possible relationships
among min(L), ` and r:

– If ` > min(L) + r
cmindel

, then we know that there cannot be a string of length
` with inner distance at most r to L.

– If ` ≤ r
cmaxdel

, then any string of length ` has inner distance at most r to any
language.

Therefore, we can restrict consideration to the case where the required length `
for consensus string satisfies the following inequalities:

r

cmaxdel
< ` ≤ min(L) +

r

cmindel
. (1)

3.1 Upper bound

Now we are ready to solve the Closest Substring problem for regular lan-
guages. The following lemma first presents a PSPACE algorithm for the Closest
Substring problem where the length ` of a consensus substring is given in unary.

Lemma 5. The Closest Substring problem for NFAs can be solved in PSPACE
when the length ` of consensus substring is given in unary.

6 Yo-Sub Han, Sang-Ki Ko, Timothy Ng, and Kai Salomaa

Proof. Recall that the input for the problem is the length ` ∈ N as a unary string
0`, the radius r ∈ N in binary, and an NFA A.

First, we nondeterministically guess a string w ∈ Σ` and construct an NFA B
for Σ∗E(w, de, r)Σ

∗, where de is the edit distance used. Note that B has O(lr)
states by Proposition 1 and hence the size of B is polynomial in ` and r. Since `
is given in unary, the only concern is that r may not be polynomial in the size of
input. If cmaxdel is the maximum cost of individual deletion operations of de, we
know by (1) that it is sufficient to consider only cases where r < cmaxdel · ` which
are polynomial in the size of the input.

Since L(A) ⊆ L(B) can be decided in PSPACE, we can decide whether or not
the guessed string w is a radius r consensus substring of L(A) in PSPACE. ut

Lemma 5 states that we can solve the Closest Substring problem in
PSPACE if the length ` of a closest substring is given in unary. On the other
hand, if the radius is given in unary we also get a polynomial space algorithm by
(1) since ` should be bounded from the above by min(L) + r

cmindel
, where min(L)

is bounded from the above by the number of states in NFA that accepts L.

Corollary 6. The Closest Substring problem for NFAs can be solved in
PSPACE when the radius r is given in unary.

For the case when both the length and the radius are given in binary, the
following result gives a PSPACE upper bound for edit distances where the cost of
all deletion operations is the same. Note that, due to symmetry, this implies that
also the cost of all insertion operations must be the same.

Theorem 7. Let de be an edit distance where the cost of deleting a single
character σ does not depend on σ. Then the Closest Substring problem
for NFAs under the edit distance de can be solved in PSPACE.

Proof. The input for the problem consists of the length `, radius r and an input
NFA A. Let the input alphabet for A be Σ = {a1, a2, . . . , ak} and min(L(A))
be the length of the shortest string in L(A). Denote by cdel the cost of deleting
a single character in de, by our assumption the cost does not depend on the
character.

First consider the case where r ≥ cdel · |Σ| · min(L(A)). Without loss of
generality we can assume that ` > r

cdel
≥ |Σ| · min(L(A)) since otherwise, by

Lemma 4, any string of length ` has inner distance r to L(A). (Now the value
cdel is the maximum cost of any single deletion operation.) Choose

wcons = (a1a2 · · · ak)min(L(A)) · a`−|Σ|·min(L(A))
1 .

We claim that wcons has inner distance r to L(A). To see this, consider an
arbitrary string z ∈ L(A) and take a substring z1 of z having length min(L(A)).
(z1 can be any substring of z of length min(L(A)).)

We can align wcons to z1 by deleting all except min(L(A)) symbols: the
symbols not deleted are chosen from the prefix (a1a2 · · · ak)min(L(A)) so that they

Closest Substring Problems for Regular Languages 7

match z1 (from each block a1a2 · · · ak choose the symbol that appears next in
z1). By Lemma 3, we can assume that ` ≤ min(L(A)) + r

cdel
, because otherwise

we can simply answer that the input instance does not have a solution. Thus,
the number of deleted symbols is at most b r

cdel
c and the cost is at most r.

The remaining possibility is that r < cdel · |Σ| · min(L(A)). This together
with ` ≤ min(L(A)) + r

cdel
(from Lemma 3) implies that `, r ∈ O(n), where n is

the number of states of the NFA A. This means that, exactly as in the proof of
Lemma 5, we can decide nondeterministically in polynomial space whether or
not there exists a string of length ` with inner distance r to L(A). ut

We conjecture that the Closest Substring problem is in PSPACE for any
edit distance de. However, the proof method used above does not work without
the assumption that all individual deletion operations have the same cost.

3.2 Lower bound

Now we mention that the Closest Substring problem for regular languages
is NP-hard even when two numerical inputs ` and r are given in unary. Recall
that the Consensus String problem [9] is, given a finite set S of strings of
equal length `, to decide whether or not there exists a radius r ≤ ` consensus
string under the Hamming distance metric. It is well known that the Consensus
String problem is NP-hard and the length ` of the consensus string and the
radius r are linear in the size of input. In order to prove the Closest Substring
problem is NP-hard, we reduce the Consensus String problem to the Closest
Substring problem, where the length ` of consensus substring and radius r are
given in unary, by relying on the following lemma.

Proposition 8 ([11]). Let h : Σ∗ → (Σ ∪ {$})∗, $ /∈ Σ be a morphism defined
by h(σ) = $lσ for all σ ∈ Σ. Given two strings w and w′ of length l over Σ,
dH(w,w′) = de(h(w), h(w′)).

The following result on the NP-hardness of the Closest Substring problem
for regular languages is quite immediate from the well-known fact that the
Consensus String problem is NP-complete [9].

Lemma 9. The Closest Substring problem for DFAs is NP-hard when the
length ` of closest substring and radius r are given in unary.

Proof. We reduce the Consensus String problem [9] to the Closest Sub-
string problem where l and r are given in unary notation as part of input.

Thanks to the morphism h in Proposition 8, it is easily seen that the Con-
sensus String problem with the same input under the edit distance metric
is also NP-hard. Since we can construct an acyclic DFA accepting the finite
set S of strings even using linear space, we can reduce the Consensus String
problem to the Closest Substring problem with l and r in unary notation in
polynomial time. ut

8 Yo-Sub Han, Sang-Ki Ko, Timothy Ng, and Kai Salomaa

Note that the NP-hardness applies to the case even when the input language
is given as an acyclic DFA since the Consensus String problem considers finite
sets of equal-length strings as input which can be recognized by acyclic DFAs of
polynomial size.

For a non-trivial lower bound, we show that the Closest Substring problem
for DFAs is PSPACE-hard by a reduction from the validation of regular expressions
of a certain form. First recall the hardness result due to Björklund et al. [2].

Proposition 10 ([2]). For a given DFA A over the alphabet Σ = {a, b, c} and
a non-negative integer n ∈ N in unary, it is PSPACE-complete to decide whether
or not L(A) ⊆ Σ∗aΣnbΣ∗.

The statement of the above result in [2] does not explicitly say that the integer
n is given in unary notation, however, exactly the same proof works also with this
assumption. We use the following two lemmas to prove the PSPACE-hardness.

Lemma 11. If w has inner distance at most r to L2 and L1 ⊆ L2, then w has
inner distance at most r to L1. If w has inner distance at most r to L3 and to
L4, then w has inner distance r to L3 ∪ L4.

In the following always Σ = {a, b, c}, Σ′ = Σ ∪ {#, \} and for n ∈ N consider
the edit distance d0 on Σ′ defined by conditions

d0(#, a) = d0(#, b) = d0(#, c) = d0(#, \) = 1, d0(σ1, σ2) = 2 (2)

when σ1, σ2 ∈ {a, b, c, \}, σ1 6= σ2, and d0(σ, ε) = 2 for σ ∈ Σ′.

Lemma 12. Let Σ′ = {a, b, c,#, \} and

Ln = { awb | w ∈ {a, b}n or w = cn or w = \n }, n ∈ N. (3)

The string a#nb has inner distance n to Ln. There is no other string of length
n+ 2 with inner distance n to Ln.

Theorem 13. There exists an edit distance de such that the Closest Sub-
string problem for DFAs under the edit distance de is PSPACE-hard even when
the length ` of consensus substring and radius r are given in unary.

Proof. Let Σ = {a, b, c}, Σ′ = Σ ∪ {#, \} and consider the edit distance d0

defined in (2). Let Ln be the language defined in (3), n ∈ N. Let A be a given
DFA over Σ and define L′n = L(A) ∪ Ln. The language Ln has a DFA of size
3n+ 1. Thus, if A has m states, a DFA for L′n needs at most m · (3n+ 1) states.

By Proposition 10 it is sufficient to show that there is a string of length n+ 2
over Σ′ with inner distance n to L′n (with respect to the edit distance d0) if and
only if L(A) ⊆ Σ∗aΣnbΣ∗.

(i) “only if” Let w ∈ Σ′∗ be a string of length n+ 2 with inner distance n to
L′n. By Lemma 11, w has inner distance n also to Ln and hence, by Lemma 12,
w = a#nb. For the sake of contradiction assume that there exists a string

u ∈ L(A)−Σ∗aΣnbΣ∗. (4)

Closest Substring Problems for Regular Languages 9

Since w has inner distance n to L′n(⊇ L(A)), it follows that u has a substring u′

such that d0(w, u′) ≤ n. Since strings of L(A) do not contain the symbol #, the
cost of aligning the n occurrences of # in w with u′ is at least n, and the cost is
n only when all #’s are substituted to symbols of Σ. Thus, the alignment of w
with u′ cannot involve any further edit operations and, in particular, |u′| = n+ 2,
u′ must begin with an a and end with a symbol b. This contradicts (4).

(ii) “if” By Lemma 12, the inner distance from a#nb to Ln is n. Since every
string of L(A) has a substring in aΣnb, and the cost of substituting # with a
symbol of Σ is one, the inner distance from a#nb to L(A) is n. The claim follows
from Lemma 11.

This completes the proof. ut

We note that even if we are given a particular string w and asked whether
the string w is a radius r consensus substring of a given regular language, the
problem is still PSPACE-hard since the proof of Theorem 13 requires that only
the string a#nb must be the consensus substring of L(A). We also note that
the distance d0 used in the proof of Theorem 13 satisfies the property that all
symbols have the same deletion cost. This together with Theorem 7 gives:

Corollary 14. There exists an edit distance de such that the Closest Sub-
string problem under the edit distance de is PSPACE-complete both for NFAs
and for DFAs.

Lastly, we establish the following result as a consequence of Lemma 5 and
Theorem 13:

Corollary 15. The Closest Substring problem is PSPACE-complete both for
NFAs and for DFAs when the length ` of consensus substring and radius r are
given in unary.

4 The closest substring problem for other formal
language classes

We assume that the readers are familiar with the notion of alternating Turing
machine (ATM) [6, 17] and here only recall the notion informally. The states of an
ATM can be existential or universal. The computation from a configuration with
an existential state chooses nondeterministically one possible transition and the
computation originating from a configuration with a universal state is continued
along all possible paths. The computation accepts if all paths in the resulting
tree lead to acceptance. We deal only with polynomial time computations and
assume that all computations terminate. The general definition is a little more
involved [6].

An ATM M is k-alternation bounded (k ∈ N) if any computation of M—
computation is a sequence of configurations—alternates between existential
and universal configurations at most k − 1 times. For k ≥ 1, a Σk-machine
(respectively, a Πk-machine) is a k-alternation bounded ATM where the initial

10 Yo-Sub Han, Sang-Ki Ko, Timothy Ng, and Kai Salomaa

state is existential (respectively, universal). By a Σ0- or Π0-machine we mean a
deterministic Turing machine.

Definition 16 ([6, 17]). For k ∈ N, the class of languages accepted by polyno-
mial time Σk- (respectively, Πk-) machines is denoted ΣP

k (respectively, ΠP
k).

The classes ΣP
k and ΠP

k are the same as the classes of the polynomial time
hierarchy [1, 6]. In particular, ΣP

0 = ΠP
0 = P, ΣP

1 = NP and ΠP
1 = coNP. The

polynomial time hierarchy is contained in PSPACE.
In the following, we show that the Closest Substring problem, where the

length ` of consensus substring is given in unary, lies in the second level of the
polynomial time hierarchy if we consider acyclic NFAs as input.

Theorem 17. The Closest Substring problem for acyclic NFAs is in ΣP
2

when the length ` of consensus substring is given in unary.

Proof. An input instance consists of an acyclic NFA A with n states and the
length ` ∈ N of consensus substring. If L(A) 6= ∅, A must accept a string w of
length at most n− 1. Thus, if ` ≥ n+ b r

cmindel
c, no substring of w can be within

edit distance r of a string of length ` and the algorithm can simply answer “no”.
Thus, without loss of generality we can assume that ` < n+ b r

cmindel
c. A Σ2-

machine M first existentially writes down a string w ∈ Σ`. Then using universal
branching M follows all computations of A of length at most n−1, where n−1 is
the upper bound on the length of the longest string in L(A), and checks whether
or not the underlying string v has a substring in E(w, de, r). The universal branch
accepts if a substring in E(w, de, r) was found or if the computation of A is not
accepting, and otherwise the branch rejects. The check can be done by applying a
standard edit distance algorithm [18] to all substrings of the underlying string v
that have length between ` − b r

cmindel
c and ` + b r

cmindel
c. At a given time, the

algorithm needs to remember only the last ` + b r
cmindel

c symbols of v and the
computation time in one universal branch is polynomial since ` and r are both
linear in n.

The algorithm checks, for an existentially chosen w ∈ Σ`, that all strings
of L(A) of length at most n have a substring with edit distance at most r
from w using the universal branching. Therefore, we can see that the Closest
Substring problem for acyclic NFAs is in ΣP

2 . ut

We also show that the Closest Substring problem for acyclic DFAs is
coNP-hard when both the length ` of consensus substring and radius r are given
in unary by reduction from the complement of the Square Tiling problem
which is known to be NP-complete [3]. We first prove a similar argument to
Proposition 10 for acyclic DFAs instead of general DFAs and further prove
that the Closest Substring problem for acyclic DFAs is coNP-hard when the
length ` of consensus substring and radius r are given in unary.

Lemma 18. For a given acyclic DFA A over the alphabet Σ = {a, b, c} and
a non-negative integer n ∈ N in unary, it is coNP-complete to decide whether
L(A) ⊆ Σ∗aΣnbΣ∗.

Closest Substring Problems for Regular Languages 11

Now we are ready to state the following hardness result.

Theorem 19. The Closest Substring problem for acyclic DFAs is coNP-hard
even when the length ` and radius r are given in unary.

Proof. By the proof of Theorem 13, we see that the problem of determining
L(A) ⊆ Σ∗aΣnbΣ∗ for a given FA reduces to the Closest Substring problem.
Hence, we can reduce the same problem for a given acyclic DFA, which is proven
to be coNP-complete in Lemma 18 to the Closest Substring problem for
acyclic DFAs when the numeric input values are given in unary. ut

Interestingly, the Closest Substring problem is still decidable even when we
are given a context-free language as input since we can compute the intersection
between a regular language and a context-free language and decide the emptiness
of the resulting context-free language. However, it is not clear whether we can
solve the problem in PSPACE as well for context-free languages since we cannot
restrict the numeric input ` and r to be linearly dependent on the size of the
representation of context-free languages.

Theorem 20. The Closest Substring problem for context-free languages can
be solved in EXPTIME when the length ` of consensus substring is given in unary.

Proof. Assume that we are given a pushdown automaton (PDA) P for a context-
free language L, namely L(P) = L. For every string w of length `, we check
whether w is a radius r consensus substring of L(P). We construct an NFA B for
L1 = Σ∗E(w, de, r)Σ

∗ in polynomial time and obtain a DFA for the complement
of L1 in exponential time by determinizing the NFA B. Then, we can compute
the intersection between L(P) and Lc1 in polynomial time in the size of P and
the DFA for Lc1. Since L(P) ∩ Lc1 = ∅ can be decided in exponential time, it is
easy to see that the problem can be decided in EXPTIME. ut

As a final remark, we mention that the Closest Substring problem is
undecidable for context-sensitive languages as the emptiness problem for context-
sensitive languages is undecidable.

Corollary 21. The Closest Substring problem for context-sensitive lan-
guages is undecidable.

Acknowledgements

This work was supported by Institute for Information & communications Tech-
nology Promotion (IITP) grant funded by the Korea government (MSIP) (2018-
0-00255, Autonomous digital companion framework and application).

12 Yo-Sub Han, Sang-Ki Ko, Timothy Ng, and Kai Salomaa

References

1. J. L. Balcázar, J. Diaz, and J. Gabarró. Structural Complexity I. Springer, 2nd
edition, 1995.

2. H. Björklund, W. Martens, and T. Schwentick. Validity of tree pattern queries with
respect to schema information. In Proceedings of the 38th International Symposium
on Mathematical Foundations of Computer Science, pages 171–182, 2013.

3. P. V. E. Boas. The convenience of tilings. In Complexity, Logic, and Recursion
Theory, pages 331–363. Marcel Dekker Inc, 1997.

4. L. Bulteau, F. Hüffner, C. Komusiewicz, and R. Niedermeier. Multivariate Algo-
rithmics for NP-Hard String Problems. Bulletin of the EATCS, 114, 2014.

5. C. S. Calude, K. Salomaa, and S. Yu. Additive distances and quasi-distances
between words. Journal of Universal Computer Science, 8(2):141–152, 2002.

6. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, 1981.

7. M. M. Deza and E. Deza. Encyclopedia of Distances. Springer Berlin Heidelberg,
2009.

8. M. R. Fellows, J. Gramm, and R. Niedermeier. On the parameterized intractability
of motif search problems. Combinatorica, 26(2):141–167, 2006.

9. M. Frances and A. Litman. On covering problems of codes. Theory of Computing
Systems, 30(2):113–119, 1997.

10. R. L. Graham and N. J. A. Sloane. On the covering radius of codes. IEEE
Transactions on Information Theory, 31(3):385–401, 2006.

11. Y.-S. Han, S.-K. Ko, T. Ng, and K. Salomaa. Consensus string problem for multiple
regular languages. In Proceedings of the 11th International Conference on Language
and Automata Theory and Applications, pages 196–207, 2017.

12. L. Kari and S. Konstantinidis. Descriptional complexity of error/edit systems.
Journal of Automata, Languages and Combinatorics, 9:293–309, 2004.

13. D. Marx. Closest substring problems with small distances. SIAM Journal on
Computing, 38(4):1382–1410, 2008.

14. T. Ng, D. Rappaport, and K. Salomaa. State complexity of neighbourhoods and
approximate pattern matching. In Proceedings of the 19th International Conference
on Developments in Language Theory, pages 389–400, 2015.

15. G. Povarov. Descriptive complexity of the hamming neighborhood of a regular
language. In Proceedings of the 1st International Conference on Language and
Automata Theory and Applications, pages 509–520, 2007.

16. M. L. Schmid. Finding consensus strings with small length difference between input
and solution strings. ACM Transactions on Computation Theory, 9(3):13:1–13:18,
2017.

17. M. Sipser. Introduction to the Theory of Computation. International Thomson
Publishing, 1st edition, 1996.

18. E. Ukkonen. Algorithms for approximate string matching. Information and Control,
64(1):100–118, 1985.

19. S. Yu. Regular Languages, In Handbook of Formal Languages: Vol. 1, (G. Rozenberg,
A. Salomaa, Eds.), pages 41–110, 1997.

