
Prefix Distance Between Regular Languages

Timothy Ng

School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada
ng@cs.queensu.ca

Abstract. The prefix distance between two words x and y is defined
as the number of symbol occurrences in the words that do not belong
to the longest common prefix of x and y. We show how to model the
prefix distance using weighted transducers. We use the weighted trans-
ducers to compute the prefix distance between two regular languages by
a transducer-based approach originally used by Mohri for an algorithm
to compute the edit distance. We also give an algorithm to compute the
inner prefix distance of a regular language.

1 Introduction

Distance measures are used in a variety of applications to measure the similarity
of data. For instance, the Hamming distance counts the number of positions in
which two words of equal length differ. Another common measure is the Lev-
enshtein distance, also called the edit distance, which counts the number of in-
sertion, deletion, and substitution operations that are needed to transform one
word to another. However, counting the number of edit operations to transform
one word into another is not the only relevant way to measure the similarity
between words. The prefix distance is defined in terms of the longest common
prefix of two words. For the words x and y, their prefix distance is the number
of symbols that do not belong to their longest common prefix. We can define the
suffix and subword distances in a similar way in terms of the longest common
suffix or subword of two words.

These distance measures can be extended in various ways to distances be-
tween sets of words, or languages. A common extension of a distance function
for languages L1 and L2 takes the minimum distance between a word u in L1

and a word v in L2. An alternative extension is called the relative distance [4].
The relative distance from a language L1 to a language L2 is the supremum over
all words w in L1 of the smallest distance between w and L2. Another notion of
distance on languages is the inner distance of a language [11]. For a language L,
the inner distance is the smallest distance between two words u and v in L.

Much of the work on computing distances on languages has been focused
on the edit distance and its variants. Pighizzini [15] studied the hardness of
computing the edit distance between a word and a language. Mohri [14] showed
how to compute the edit distance and its variants between two regular lan-
guages in polynomial time. Benedikt et al. [1, 2] showed how to compute the

relative edit distance between regular languages. Han et al. [8] gave a polyno-
mial time algorithm for computing the edit distance between a regular language
and context-free language. Konstantinidis [11] gave an algorithm for computing
the inner edit distance of a regular language in quadratic time. Kari et al. [10]
gave a quadratic time algorithm for computing the inner Hamming distance of
a regular language. Konstantinidis and Silva [12] showed how to compute the
inner distance for variants of the edit distance.

Naturally, the same extensions to languages can be applied to the prefix,
suffix, and subword distances and some of these extensions have already been
studied. Bruschi and Pighizzini [3] studied the hardness of computing the prefix
distance between a word to a language in the context of intrusion detection.
Choffrut and Pighizzini [4] showed that the relative prefix distance between two
regular languages is computable. Kutrib et al. [13] considered a parameterized
prefix distance between languages to measure fault tolerance of finite-state de-
vices.

In this paper, we show how to compute the prefix distance between two
regular languages. We show how to model prefix distance using edit systems and
construct transducers which realize these models. We use these transducers to
compute distances using a similar approach to Mohri’s edit distance algorithm for
weighted automata from [14]. We also show how to use the weighted transducer
approach to compute the inner prefix distance of a given regular language. We
also give polynomial time algorithms based on the transducer-based approach
to compute the suffix distance and the subword distance between two regular
languages.

2 Preliminaries

Here we briefly recall some definitions and notation used in the paper. For all
unexplained notions on finite automata and regular languages the reader may
consult the textbook by Shallit [16] or the survey by Yu [17]. More on weighted
automata and transducers can be found in the textbook by Droste et al. [7]. A
survey of distances is given by Deza and Deza [6].

In the following, Σ is always a finite alphabet, the set of all words over Σ
is denoted Σ∗, and ε denotes the empty word. The reversal of a word w ∈ Σ∗
is denoted by wR. The length of a word w is denoted by |w|. The cardinality
of a finite set S is denoted |S| and the power set of S is 2S . A word w ∈ Σ∗
is a subword or factor of x if and only if there exist words u, v ∈ Σ∗ such that
x = uwv. If u = ε, then w is a prefix of x. If v = ε, then w is a suffix of x.

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ,Q0, F)
where Q is a finite set of states, Σ is an alphabet, δ is a multi-valued transition
function δ : Q×Σ → 2Q, Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set of
final states. We extend the transition function δ to Q × Σ∗ → 2Q in the usual
way. A word w ∈ Σ∗ is accepted by A if for some q0 ∈ Q0, δ(q0, w) ∩ F 6= ∅ and
the language recognized by A consists of all words accepted by A. An ε-NFA is
the extension of an NFA where transitions can be labeled by the empty word

ε. If it is known that every ε-NFA has an equivalent NFA without ε-transitions
with the same number of states. An NFA is a deterministic finite automaton
(DFA) if |Q0| = 1 and for all q ∈ Q and a ∈ Σ, δ(q, a) either consists of one
state or is undefined. The size of A, denoted |A|, is defined as the sum of the
number of states and transitions of A, |Q|+ |δ|.

A weighted finite-state transducer [7] with weights in the (min,+)-semiring K
is a 6-tuple T = (Q,Σ,∆, I, F,E) where Q is a finite set of states, Σ is the input
alphabet, ∆ is the output alphabet, I ⊆ Q is the set of initial states, F ⊆ Q is
the set of final states, E ⊆ Q× (Σ ∪ {ε})× (∆ ∪ {ε})× K×Q is a finite set of
transitions with weights in K. The size of T , denoted |T |, is defined as the sum
of the number of states and transitions of T , |Q|+ |E|.

A path or computation of T is a word π over the alphabet of transitions E

π = (p1, u1, v1, w1, q1) · · · (pn, un, vn, wn, qn)

with qi = pi+1 for 1 ≤ i < n. A path π from p to q is accepted if p ∈ I and q ∈ F .
Let ω : E∗ → K be a weight function for paths defined by ω(π) =

∑n
i=1 wi, the

sum of the weights of each transition in π. The label of a path π, denoted `(π) is
the pair of words (x, y) with x = u1 · · ·un and y = v1 · · · vn. Let w : Σ∗×Σ∗ → K
be a weight function for labels (x, y) defined as the weight of the minimum weight
accepted path labeled by (x, y),

w(x, y) = min
π∈E∗

{ω(π) | `(π) = (x, y)}.

A function d : Σ∗×Σ∗ → N∪{0} is a distance if it satisfies for all x, y ∈ Σ∗

1. d(x, y) = 0 if and only if x = y,
2. d(x, y) = d(y, x),
3. d(x, z) ≤ d(x, y) + d(y, z) for z ∈ Σ∗.

A distance between words can be extended to a distance between a word w ∈ Σ∗
and a language L ⊆ Σ∗ by

d(w,L) = min{d(w,w′) | w′ ∈ L}.

We generalize this to a distance between two languages L1 and L2,

d(L1, L2) = min{d(w1, w2) | w1 ∈ L1, w2 ∈ L2}.

The inner distance of a language L (also called the self distance) is the minimal
distance between any two distinct words that both belong to L.

d(L) = min{d(w1, w2) | w1, w2 ∈ L,w1 6= w2}.

The prefix distance of x and y counts the number of symbols which do not
belong to the longest common prefix of x and y. It is defined by

dp(x, y) = |x|+ |y| − 2 · max
z∈Σ∗

{|z| | x, y ∈ zΣ∗}.

Similarly, the suffix distance of x and y counts the number of symbols which do
not belong to the longest common suffix of x and y and is defined

ds(x, y) = |x|+ |y| − 2 · max
z∈Σ∗

{|z| | x, y ∈ Σ∗z}.

The subword distance of x and y counts the number of symbols which do not
belong to the longest common subword of x and y and is defined

df (x, y) = |x|+ |y| − 2 · max
z∈Σ∗

{|z| | x, y ∈ Σ∗zΣ∗}.

3 Edit Strings and Edit Systems

Edit systems, also called error systems, were first studied extensively by Kari
and Konstantindis in [9] as a formalization for errors in terms of formal lan-
guages. Informally, an edit system is a formal language over the alphabet of edit
operations and are used to model different types of errors. We present some basic
definitions for edit systems and model the prefix, suffix, and subword distances
using edit systems.

For an alphabet Σ, let EΣ be the alphabet of edit operations over Σ,

EΣ = {(a/b) | a, b ∈ Σ ∪ {ε}, ab 6= ε}.

We use E whenever Σ is obvious from the context. An edit string or alignment of
two words is an element of E∗. For an edit string e = (a1/b1)(a2/b2) · · · (an/bn),
we call a1a2 · · · an the input part of e and b1b2 · · · bn the output part. We de-
fine the edit morphism to be the morphism h : E∗ → Σ∗ × Σ∗ by h(e) =
(a1 · · · an, b1 · · · bn).

We can define subsets of the alphabet of edit operations which correspond
to the classical edit operations of substitution, insertion, and deletion and the
identity operation by

– the set of substitution operations S = {(a/b) | a 6= b, a, b ∈ Σ},
– the set of insertion operations I = {(ε/a) | a ∈ Σ},
– the set of deletion operations D = {(a/ε) | a ∈ Σ},
– the set of identity operations E0 = {(a/a) | a ∈ Σ}.

We define a cost function c : E → N which assigns a cost to each element of the
edit alphabet. Note that the standard definition of edit distance assigns the cost
of every non-identity symbol (a/b) ∈ E \ E0 to be 1. However, the prefix, suffix,
and subword distances count each additional symbol in both words, so our cost
function c is defined

– c((a/a)) = 0, for all (a/a) ∈ E0,
– c((ε/a)) = 1, for all (ε, a) ∈ I,
– c((a/ε)) = 1, for all (a/ε) ∈ D,
– c((a, b)) = 2, for all (a/b) ∈ S.

The cost of an edit string e = e1e2 · · · en is then the sum of the cost of each
symbol

c(e) =

n∑
i=1

c(ei).

A language defined over E is called an edit system. A regular edit system can
be modeled by a finite automaton defined over E . Such an edit system may also
be realized as a finite-state transducer, where for each symbol (a/b) ∈ E , the
transitions on (a/b) are considered transition labels with a as the input part and
b as the output part. Thus, a computation path of a finite state transducer over
E corresponds with an edit string.

We now define the language of edit strings for the prefix distance Lp by

Lp = E∗0 (E \ E0)∗.

Informally, this is the set of edit strings with a prefix of identity operations
followed by non-identity edit operations. We define the function d′p : Σ∗×Σ∗ →
N on x, y ∈ Σ∗ by

d′p(x, y) = min
e∈Lp

{c(e) | h(e) = (x, y)}.

In the following proposition, we show that d′p(x, y) is exactly the prefix distance
of x and y.

Proposition 1. Let x, y ∈ Σ∗ be two words. Then d′p(x, y) = dp(x, y).

Proof. Consider two words x and y with x = px′ and y = py′, where p is the
longest common prefix of x and y. By definition, we have dp(x, y) = |x|+ |y| −
2|p| = |x′| + |y′|. Now consider an edit string e ∈ Lp with h(e) = (x, y). Since
e ∈ Lp, we split e into two parts e = e0e1, where e0 ∈ E∗0 and e1 ∈ (E \ E0)∗.
To minimize the cost c(e), we require e0 to be as long as possible and minimize
the length of e1, since c(e0) = 0. Thus, e0 corresponds to a string of identity
operations for the longest common prefix p of x and y. This means that e1 is the
edit string such that h(e1) = (x′, y′). Thus, c(e) = c(e1) and since e′ ∈ (E \ E0)∗,
we have c(e′) = |x′|+ |y′|. ut

We can similarly define the same notions for suffix and infix distances. Let
Ls = (E \ E0)∗E∗0 be the language of edit strings for suffix distance and let
Lf = (E \ E0)∗E∗0 (E \ E0)∗ be the language of edit strings for infix distance. We
define the functions

d′s(x, y) = min
e∈Ls

{c(e) | h(e) = (x, y)},

d′f (x, y) = min
e∈Lf

{c(e) | h(e) = (x, y)}.

The following result is proved analogously as Proposition 1

Proposition 2. Let x, y ∈ Σ∗ be two words. Then

1. ds(x, y) = d′s(x, y), and
2. df (x, y) = d′f (x, y).

4 Computing the Prefix Distance Between Regular
Languages

We give a polynomial time algorithm to compute the prefix distance between
two languages given by nondeterministic finite automata. Mohri [14] gave an al-
gorithm for computing the edit distance between two regular languages by using
weighted transducers. We use this approach by defining a weighted transducer
with paths which correspond to edit strings in Lp.

We define the transducer Tp = (Q,Σ,∆, I, F,E), by setting Q = {0, 1},
∆ = Σ, I = {0}, F = {0, 1}, and the transition set E is given by

– (0, a, a, 0, 0) for all a ∈ Σ,
– (0, a, ε, 1, 1) for all a ∈ Σ,
– (0, ε, a, 1, 1) for all a ∈ Σ,
– (0, a, b, 2, 1), with a 6= b for all a, b ∈ Σ,
– (1, a, ε, 1, 1) for all a ∈ Σ,
– (1, ε, a, 1, 1) for all a ∈ Σ,
– (1, a, b, 2, 1), with a 6= b for all a, b ∈ Σ.

The transducer is shown with Σ = {a, b} in Figure 1. We claim that the trans-
ducer Tp takes as input some word w and outputs a word x such that any
accepting computation path of Tp on w corresponds to an edit string in Lp
which transforms w into x and that the weight of this path is the cost of the
corresponding edit string. We prove this in the following lemma.

0start 1

a/a : 0
b/b : 0

a/ε : 1
b/ε : 1
ε/a : 1
ε/b : 1
a/b : 2
b/a : 2

a/ε : 1
b/ε : 1
ε/a : 1
ε/b : 1
a/b : 2
b/a : 2

Fig. 1. The transducer Tp over the alphabet Σ = {a, b}.

Lemma 1. The set of accepting paths of the transducer Tp over Σ corresponds
to exactly the set of edit strings over Σ belonging to Lp. If π is an accepting path
of Tp and eπ is the corresponding edit string, then the weight of π is c(eπ).

Proof. Let ϕ be a morphism ϕ : E∗ → E∗ that maps a computation path of Tp
to an edit string over E defined by ϕ((p, a, b, i, q)) = (a/b). Consider an accepting

path π = π1 · · ·πn of Tp. Since both states 0 and 1 are final states, an accepting
path may end in either state. If π ends in state 0, then π never leaves state 0
and π is of the form

π = (0, a1, a1, 0, 0) · · · (0, an, an, 0, 0).

where ai ∈ Σ for all 1 ≤ i ≤ n. Then ϕ(π) = (a1/a1) · · · (an/an) ∈ E∗0 . Note
that every transition going from state 0 to itself has weight 0 and π therefore
has weight 0. The cost of ϕ(π) is also 0, as it consists only of identity operations,
which have a cost of 0.

Now consider when π ends in state 1. Then π can be decomposed into π =
π0π1 where for some k < n, we have

π0 = (0, a1, a1, 0, 0) · · · (0, ak−1, ak−1, 0, 0)

π1 = (0, ak, a
′
k, ik, 1)(1, ak+1, a

′
k+1, ik+1, 1) · · · (1, an, a′n, in, 1)

where ai ∈ Σ for 1 ≤ i < k and aj , a
′
j ∈ Σ ∪{ε} with aj 6= a′j and ij ∈ {1, 2} for

k ≤ j ≤ n. As in above, π0 is a path which ends in state 0 and thus ϕ(π0) maps
to a word over E0 with cost 0. The first transition in π1 takes the machine to
state 1. Since there are no transitions of the form (1, a, a, 0, 1), the word ϕ(π1)
contains no symbols from E0. In other words, ϕ(π1) is a word over the alphabet
E \ E0.

Now consider an edit string e ∈ Lp. We can decompose e into two parts
e = e0e1 with e0 ∈ E∗0 and e1 ∈ (E \ E0)∗. Then e0 corresponds to a computation
path that ends in state 0 and e1 corresponds to a path which begins with a
transition from state 0 to state 1 and ends on state 1. Thus any edit string in
Lp corresponds to an accepting path in Tp.

It remains to be shown that the cost of ϕ(π1) is the same as the weight of the
path π1. By definition of Tp, each transition with a label a/ε or ε/a has weight 1
for all a ∈ Σ and every transition with a label a/b with a 6= b has weight 2. This
corresponds to the costs assigned by the cost function c and thus the weight of
π1 is exactly the cost of ϕ(π1).

Thus, we have ϕ(π) = ϕ(π0)ϕ(π1) ∈ E∗0 (E \ E0)∗ = Lp and w(π) = w(π0) +
w(π1) = c(ϕ(π0)) + c(ϕ(π1)) = c(ϕ(π)). ut

Observe that if π is a minimum weight accepting path of Tp transforming a
word w into a word x, then the weight of π is dp(w, x). This leads to the following
result.

Proposition 3. Let x, y ∈ Σ∗. Then the weight w(x, y) of x and y in Tp is
exactly dp(x, y).

Proof. Recall that, by definition, the weight of a pair of words (x, y) in Tp is the
minimum weight of all accepting paths of Tp with label (x, y). By Lemma 1, each
path π in Tp corresponds to an edit string eπ in Lp and has weight equivalent
to c(eπ). Thus, we have

w(x, y) = min
e∈Lp

{c(e) | h(e) = (x, y)},

which is exactly dp(x, y) by Proposition 1. ut

Now we move to the main result. We wish to compute the prefix distance
of two given regular languages L1 and L2. To do this, we compute a transducer
for which pairs of words (x, y) with x ∈ L1 and y ∈ L2 have weight equal to
dp(x, y). Let A1 and A2 be finite automata recognizing regular languages L1

and L2, respectively. Recall that an unweighted finite automaton over Σ may
be viewed as a weighted transducer with input and output alphabets Σ and in
which each transition labeled by a ∈ Σ is labeled by a/a and has weight 0.

The composition T1 ⊗ T2 = (Q,Σ, Γ, I, F,E) of two weighted transducers
T1 = (Q1, Σ,∆, I1, F1, E1) and T2 = (Q2, ∆, Γ, I2, F2, E2) is defined by Q = Q1×
Q2, I = I1×I2, F = Q∩(F1×F2), and the transition set E consists of transitions
of the form ((q1, q

′
1), a, c, w1 + w2, (q2, q

′
2)) for each transition (q1, a, b, w1, q2) ∈

E1 and (q′1, b, c, w2, q
′
2) ∈ E2. The composition T1 ⊗ T2 can be computed in

O(|T1||T2|) time.
Now consider the weighted transducer T = A1 ⊗ Tp ⊗ A2. We show in the

following lemma that for x ∈ L1 and y ∈ L2, the weight of (x, y) in T is dp(x, y).

Theorem 1. Let L1 and L2 be regular languages recognized by NFAs A1 and
A2, respectively. If x ∈ L1 and y ∈ L2, then (x, y) is the label of an accepting
path of T = A1 ⊗ Tp ⊗A2 and the weight of (x, y) in T is dp(x, y).

Proof. Consider two words x ∈ L1 and y ∈ L2. By definition of composition,
for any accepting path of T , the input part must be recognized by A1, the
output part must be recognized by A2, and the path must correspond to an edit
string in the language Lp. Thus, there is an accepting path π of T with label
`(π) = (x, y) which corresponds to an edit string eπ ∈ Lp with h(eπ) = (x, y).
By Proposition 3, the weight w(x, y) of T must be dp(x, y). ut

This result implies that the weight of the minimal weight path of A1⊗Tp⊗A2

is the prefix distance between L(A1) and L(A2). This leads us to an efficient
algorithm to compute the prefix distance between two regular languages.

Theorem 2. For given NFAs A1 and A2 recognizing the languages L1 and L2,
respectively, the value dp(L1, L2) can be computed in polynomial time.

Proof. Recall that the prefix distance between L1 and L2 is defined

dp(L1, L2) = min{dp(x, y) | x ∈ L1, y ∈ L2}.

By Theorem 1, for two words x ∈ L1 and y ∈ L2, the weight of (x, y) in the
weighted transducer T = A1⊗Tp⊗A2 is dp(x, y). By definition, this is the weight
of the minimal weight path with label (x, y) accepted by T . Then the weight of
a minimal weight accepting path in T from the initial state to a final state must
be dp(L1, L2) by definition.

With Tp fixed, in the worst case, the composition of the weighted transducer
T = A1 ⊗ Tp ⊗ A2 can be computed in time O(|A1||A2|) and the size of T is
O(|A1||A2|) [7]. To compute dp(L1, L2), we compute T and find the shortest path
from the initial state of T to a final state of T . Since there are no negative cycles,
we use Dijkstra’s single-source shortest path algorithm, which has running time

O(|E|+ |Q| log |Q|), where E is the transition set of T and Q is the state set of
T [5]. Thus, dp(L1, L2) can be computed in polynomial time. ut

In Proposition 2, we have characterized the suffix distance and the sub-
word distance, respectively, in terms of the edit systems Ls and Lf . By using a
weighted transducer based construction analogous to the one used for the prefix
distance in Theorem 2, we can get a polynomial time algorithm for computing
the suffix distance and subword distance between regular languages.

Theorem 3. For given NFAs A1 and A2 recognizing the languages L1 and L2,
respectively,

1. ds(L1, L2) can be computed in polynomial time, and
2. df (L1, L2) can be computed in polynomial time.

5 Computing the Inner Prefix Distance of a Regular
Language

Kari et al. [10] give an algorithm for computing the inner Hamming distance of
a regular language using a similar approach with NFAs over the edit alphabet.
In the development of the algorithm, a crucial observation was the necessity of
excluding all edit strings with cost 0, since d(x, y) = 0 if and only if x = y. Thus,
for our algorithm, we need to modify the language Lp to exclude all edit strings
with cost 0 and define a corresponding weighted transducer.

We define the language of edit strings for the prefix distance excluding all
edit strings which result in identity,

L(1)
p = E∗0 (E \ E0)+.

The language L
(1)
p is almost exactly the same as the language Lp with the ex-

ception that no edit strings e ∈ E∗0 are in L
(1)
p . That is, every edit string in L

(1)
p

must contain at least one symbol with nonzero cost.

Now, we define the transducer T
(1)
p = (Q,Σ,∆, I, F,E) by choosing Q =

{0, 1}, ∆ = Σ, I = {0}, F = {1}, and the transition set E is as in the definition

of Tp. The transducer T
(1)
p is the transducer Tp with the modification that state

1 is the sole final state. The transducer T
(1)
p defined over the alphabet {a, b} is

shown in Figure 2. We show in the following lemma that T
(1)
p realizes L

(1)
p .

Lemma 2. The set of accepting paths of the transducer T
(1)
p over Σ corresponds

exactly to the language edit strings L
(1)
p . If π is an accepting path of of T

(1)
p and

eπ is the corresponding edit string, then the weight of π is c(eπ).

Proof. Consider an accepting path π = π1 · · ·πn of T
(1)
p . Recall from the proof

of Lemma 1 the definition of ϕ and observe that since 0 is not a final state of

T
(1)
p , π must be of the form π = π0π1, with ϕ(π0) ∈ E∗0 and ϕ(π1) ∈ (E \ E0)∗.

Thus, ϕ(π) must contain at least one non-identity operation and c(ϕ(π)) > 0.

0start 1

a/a : 0
b/b : 0

a/ε : 1
b/ε : 1
ε/a : 1
ε/b : 1
a/b : 2
b/a : 2

a/ε : 1
b/ε : 1
ε/a : 1
ε/b : 1
a/b : 2
b/a : 2

Fig. 2. The transducer T
(1)
p over the alphabet Σ = {a, b}.

Now consider an edit string e ∈ L
(1)
p . We can decompose e into two parts

e = e0e1 with e0 ∈ E∗0 and e1 ∈ (E \E0)+. Then e0 corresponds to a computation
path that ends in state 0 and e1 corresponds to a path which begins with a
transition from state 0 to state 1 and ends on state 1. Thus any edit string in
Lp corresponds to an accepting path in Tp.

By the same argument from the proof of Lemma 1, the weight of an accepting

path π of T
(1)
p is exactly the cost of the edit string ϕ(π). ut

As was the case for Tp, for each pair of words (x, y) with an accepting path

in T
(1)
p , the weight of (x, y) is exactly dp(x, y) by the same argument as in the

proof of Proposition 3. This leads us to the analogue of Theorem 1 for T
(1)
p .

Theorem 4. Let L be a regular language recognized by a finite automaton A.

Then for x, y ∈ L with x 6= y, (x, y) is an accepting path of T = A ⊗ T (1)
p ⊗ A

and the weight of (x, y) ∈ T is dp(x, y).

Proof. Let x, y ∈ L and consider the weighted transducer T = A⊗ T (1)
p ⊗A. By

definition of composition, for any accepting path π of T , the input and output
labels must be words recognized by A and the path must correspond to an edit

string in L
(1)
p . Thus, there is an accepting path π of T with label `(π) = (x, y)

which corresponds to an edit string eπ ∈ L(1)
p with h(eπ) = (x, y). Furthermore,

since eπ ∈ L(1)
p , we have x 6= y. Thus, by Lemma 2, the weight w(x, y) of T must

be dp(x, y). ut

From this it follows that can compute the inner prefix distance of a regular
language by computing the appropriate weighted transducer and finding the
minimal weight path from its initial state to one of its final states.

Theorem 5. For a given NFA A recognizing the language L, the value dp(L) is
computable in polynomial time.

Proof. By Theorem 4, for x, y ∈ L, the weight of (x, y) in the weighted transducer

T = A ⊗ T (1)
p ⊗ A is dp(x, y). Then the weight of a minimal weight accepting

path in T must be dp(L) by definition.

Then, as in Theorem 2, the transducer T can be computed in time O(|A|2)
in the worst case and the size of T is O(|A|2) [7]. Since there are no negative
cycles, we can compute the minimal weight path of T in time O(|E|+|Q| log |Q|),
where E is the transition set of T and Q is the state set of T , by using Dijkstra’s
algorithm [5]. Thus, dp(L) can be computed in polynomial time. ut

We have shown how to compute the inner prefix distance of a regular lan-
guage. We can make similar modifications to the edit systems Ls and Lf and
construct transducers which model those edit systems. Such an edit system can
be defined for the suffix distance by

L(1)
s = (E \ E0)+E∗0 .

The case of subword distance is slightly more complicated, as we require at least
one edit operation with nonzero weight. For an edit string e, such an operation
can occur as either a prefix or a suffix but we cannot require that there is a
symbol with nonzero weight in both the prefix and suffix. Thus, we can define

the edit system L
(1)
f by

L
(1)
f = ((E \ E0)∗E∗0 (E \ E0)+) ∪ ((E \ E0)+E∗0 (E \ E0)∗).

Then using an analogous approach as for the prefix distance, it is possible to
compute the inner suffix and subword distances of a regular language in polyno-
mial time.

Theorem 6. For a given NFA A recognizing the language L,

1. ds(L) is computable in polynomial time, and

2. df (L) is computable in polynomial time.

6 Conclusion

We have shown how to compute the prefix distance of two regular languages in
polynomial time by using weighted transducers. We have also used this algorithm
to compute the inner prefix distance of a regular language in polynomial time.
These algorithms can also be applied to compute the suffix and subword distances
for regular languages.

One direction for future research is computing prefix, suffix, and subword
distances between non-regular languages. It is known that computing distances
between context-free languages is undecidable [4]. However, Han et al. [8] gave
an algorithm for computing the edit distance between a regular language and a
context-free language. For prefix, suffix, and subword distances, the problem of
computing the distance between a regular language and a context-free language
or subclasses of context-free languages remains open.

References

1. Benedikt, M., Puppis, G., Riveros, C.: Bounded repairability of word languages.
Journal of Computer and System Sciences 79(8) (2013) 1302–1321

2. Benedikt, M., Puppis, G., Riveros, C.: The per-character cost of repairing word
languages. Theoretical Computer Science 539 (2014) 38–67

3. Bruschi, D., Pighizzini, G.: String Distances and Intrusion Detection: Bridging the
Gap Between Formal Languages and Computer Security. RAIRO Informatique
Théorique et Applications 40 (2006) 303–313

4. Choffrut, C., Pighizzini, G.: Distances between languages and reflexivity of rela-
tions. Theoretical Computer Science 286(1) (2002) 117–138

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
2nd edn. MIT Press, Cambridge, Massachusetts (2001)

6. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer Berlin Heidelberg
(2009)

7. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer-
Verlag Berline Heidelberg (2009)

8. Han, Y.S., Ko, S.K., Salomaa, K.: The Edit-Distance Between a Regular Language
and a Context-Free Language. International Journal of Foundations of Computer
Science 24(07) (nov 2013) 1067–1082

9. Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems. Jour-
nal of Automata, Languages and Combinatorics 9(2/3) (2004) 293–309

10. Kari, L., Konstantinidis, S., Perron, S., Wozniak, G., Xu, J.: Computing the Ham-
ming Distance of a Regular Language in Quadratic Time. WSEAS Transactions
on Information Science & Applications 1(1) (2004) 445–449

11. Konstantinidis, S.: Computing the edit distance of a regular language. Information
and Computation 205(9) (2007) 1307–1316

12. Konstantinidis, S., Silva, P.V.: Computing Maximal Error-detecting Capabilities
and Distances of Regular Languages. Fundamenta Informaticae 101 (2010) 257–
270

13. Kutrib, M., Meckel, K., Wendlandt, M.: Parameterized Prefix Distance between
Regular Languages. In: SOFSEM 2014: Theory and Practice of Computer Science.
(2014) 419–430

14. Mohri, M.: Edit-distance of weighted automata: General definitions and algo-
rithms. International Journal of Foundations of Computer Science 14(6) (2003)
957–982

15. Pighizzini, G.: How Hard Is Computing the Edit Distance? Information and
Computation 165(1) (2001) 1–13

16. Shallit, J.: A second course in formal languages and automata theory. Cambridge
University Press, Cambridge, MA (2009)

17. Yu, S.: Regular languages. In Rozenberg, G., Salomaa, A., eds.: Handbook of
Formal Languages. Springer-Verlag, Berlin, Heidelberg (1997) 41–110

