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Abstract. The state complexity of a regular language Lm is the number
m of states in a minimal deterministic finite automaton (DFA) accepting
Lm. The state complexity of a regularity-preserving binary operation
on regular languages is defined as the maximal state complexity of the
result of the operation, where the two operands range over all languages
of state complexities ≤ m and ≤ n, respectively. We consider the deter-
ministic and nondeterministic state complexity of pseudocatenation. The
pseudocatenation of two words x and y with respect to an antimorphic
involution θ is the set {xy, xθ(y)}. This operation was introduced in the
context of DNA computing as the generator of pseudopowers of words (a
pseudopower of a word u is a word in u{u, θ(u)}∗). We prove that the
state complexity of the pseudocatenation of languages Lm and Ln, where
m,n ≥ 3, is at most (m−1)(22n−2n+1 +2)+22n−2−2n−1 +1. Moreover,
for m,n ≥ 3 there exist languages Lm and Ln over an alphabet of size
4, whose pseudocatenation meets the upper bound. We also prove that
the state complexity of the positive pseudocatenation closure of a regular
language Ln has an upper bound of 22n−1 − 2n + 1, and that this bound
can be reached, with the witness being a language over an alphabet of
size 4.

1 Introduction

In the context of DNA computing, the fact that one can consider a DNA strand
and its Watson-Crick complement “equivalent” from the point of view of their
information content led to several natural, as well as theoretically interesting,
extensions of notions in combinatorics of words and formal language theory
such as the pseudo-palindrome [21], pseudo-commutativity [18], or pseudoknot-
bordered words [19]. In this context, Watson-Crick complementarity has been
modelled mathematically by an antimorphic involution θ, i.e., a function that is
an antimorphism, θ(uv) = θ(v)θ(u), ∀u, v ∈ Σ∗, and an involution, θ(θ(x)) = x,
∀x ∈ Σ∗. For example, in [10], a word w is called a θ-power or pseudopower if
it is of the form w ∈ u{u, θ(u)}∗, and the related notions of θ-periodicity and
θ-primitivity can be analogously defined. The static notions of the power and
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period of word are intrinsically connected to the word operation that dynamically
generates that power. In the case of the classical notion of power and period of a
word, that operation is catenation, and in the case of θ-power and θ-periodicity,
that operation is θ-catenation, defined and studied in [17]. Here we continue the
investigation of θ-catenation, defined by x �θ y = {xy, xθ(y)}, by studying its
state complexity.

The state complexity of a language operation is a complexity measure based
on the number of states of the machine that recognizes the result of the language
operation, expressed as a function of the size of the machines recognizing the
operand languages. Operational state complexity has been studied since the early
90s and continues to be an active area of research [12, 26]. Recently, there have
been several investigations of state complexity for operations modelling biological
phenomena, such as hairpin completion [16], inversion [6], duplication [5], and
overlap assembly [3].

The state complexity of combinations of operations has also been studied
extensively, as many language operations can be expressed as a combination of
several basic operations. While one can obtain an upper bound for the state com-
plexity of multiple operations by simply composing the state complexities of each
operation, in many cases, the exact state complexity of the combination of oper-
ations is much lower than the bound obtained in this fashion [23]. Furthermore,
the exact state complexity of a combination of operations is undecidable [24],
thus motivating further study in this direction [1, 2, 7–9, 13, 14, 20].

In this paper, we consider the deterministic and nondeterministic state com-
plexity of the pseudocatenation and positive pseudocatenation closure operations
with respect to an antimorphism θ. We note that for our constructions, θ need
not be an involution. We fix notation and definitions in Section 2. In Section 3,
we consider the state complexity of the pseudocatenation operation. In Section 4,
we consider the positive closure of a language with respect to pseudocatenation.
We conclude in Section 5.

2 Preliminaries

Let Σ be a finite alphabet. We denote by Σ∗ the set of all finite words over Σ,
including the empty word, which we denote by ε. We denote the length of a word
w = a1a2 · · · an by |w| = n. The reversal of a word w = a1a2 · · · an is denoted by
wR = an · · · a2a1. If w = xyz, then we say that x is a prefix of w, y is a factor or
subword of w, and z is a suffix of w. For a word u ∈ Σ∗, we denote the number
of occurrences of u as a factor of w by |w|u.

A deterministic finite automaton (DFA) is a tuple A = (Q,Σ, δ, s, F ) where
Q is a finite set of states, Σ is an alphabet, δ is a function δ : Q×Σ → Q, s ∈ Q
is the initial state, and F ⊂ Q is a set of final states. We extend the transition
function δ to a function Q×Σ∗ → Q in the usual way. A DFA A is complete if δ
is defined for all q ∈ Q and a ∈ Σ. We will also make use of the notation q

w−→ q′

for δ(q, w) = q′ whenever convenient.
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A word w ∈ Σ∗ is accepted by A if δ(s, w) ∈ F . The language recognized
by A is L(A) = {w ∈ Σ∗ | δ(s, w) ∈ F}. A state q is reachable if there exists
a string w ∈ Σ∗ such that δ(s, w) = q. Two states p and q of A are equivalent
if δ(p, w) ∈ F if and only if δ(q, w) ∈ F for every word w ∈ Σ∗. A DFA A is
minimal if each state q ∈ Q is reachable from the initial state and no two states
are equivalent. The state complexity of a regular language L, denoted sc(L) is
the number of states of the minimal complete DFA recognizing L [25].

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, I, F )
where Q is a finite set of states, Σ is an alphabet, δ is a function δ : Q×Σ → 2Q,
I ⊆ Q is a set of initial states, and F is a set of final states. The language
recognized by an NFA A is L(A) = {w ∈ Σ∗ |

⋃
q∈I δ(q, w) ∩ F 6= ∅}. The

nondeterministic state complexity of a regular language is the minimum number
of states for any NFA which accepts L. We denote the nondeterministic state
complexity of L by nsc(L).

A set of pair of strings S = {(x1, y1), . . . , (xm, ym)} with xi, yi ∈ Σ∗ for
1 ≤ i ≤ m is a fooling set for a regular language L if xiyi ∈ L for 1 ≤ i ≤ m and
for all 1 ≤ i < j ≤ m, either xiyj 6∈ L or xjyi 6∈ L. If L has a fooling set S, then
nsc(L) ≥ |S| [15].

Let θ : Σ → Σ be a mapping. We say θ is a morphism if for u, v ∈ Σ∗, we
have θ(uv) = θ(u)θ(v). We say θ is an antimorphism if we have θ(uv) = θ(v)θ(u).
The mapping θ is an involution if for all words u ∈ Σ∗, we have θ(θ(u)) = u.
For example, if Σ = {A,C,G, T} we can define Watson-Crick complementarity
for DNA as an antimorphic involution θ by θ(A) = T , θ(C) = G, θ(G) = C,
and θ(T ) = A. Then the Watson-Crick complement of a DNA string w is given
by θ(w).

Definition 1. Let θ be an antimorphic involution and x, y ∈ Σ∗. We define the
θ-catenation operation �θ, also called pseudocatenation with respect to θ, by

x�θ y = {xy, xθ(y)}.

We can define θ-catenation for languages by

L1 �θ L2 = {xy, xθ(y) | x ∈ L1, y ∈ L2}.

This operation can be extended to an iterated variant by L�
θ
0 = {ε}, L�θ1 = L,

and L�
θ
n = L�

θ
n−1 �θ L. Then we can take the positive θ-catenation closure by

L�
θ
+ =

⋃
i≥1

L�
θ
i .

Although θ-catenation is defined for both morphisms and antimorphisms, we will
consider only the state complexity for antimorphisms. For morphic θ, many state
complexity results are the same as the state complexity of combined operations
studied previously. Furthermore, we note that the condition that θ be involutive
is not strictly necessary in our constructions.

We will make use of the following notation for the NFA recognizing θ(L(A))
for a given DFA A and antimorphism θ. Let A = (Q,Σ, δ, s, F ) be a DFA. Let
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P ⊆ Q be a set of states of Q. We denote by P = {q | q ∈ P}. Then define the

DFA A = (Q,Σ, δ−1, F , {s}), where the transition function δ−1 : Q×Σ → 2Q

is defined for q ∈ Q and a ∈ Σ by δ−1(q, a) = {q′ | δ(q′, θ(a)) = q}. In other
words, every transition of A is reversed and relabeled according to θ in A. Then
L(A) = θ(L(A)).

3 State Complexity of θ-Catenation

We will consider the state complexity of the θ-catenation of two regular languages.
It was shown in [17] that the class of regular languages is closed under θ-catenation.
This is easy to see from the following expression for the θ-catenation of L1 and
L2, which follows directly from the definition.

Proposition 2. Let L1, L2 ⊆ Σ∗ be languages and θ an antimorphism. Then
L1 �θ L2 = L1(L2 ∪ θ(L2)).

First, we consider an NFA for recognizing L1 �θ L2 and its nondeterministic
state complexity.

Proposition 3. For m,n ≥ 1, let A and B be NFAs defined over an alphabet Σ
with m and n states and let θ be an antimorphism. Then there exists an NFA
that recognizes L(A)�θ L(B) with at most m+ 2n states and this bound can be
reached.

The proof of Proposition 3 makes use of the following construction for
an NFA C that recognizes L(A) �θ L(B). Let A = (QA, Σ, δA, IA, FA) and
B = (QB , Σ, δB , IB , FB). We denote by B the NFA for θ(L(B)), defined B =
(QB , Σ, δ

−1
B , FB , IB). We define an NFA C = (QC , Σ, δC , IC , FC) where QC =

QA ∪ QB ∪ QB, IC = IA, FC = FB ∪ IB, and the transition function δC :
QC ×Σ → 2QC is defined for q ∈ QC and a ∈ Σ by

δC(q, a) =


δA(q, a) if q ∈ QA,

δB(q, a) if q ∈ QB ,

δ−1B (q, a) if q ∈ QB ,

δA(q, a) ∪ IB ∪ FB if (δA(q, a) ∩ FA) 6= ∅.

From this construction, it follows that C has most m+ 2n states, and this bound
is also reachable.

We will now consider the deterministic state complexity of θ-catenation. We
note again that L(A)�θ L(B) = L(A)(L(B) ∪ θ(L(B))). By directly computing
the state complexity of the union (L(B) ∪ θ(L(B)) and composing it with the
state complexity for the catenation L(A)(L(B) ∪ θ(L(B))), we obtain an upper
bound of m2n2

n − 2n2
n−1 states for L(A)�θ L(B). This is clearly incorrect, since

determinizing the NFA from Proposition 3 gives at most 2m+2n states. Instead,
we apply a construction similar to the one from [7] to L(A)(L(B) ∪ θ(L(B))).
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Proposition 4. Let m,n ≥ 3, θ be an antimorphism, and A and B be DFAs
defined over an alphabet Σ with m and n states, respectively. Then there exists
a DFA that recognizes L(A) �θ L(B) with at most (m − 1)(22n − 2n+1 + 2) +
22n−2 − 2n−1 + 1 states.

Proof. We will define a DFA C that recognizes L(A)�θ L(B) given two DFAs A
and B. Let A = (QA, Σ, δA, sA, FA) and B = (QB , Σ, δB , sB , FB). We define the
DFA C = (QC , Σ, δC , sC , FC) by the set of states

QC ={〈q, P,R〉 | q ∈ QA − FA, P ∈ 2QB − {∅}, R ∈ 2QB − {∅}}
∪ {〈q, ∅, ∅〉 | q ∈ QA − FA}

∪ {〈q, P ∪ {sB}, R ∪ FB〉 | q ∈ FA, P ∈ 2QB−{sB}, R ∈ 2QB−FB},

the initial state

sC =

{
〈sA, ∅, ∅〉 if sA 6∈ FA,

〈sA, {sB}, FB〉 otherwise,

the set of final states FC = {〈q, P,R〉 ∈ QC | (P ∪R)∩ (FB ∪{sB}) 6= ∅}, and the

transition function δC(〈q, P,R〉, a) = 〈q′, P ′, R′〉 for a ∈ Σ where q′ = δA(q, a),

P ′ =

{⋃
p∈P δB(p, a) ∪ {sB} if q′ ∈ FA,⋃
p∈P δB(p, a) otherwise,

R
′

=

{
δ−1B (R, a) ∪ FB if q′ ∈ FA,

δ−1B (R, a) otherwise.

Informally, the DFA C operates as follows. The states of C are 3-tuples
〈q, P,R〉, where q is a state of A, and P and R are subsets of states of B. The
first component q denotes the current state of a computation on A, the second
component P denotes a set of states corresponding to the current states of com-
putations on B, and the third component R denotes a set of states corresponding
to the current states of computations on B, the NFA recognizing θ(L(B)).

Upon reading a symbol a ∈ Σ, the computations advance one step to
〈q′, P ′, R′〉. If q′ is a final state of A, then in addition to updating the sets
P and R′ to advance one step in computation, the initial state sB of B is added
to P ′ and the set of initial states FB of B, the NFA recognizing θ(L(B)), is added

to R
′
.

We will now consider the size of QC , the state set of C. Let kA = |FA| and
kB = |FB |. We have

|QC | = (m− kA)(2n − 1)(2n − 1) + (m− kA) + kA(2n−1)(2n−kb).

However, note that since B is a complete DFA, we have δ−1B (QB , σ) = QB for
all σ ∈ Σ. Then for all states q ∈ QA, P ⊆ QB, and symbols σ ∈ Σ, we have
δC(〈q, P,QB〉, σ) = 〈q′, P ′, QB〉. Since s ∈ QB, any state of the form 〈q, P,QB〉
is a final state. Thus, for all states q ∈ QA, P ⊆ QB , and words w ∈ Σ∗, we have
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δC(〈q, P,QB〉, w) ∈ FC . Therefore, all states with the third component R = QB
are equivalent and indistinguishable and we revise our upper bound down to

(m− kA)(2n − 1)(2n − 1) + (m− kA) + kA(2n−1)(2n−kB − 1) + 1.

This value is maximized when kA = 1 and kB = 1, giving a total of (m−1)(22n−
2n+1 + 2) + 22n−2 − 2n−1 + 1 states. ut

We will now show that this bound is reachable.

Lemma 5. For m,n ≥ 3, there exist an m-state DFA A, an n-state DFA B,
and an antimorphism θ over an alphabet of size 4 such that

sc(L(A)�θ L(B)) ≥ (m− 1)(22n − 2n+1 + 2) + 22n−2 − 2n−1 + 1.

The main idea of the proof of Lemma 5 is to demonstrate that the bound
from Proposition 4 is reachable by using the witness Wn(a, b, c, d) defined by
Brzozowski [2]. Let Σ = {a, b, c, d} and let θ : Σ∗ → Σ∗ be the Watson-Crick
antimorphism defined by

θ(a) = d θ(b) = c θ(c) = b θ(d) = a.

We set A = Wm(a, b, c, d) with m states and B = Wn(a, b, c, d) with n states.
Then we define B = Wn(a, b, c, d). That is, L(B) = θ(L(Wn(a, b, c, d))) =
L(Wn(d, c, b, a))R. The DFA W3(a, b, c, d) is shown in Figure 1 and the DFA
B and the NFA B are shown in Figure 2.

q0start q1 q2

b, c, d d c, d

a

c

a, b

b

a

Fig. 1. The DFA W3(a, b, c, d)

Proposition 4 and Lemma 5 are summarized in the following theorem.

Theorem 6. For m,n ≥ 3, regular languages Lm and Ln with sc(Lm) = m and
sc(Ln) = n, and antimorphism θ,

sc(Lm �θ Ln) ≤ (m− 1)(22n − 2n+1 + 2) + 22n−2 − 2n−1 + 1

and this bound can be reached in the worst case.

Furthermore, observe that the witnesses used in Lemma 5 belong to the same
family of DFAs Wn(a, b, c, d). Setting m = n gives us the same DFA and we

obtain a tight bound for the state complexity of the pseudosquare of L, L�
θ
2 , via

Lemma 5.
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q0start q1 q2 · · · qn−2 qn−1

B b, c, d b, d b, c, d
c, d c, d

a

c

a a a a, b

b

a

qn−1start qn−2 · · · q2 q1 q0

B a, b a, b
a, b, c a, c a, b, c

c, d

c

d d d d

b

d

Fig. 2. The DFA B =Wn(a, b, c, d) and the NFA B =Wn(a, b, c, d)

Corollary 7. For n ≥ 3, let Ln be a regular language with sc(Ln) = n and let θ
be an antimorphism. Then

sc(L
�θ2
n ) ≤ (n− 1)(22n − 2n+1 + 2) + 22n−2 − 2n−1 + 1

and this bound can be reached in the worst case.

4 State Complexity of θ-Catenation Closure

In this section, we consider the θ-catenation closure of a regular language. This
is analogous to the positive Kleene closure, but with respect to θ-catenation. It
was shown in [17] that the positive closure of a regular language with respect to
θ-catenation is also regular. The following equality follows from the definition.

Proposition 8. Let L be a language and let θ be an antimorphism. Then the

positive θ-catenation closure is L�
θ
+ = L(L ∪ θ(L))∗.

It is important to note that the positive closure with respect to θ-catenation

is not (L ∪ θ(L))+, as words w ∈ L�
θ
+ have the form w = uv1v2 · · · vk−1 where

u ∈ L and vi ∈ L ∪ θ(L) for 1 ≤ i ≤ k [17], whereas (L ∪ θ(L))+ also contains
words of the form θ(u)v1v2 · · · vk−1.

We will first consider an NFA for recognizing L�
θ
+ and its nondeterministic

state complexity.

Proposition 9. For n ≥ 1, let A be an NFA with n states defined over an
alphabet Σ and let θ be an antimorphism. Then there exists an NFA that recognizes

L(A)�
θ
+ with at most 2n states. Furthermore, this bound can be reached in the

worst case.
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The proof of Proposition 9 defines an NFA A′ that recognizes L(A)�
θ
+ . Let

A = (Q,Σ, δ, I, F ) be an n-state NFA. We denote by A the NFA recognizing

θ(L(A)), A = (Q,Σ, δ−1, F , I). We will define an NFA A′ which recognizes A�
θ
+

with respect to an antimorphism θ by A′ = (Q′, Σ, δ′, I ′, F ′), where Q′ = Q ∪Q,
I ′ = I, F ′ = F ∪ I, and the transition function δ′ : Q′ ×Σ → 2Q

′
is defined for

q ∈ Q′ and a ∈ Σ by

δ′(q, a) =


δ(q, a) if q ∈ Q,

δ−1(q, a) if q ∈ Q,

δ(q, a) ∪ I ∪ F if q ∈ Q and (δ(q, a) ∩ F ) 6= ∅,
δ−1(q, a) ∪ I ∪ F if q ∈ Q and (δ−1(q, a) ∩ I) 6= ∅.

From this construction, it follows that A′ has at most 2n states, and this bound
is also reachable.

We will now consider the deterministic state complexity of the positive θ-
catenation closure. In [23], it was shown that the state complexity of (L1 ∪ L2)∗

was much lower than the straightforward upper bound of 2mn−1 + 2mn−2. Indeed,
the bound obtained from the NFA of Proposition 9 is already 22n states. We will
show that the state complexity of θ-catenation closure is still lower than this.

Proposition 10. For n ≥ 3, let A be a DFA defined over an alphabet Σ with
n states and let θ be an antimorphism. Then there exists a DFA that recognizes

L(A)�
θ
+ with at most 22n−1 − 2n + 1 states.

Proof. We define a DFA A′ that recognizes L(A)�
θ
+ given a DFA A. Let A =

(Q,Σ, δ, s, F ). We define the DFA A′ = (Q′, Σ, δ′, s′, F ′) with the set of states

Q′ ={〈P,R〉 | ∅ 6= P ⊆ Q− F,R ⊆ Q− {s}}
∪ {〈P ∪ {s}, R ∪ F 〉 ⊆ Q×Q | (P ∪R) ∩ (F ∪ {s}) 6= ∅},

the initial state

s′ =

{
〈{s}, ∅〉 if s 6∈ F ,
〈{s}, F 〉 if s ∈ F ,

the set of final states F ′ = {〈P,R〉 ⊆ Q×Q | (P ∪R) ∩ (F ∪ {s}) 6= ∅}, and the
transition function for a state 〈P,R〉 and symbol a ∈ Σ with P ′ = δ(P, a) and

R
′

= δ−1(R, a) is defined by

δ′(〈P,R〉, a) =

{
〈P ′ ∪ {s}, R′ ∪ F 〉 if (P ′ ∪R′) ∩ (F ∪ {s}) 6= ∅,
〈P ′, R′〉 otherwise.

Informally, DFA A′ operates by first simulating a computation of A, since by

definition, we have L(A)�
θ
+ = L(A)(L(A) ∪ θ(L(A)))∗. Once the computation

reaches a final state of A, an initial state for A and A is added to the current
state set and the computation continues. Whenever the current state of A′
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contains a final state of A or A, the initial states of both machines are added.
The computation continues until the input is read and accepts if and only if a
final state of A or A is contained in the state of A′ when the input has been read.

Now let us consider the state set Q′ of A′,

Q′ = Q1 ∪Q2,

Q1 = {〈P,R〉 | ∅ 6= P ⊆ Q− F,R ⊆ Q− {s}},
Q2 = {〈P ∪ {s}, R ∪ F 〉 ⊆ Q×Q | (P ∪R) ∩ (F ∪ {s}) 6= ∅}.

The size of Q′ will depend on k and whether or not s ∈ F . We will consider each
term. Let k = |F |.

First, Q1 is the set of states with components that do not contain any final
state of A or A. There are 2n−k − 1 nonempty subsets of Q− F and there are
2n−1 subsets of Q− {s}. This gives us |Q1| = (2n−k − 1)(2n−1).

Then, Q2 is the set of states of the form 〈P,R〉 with P ⊆ Q and R ⊆ Q such
that (P ∪R) ∩ (F ∪ {s}) 6= ∅. That is at least one of a final state of A is in P or
s is in R. Then s ∈ P and F ⊆ R. This gives up to (2n−1)(2n−k) states.

This count may include states such that s ∈ P and F ⊆ R but (P ∪ R) ∩
(F ∪ {s}) = ∅, depending on whether or not s ∈ F . If s ∈ F , then there are no
such states, since s ∈ F and s ∈ P implies that (P ∪R) ∩ (F ∪ {s}) 6= ∅.

However, if s 6∈ F , there are up to (2n−1−k)2 states 〈P,R〉 such that s ∈ P ,
F ⊆ R, and (P ∪ R) ∩ (F ∪ {s}) = ∅ which must be removed from the total,
resulting in at most (2n−1)(2n−k)− (2n−1−k)2 states when s 6∈ F .

Finally, we must account for states of the form 〈P,Q〉. Since A is a complete
DFA, we have δ−1(Q, σ) = Q for all σ ∈ Σ. Since s ∈ Q, we have 〈P,Q〉 for all
P ⊆ Q and therefore δ′(〈P,Q〉, w) ∈ F ′ for all P ⊆ Q and w ∈ Σ∗. Thus, all such
states are equivalent and indistinguishable. Since s ∈ Q, for all states 〈P,Q〉, we
have s ∈ P and thus there are 2n−1 such states to be merged into a single state.

Thus, in total, we have

|Q′| ≤

{
(2n−k − 1)(2n−1) + (2n−1)(2n−k)− 2n−1 + 1 if s ∈ F ,

(2n−k − 1)(2n−1) + (2n−1)(2n−k)− (2n−1−k)2 − 2n−1 + 1 if s 6∈ F .

From this, we can see that the size of Q′ is maximized when k = 1 and s ∈ F .
Thus, Q′ has size at most (2n−1−1)2n−1+(2n−1)2−2n−1+1 = 22n−1−2n+1. ut

Lemma 11. Let n ≥ 3. Then there exists an n-state DFA A and an antimor-
phism θ over an alphabet of size 4 such that

sc(L(A)�
θ
+) ≥ 22n−1 − 2n + 1.

To prove Lemma 11, we demonstrate that the upper bound from Proposition 10
is reachable via the following witness. Let Σ = {a, b, c, d} and let θ : Σ → Σ be
the antimorphism defined by

θ(a) = b θ(b) = a θ(c) = d θ(d) = c.
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0start 1 2 · · · n− 2 n− 1

A d b, d b, d
b, d b, d

a, b, c a, c a, c a, c a, c

a

c

0start 1 2 · · · n− 2 n− 1

A c a, c a, c
a, c a, c

a, b, d b, d b, d b, d b, d

b

d

Fig. 3. The DFA A and the NFA A

We define a DFA A, shown in Figure 3 together with the NFA A which recognizes
the language θ(L(A)).

From Proposition 10 and Lemma 11, we can summarize our results in the
following theorem.

Theorem 12. For n ≥ 3, a regular language L with sc(L) = n, and an antimor-
phism θ,

sc(L�
θ
+) ≤ 22n−1 − 2n + 1

and this bound can be reached in the worst case.

5 Conclusion

We have given tight bounds for the deterministic and nondeterministic state
complexity of pseudocatenation and positive pseudocatenation closure. The
deterministic state complexity bounds for each operation differ from those for the
corresponding classical operations, catenation and star, and the bounds derived
from combined operations. A comparison between the bounds is given in Table 1.

One question that arises is to consider variants of the pseudocatenation
operation. The definition of �θ on two words u and v was defined by Kari and
Kulkarni [17] to be the set comprising uv and uθ(v). This definition coincides with
θ-powers and θ-primitivity as defined by Czeizler et al. [10]. However, a definition
of θ-catenation that incorporates θ(u)v also makes sense to consider from the
biological point of view, since it is the Watson-Crick complement of uθ(v).
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Operation State complexity

Lm �θ Ln (m− 1)(22n − 2n+1 + 2) + 22n−2 − 2n−1 + 1 Thm. 6

LmLn m2n − 2n−1 [26]

Lm(Ln ∪ Lp) (m− 1)(2n+p − 2n − 2p + 2) + 2n+p−2 [7]

L
�θ2
n (n− 1)(22n − 2n+1 + 2) + 22n−2 − 2n−1 + 1 Cor. 7

L2
n n2n − 2n−1 [22]

L
�θ+
n 22n−1 − 2n + 1 Thm. 12

L∗
n 2n−1 + 2n−2 [26]

(Lm ∪ Ln)∗ 2m+n−1 − 2m−1 − 2n−1 + 1 [23]

Table 1. A comparison of the deterministic state complexity for each operation

There are also further questions considering the state complexity of the
current pseudocatenation operation �θ. We can consider the state complexity of
pseudocatenation for sub-regular language classes, such as finite languages. We
also noted earlier that as a result of our choice of witnesses in Lemma 5, we were

also able to obtain the state complexity for the pseudosquare L�
θ
2 (Corollary 7).

Domaratzki and Okhotin [11] gave a tight state complexity bound for the cube
of a language L3, which was improved by Caron et al. [4]. Asymptotic state
complexity bounds for the kth power of a language Lk are also given in [11]. A
natural next question to consider is the state complexity of pseudocubes and
pseudopowers with respect to θ.
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A Appendix

Here we include proofs that were omitted in the paper due to the limitation on
the number of pages.

Proposition 3. For m,n ≥ 1, let A and B be NFAs defined over an alphabet (p. 4)

Σ with m and n states and let θ be an antimorphism. Then there exists an NFA
that recognizes L(A)�θ L(B) with at most m+ 2n states and this bound can be
reached.

Proof. Let A = (QA, Σ, δA, IA, FA) and B = (QB , Σ, δB , IB , FB). We denote
by B the NFA for θ(L(B)), B = (QB , Σ, δ

−1
B , FB , IB). We define an NFA C =

(QC , Σ, δC , IC , FC) where QC = QA ∪QB ∪QB, IC = IA, FC = FB ∪ IB, and
the transition function δC : QC ×Σ → 2QC is defined for q ∈ QC and a ∈ Σ by

δC(q, a) =


δA(q, a) if q ∈ QA,

δB(q, a) if q ∈ QB ,

δ−1B (q, a) if q ∈ QB ,

δA(q, a) ∪ IB ∪ FB if (δA(q, a) ∩ FA) 6= ∅.

We claim that L(C) = L(A) �θ L(B). Indeed, suppose we have a word
w ∈ L(A)�θL(B). We can write w = uv where u ∈ L(A) and v ∈ L(B)∪θ(L(B)).
Then δC(IC , w) = δC(δC(IC , u), v). Since u ∈ L(A), we have (δA(IA, u)∩FA 6= ∅)
and therefore IB ∪ FB ⊆ δC(IC , u). Since v ∈ L(B) ∪ θ(L(B)), we then have
(δC(δC(IC , u), v) ∩ (FB ∪ IB) 6= ∅ and therefore w ∈ L(C).

Suppose now that w ∈ L(C). This means that a computation of w on C
reaches a final state of B or B. However, these states are only reachable from
an initial state of B or B and such states can only be reached when a final
state of A is reached. Therefore, there must be a prefix of w, say u such that
δC(IC , u) ∩ FA 6= ∅. But this means that u ∈ L(A). Then the suffix of w from
this state, say v is an accepting path on B or B by definition. Therefore, we have
w = uv with u ∈ L(A) and v ∈ L(B) ∪ L(B) and thus w ∈ L(A)�θ L(B).

From this construction, C has most m+ 2n states. To see that this bound
is reachable, we consider languages Lm = bm−1(bm)∗ and Ln = (an−1b)∗ over
a binary alphabet {a, b} and let θ be the identity antimorphism θ(a) = a for
all a ∈ Σ. The NFA that recognizes Ln is shown in Figure 4. We will define a
fooling set S for Lm �θ Ln. Let S = S1 ∪ S2 ∪ S3, where

– S1 = {(bi, b2m−1−i) | 0 ≤ i ≤ m− 1},
– S2 = {(bm−1an−1ban−1−i, aib) | 0 ≤ i ≤ n− 1},
– S3 = {(bm−1ban−1ban−1−i, ai) | 0 ≤ i ≤ n− 1}.

Let j > i and consider pairs (xi, yi) and (xj , yj) in S1. We have xiyj =
b2m−1−i+j 6∈ Lm�θ Ln, since j− i > 0. Similarly, for pairs (xi, yi) and (xj , yj) in
S2, we have xiyj = bm−1an−1ban−1−i+jb 6∈ Lm �θ Ln and for pairs (xi, yi) and
(xj , yj) in S3, we have xiyj = bm−1ban−1ban−1−i+j 6∈ Lm �θ Ln.
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0start 1 2 · · · n− 2 n− 1
a a a a a

b

0start 1 2 · · · n− 2 n− 1
a a a a a

b

Fig. 4. The NFA recognizing Ln = (an−1b)∗ and its reverse

Now let (xi, yi) ∈ S1 and (xj , yj) ∈ S2. Then

xjyi = bm−1an−1ban−1−jb2m−1−i 6∈ Lm �θ Ln.

Similarly, if (xj , yj) ∈ S3, we have

xjyi = bm−1ban−1ban−1−jb2m−1−i 6∈ Lm �θ Ln.

Finally, if (xi, yi) ∈ S2 and (xj , yj) ∈ S3, we have

xiyj = bm−1an−1ban−1−iaj 6∈ Lm �θ Ln.

Thus, we have shown that S is a fooling set of size m+ 2n for Lm �θ Ln. ut

Proposition 4. Let m,n ≥ 3, θ be an antimorphism, and A and B be DFAs(p. 5)

defined over an alphabet Σ with m and n states, respectively. Then there exists
a DFA that recognizes L(A) �θ L(B) with at most (m − 1)(22n − 2n+1 + 2) +
22n−2 − 2n−1 + 1 states.

Proof (Correctness of construction). We will define a DFA C that recognizes
L(A) �θ L(B) given two DFAs A and B. Let A = (QA, Σ, δA, sA, FA) and
B = (QB , Σ, δB , sB , FB). We define the DFA C = (QC , Σ, δC , sC , FC) by the set
of states

QC ={〈q, P,R〉 | q ∈ QA − FA, P ∈ 2QB − {∅}, R ∈ 2QB − {∅}}
∪ {〈q, ∅, ∅〉 | q ∈ QA − FA}

∪ {〈q, P ∪ {sB}, R ∪ FB〉 | q ∈ FA, P ∈ 2QB−{sB}, R ∈ 2QB−FB},

the initial state

sC =

{
〈sA, ∅, ∅〉 if sA 6∈ FA,

〈sA, {sB}, FB〉 otherwise,
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the set of final states FC = {〈q, P,R〉 ∈ QC | (P ∪R)∩ (FB ∪{sB}) 6= ∅}, and the

transition function δC(〈q, P,R〉, a) = 〈q′, P ′, R′〉 for a ∈ Σ where q′ = δA(q, a),

P ′ =

{⋃
p∈P δB(p, a) ∪ {sB} if q′ ∈ FA,⋃
p∈P δB(p, a) otherwise,

R
′

=

{
δ−1B (R, a) ∪ FB if q′ ∈ FA,

δ−1B (R, a) otherwise.

Informally, the DFA C operates as follows. The states of C are 3-tuples
〈q, P,R〉, where q is a state of A, and P and R are subsets of states of B.
The first component q denotes the current state of a computation on A, the
second component P denotes a set of states corresponding to the current states
of computations on B, and the third component R denotes a set of states
corresponding to the current states of computations on B, the NFA recognizing
θ(L(B)).

Upon reading a symbol a ∈ Σ, the computations advance one step to
〈q′, P ′, R′〉. If q′ is a final state of A, then in addition to updating the sets
P and R′ to advance one step in computation, the initial state sB of B is added
to P ′ and the set of initial states FB of B, the NFA recognizing θ(L(B)), is added

to R
′
.

We will now formally show that L(C) = L(A)�θ L(B). First, we will show
that L(A) �θ L(B) ⊆ L(C). Consider a word w = uv ∈ L(A) �θ L(B), with
u ∈ L(A) and v ∈ L(B) ∪ θ(L(B)). We claim that there exists a computation
path in C

sC
u−→ 〈q, P,R〉 v−→ 〈q′, P ′, R′〉.

Since u ∈ L(A), there exists a path in A from sA to q ∈ FA. Then by definition,
we have sB ∈ P and FB ⊆ R. Now, if v ∈ L(B), there exists a path in B from
sB to a state in FB and we have FB ⊆ P ′. Similarly, if v ∈ θ(L(B)), then there

exists a path in B from FB to a state containing sB and we must have sB ∈ R
′
.

In either case, such a computation path in C exists and we have that w = uv is
accepted by C and L(A)�θ L(B) ⊆ L(C).

Next, we will show that L(C) ⊆ L(A)�θ L(B). Consider a word w ∈ L(C).
Then there is a computation path in C on the input word w from sC to a state

〈q′, P ′, R′〉 where either FB ∩P ′ 6= ∅ or sB ∈ R
′
. However, this implies that there

exists a state 〈q, P,R〉 with q ∈ FA, sB ∈ P , and FB ⊆ R on the path. Then
we can write w = w1w2, with δC(sA, w1) = 〈q, P,R〉 and δC(〈q, P,R〉, w2) =

〈q′, P ′, R′〉. But this means that δA(sA, w1) ∈ FA and either δB(sB , w2) ∈ FB or
δ−1B (FB , w2) ∩ {sB} 6= ∅. Thus, w1 ∈ L(A) and w2 ∈ LB ∪ L(B), and we have
w ∈ L(C) ⊆ L(A)�θ L(B).

Thus, L(C) = L(A)�θ L(B). ut

Lemma 5. For m,n ≥ 3, there exist an m-state DFA A, an n-state DFA B, (p. 6)

and an antimorphism θ over an alphabet of size 4 such that

sc(L(A)�θ L(B)) ≥ (m− 1)(22n − 2n+1 + 2) + 22n−2 − 2n−1 + 1.



16 L. Kari and T. Ng

Proof. To demonstrate that the bound from Proposition 4 is reachable, we will
use the witness Wn(a, b, c, d) from [2]. Let Σ = {a, b, c, d} and let θ : Σ → Σ be
the Watson-Crick antimorphic defined by

θ(a) = d θ(b) = c θ(c) = b θ(d) = a.

We set A = Wm(a, b, c, d) with m states and B = Wn(a, b, c, d) with n
states. Then we define B =Wn(a, b, c, d). That is, L(B) = θ(L(Wn(a, b, c, d))) =
L(Wn(d, c, b, a))R. We will define A, B, and B explicitly.

Let A = (QA, Σ, δA, sA, FA) with QA = {p0, . . . , pm−1}, sA = p0, FA =
{pm−1}, and the transition function δA is defined by

– δA(pi, a) = pi+1 mod m for 0 ≤ i ≤ m− 1,
– δA(pi, b) = pi for 0 ≤ i ≤ m− 3, δA(pm−2, b) = pm−1, δA(pm−1, b) = pm−2,
– δA(pi, c) = pi for i = 0, 2, . . . ,m− 1, δA(p1, c) = p0,
– δA(pi, d) = pi for 0 ≤ i ≤ m− 1.

Let B = (QB , Σ, δB , sB , FB) with QB = {q0, . . . , qn−1}, sB = q0, FB =
{qn−1}, and δB is defined by

– δB(qi, a) = qi+1 mod n for 0 ≤ i ≤ n− 1,
– δB(qi, b) = qi for 0 ≤ i ≤ n− 3, δB(qn−2, b) = pn−1, δB(qn−1, b) = qn−2,
– δB(qi, c) = qi for i = 0, 2, . . . , n− 1, δB(q1, c) = q0,
– δB(qi, d) = qi for 0 ≤ i ≤ n− 1.

Finally, let B = (QB , Σ, δ
−1
B , FB , {sB}), which recognizes θ(L(B)), where the

transition function δ−1B : Q×Σ → 2Q is defined by

– δ−1B (qi, d) = {qi−1 mod n} for 0 ≤ i ≤ n− 1,
– δ−1B (qi, c) = {qi} for 0 ≤ i ≤ n− 3, δ−1B (qn−2, c) = qn−1, δ−1B (qn−1, c) = qn−2,
– δ−1B (qi, b) = {qi} for 1 ≤ i ≤ n− 1, δ−1B (q0, b) = {q0, q1},
– δ−1B (qi, a) = qi for 0 ≤ i ≤ n− 1.

The DFA W3(a, b, c, d) is shown in Figure 1 and the DFA B and the NFA B
are shown in Figure 2.

We begin by showing these states are all reachable. First, we consider states

of the form 〈pi, ∅, ∅〉. We have 〈p0, ∅, ∅〉
ai−→ 〈pi, ∅, ∅〉 for 1 ≤ i < m− 2. Then

〈pm−2, ∅, ∅〉
a−→ 〈pm−1, {q0}, {qn−1}〉

a(ac2)n−2

−−−−−−→ 〈p0, {qn−1}, {qn−1}〉.

There are m− 1 such states.
Next, we consider states 〈p, P,R〉, where P and R are not empty. We first

consider states 〈p0, {qn−1}, R〉 with R ⊆ QB and show that all such states are
reachable by induction on the size of R. First, we have

〈p0, {qn−1}, {qn−1}〉
dn−1−i

−−−−−→ 〈p0, {qn−1}, {qi}〉

for 0 ≤ i ≤ n− 1 and thus all states with |R| ≤ 1 are reachable.
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Now, suppose that every state 〈p0, {qn−1}, T 〉 with |T | ≤ ` is reachable. We
will show how to reach 〈p0, {qn−1}, R〉 with |R| = `+ 1. Let R = {qj0 , . . . , qj`} ⊆
QB with n− 1 ≥ j0 > · · · > j` ≥ 0.

If j` = 0 and j`−1 = 1, then R is reachable from a set of size ` as follows,

〈p0, {qn−1}, {qj0 , . . . , qj`−2
, q0}〉

b2−→ 〈p0, {qn−1}, {qj0 , . . . , qj`−2
, q0, q1}〉.

If j0 = n − 1 and j1 = n − 2, then R is reachable from a state of size ` + 1
containing q0 and q1, which we have just shown is reachable, as follows,

〈p0, {qn−1}, {q0, q1, qj0−2, . . . , qj`−2−2}〉
d2−→〈p0, {qn−1}, {qn−1, qn−2, qj0 , . . . , qj`−2

}〉.

Then all other states with sets R of size `+ 1 are reachable from a set of size `+ 1
containing qn−1 and qn−2, which we have just shown is reachable, as follows,

〈p0, {qn−1}, {qn−1, qn−2, qj2+n−2−j1 , . . . , qj`+n−2−j1}〉
(dc)j0−j1−1

−−−−−−−→〈p0, {qn−1}, {qn−1, qj1+n−1−j0 , qj2+n−1−j0 , . . . , qj`+n−1−j0}〉
dn−1−j0
−−−−−→〈p0, {qn−1}, {qj0 , . . . , qj`}〉

Thus, we have shown that all states 〈p0, {qn−1}, R〉 are reachable.
Now, we consider states of the form 〈p0, P,R〉 for P ⊆ QB and R fixed. First,

we must set R appropriately. To do this, set

R0 = {qn−1, qj1+(n−1−j0), . . . , qj`+(n−1−j0)}.

From above, we know that 〈p0, {qn−1}, R0〉 is reachable. Then we have

〈p0, {qn−1}, R0〉
a(ac2)m−2

−−−−−−−→ 〈pm−1, {q0}, R0〉.

We will show that states 〈p0, P,R0〉 are reachable by induction on the size of
P . First, for 2 ≤ i ≤ n− 1, we have

〈pm−1, {q0}, R0}〉
a−→ 〈p0, {q1}, R0}〉

(ac2)i−1

−−−−−→ 〈p0, {qi}, R0}〉.

Thus, we have reached states 〈p0, P,R0〉 with |P | = 1.
Next, we will show that if states 〈pm−1, {q0}∪T,R0〉 with T ⊆ {q1, . . . , qn−1}

and |T | = k are reachable, then the state 〈p0, P,R0〉 with P ⊆ QB and |P | = k+1
is reachable. Let P = {qi0 , qi1 , . . . , qik} with i0 < i1 < · · · < ik. There are two
cases to consider. First, if i0 = 0, we have

〈pm−1, {q0, qi2−i1 , . . . , qik−i1}, R0〉
a(ac2)i1−1

−−−−−−−→ 〈p0, P,R0}〉.

Secondly, if i0 > 0, then

〈pm−1, {q0, qi1−(i0−1), . . . , qik−(i0−1)}, R0〉
a(ac2)i0−1

−−−−−−−→ 〈p0, P,R0〉.
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Now, we will show that states 〈pm−1, {q0} ∪ T,R0〉 are reachable. Recall that
〈{pm−1, {q0}, R0〉 was shown to be reachable above. Then we consider |T | ≥ 1
with q0 6∈ T and we have

〈p0, {qi1−(m−1), . . . , qik−(m−1)}, R0〉
am−1

−−−→ 〈pm−1, {q0, qi1 , . . . , qik}, R0〉.

There are (2n−1)2 such states.
Finally, for 0 ≤ i ≤ m− 1 and 0 ≤ i1 < · · · < ik ≤ n− 1, we have

〈p0, {qi0−i, qi1−i, . . . , qik−i}, R0〉
ai−→ 〈pi, P,R0〉.

Then to reach R as originally intended, we have

〈pi, P,R0〉
dn−1−j0
−−−−−→ 〈pi, P,R〉.

There are (m− 1)(2n − 1)2 such states. Thus, we have shown that all states of
the form 〈pi, P,R〉 are reachable and there are (m − 1) + (2n−1)2 + (2n − 1)2

such states.
Now, we will show that these states are pairwise distinguishable. Consider

two states 〈q, P,R〉 and 〈q′, P ′, R′〉.
We first note that for R = QB, we have that δC(〈q, P,QB〉, w) ∈ FC for all

q ∈ QA, P ⊆ QB, and words w ∈ Σ∗. Thus, any states with R = R
′

= QB are
indistinguishable. There are 2n−1 such states which can be merged into a single
state.

Then, we consider when R 6= R
′
. There exists some state qj ∈ R and qj 6∈ R

′
.

Then R and R
′

are distinguishable via the word dj . Similarly, suppose that
P 6= P ′. Again, there exists a state qi ∈ P and qi 6∈ P ′. Then P and P ′ are
distinguishable by the word an−1−i. Note that these two cases can be dealt with

independently, since a does not change R and R
′

and d does not change P and
P ′.

Finally, suppose q 6= q′ and let q = pi and without loss of generality let q′ = pj
with i < j and consider the states 〈pi, P,R〉 and 〈pj , P,R〉.

– If j < m− 1, we have

〈pi, P,R〉
(ba)m−1−j

−−−−−−−→ 〈pi−j+m−1, P ′, R
′〉,

〈pj , P,R〉
(ba)m−1−j

−−−−−−−→ 〈pm−1, {q0} ∪ P ′, {qn−1} ∪R
′〉.

These states can be distinguished because the second component of each
state are distinguishable as previously shown.

– Similarly, if i < m− 2 and j = m− 1, we have

〈pi, P,R〉
a(ba)m−2−i

−−−−−−−→ 〈pm−1, {q0} ∪ P ′, {qn−1} ∪R
′〉,

〈pm−1, P,R〉
a(ba)m−2−i

−−−−−−−→ 〈pk, P ′, R
′〉

for some k < m− 1. Again, the second components are different and may be
distinguished.
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– Finally, if i = m− 2 and j = m− 1, applying the word a sends both states
to states which fall under the case immediately above.

Thus, there are (m−1)+(2n−1)2+(2n−1)2 reachable states, of which 2n−1 are
indistinguishable. This gives a total of (m− 1)(22n− 2n+1 + 2) + 22n−2− 2n−1 + 1
states which are reachable and pairwise distinguishable as desired. ut

Proposition 9. For n ≥ 1, let A be an NFA with n states defined over an (p. 7)

alphabet Σ and let θ be an antimorphism. Then there exists an NFA that recognizes

L(A)�
θ
+ with at most 2n states. Furthermore, this bound can be reached in the

worst case.

Proof. Let A = (Q,Σ, δ, I, F ) be an n-state NFA. We denote by A the NFA
recognizing θ(L(A)), A = (Q,Σ, δ−1, F , I). We will define an NFA A′ which

recognizes A�
θ
+ with respect to an antimorphism θ by A′ = (Q′, Σ, δ′, I ′, F ′),

whereQ′ = Q∪Q, I ′ = I, F ′ = F∪I, and the transition function δ′ : Q′×Σ → 2Q
′

is defined for q ∈ Q′ and a ∈ Σ by

δ′(q, a) =


δ(q, a) if q ∈ Q,

δ−1(q, a) if q ∈ Q,

δ(q, a) ∪ I ∪ F if q ∈ Q and (δ(q, a) ∩ F ) 6= ∅,
δ−1(q, a) ∪ I ∪ F if q ∈ Q and (δ−1(q, a) ∩ I) 6= ∅.

We claim that L(A′) = L(A)�
θ
+ . To see this, suppose we have a word w ∈

L(A)�
θ
+ . We can write w = u1 · · ·uk for u1 ∈ L(A) and ui ∈ L(A) ∪ θ(L(A)) for

2 ≤ i ≤ k. Since u1 ∈ L(A), there is a path in A from I to a final state of A
and so there is also such a path in A′. But every transition to a final state also
reaches the initial states I and F of A and A, respectively. We can repeat the
process for each ui and the computation on w ends on a final state of A or A.
Thus, w ∈ L(A′).

Now suppose that w ∈ L(A′). We claim that since w reaches a final state
of A′, there must be a prefix u of w which reaches a state in F on A. Suppose
otherwise. Since w cannot reach a state in F , it must reach a state in I, a final
state of A. However, such states are unreachable in A′ from an initial state in
I ′, since I ′ = I and only contains initial states of A. Thus we can write w = uv
with u ∈ L(A).

Now, we will show that v ∈ (L(A) ∪ L(A))∗ by induction on |v|. If v = ε,

then it is clear that this holds and we have w = u ∈ L(A) ⊆ L(A)�
θ
+ . Now

let |v| = n and assume that for all words v′ ∈ Σ∗ with |v′| < n, we have v′ ∈
(L(A) ∪ L(A))∗ pref(L(A) ∪ L(A). We can factor v = v1v2. Since |v1| < |v| = n,
v1 ∈ (L(A) ∪ L(A))∗ · pref(L(A) ∪ L(A) by our assumption. However, we can
clearly choose v1 to be shorter so that v1 ∈ (L(A) ∪ L(A))∗. Then there is a
computation on v1 which ends in a final state of A or A. Then by definition,
this computation also ends on an initial state of A or A. Since v2 continues a
computation from these states, it is a prefix of a word recognized by either A or
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A. Then if v2 reaches a final state of A or A, it must be a word recognized by
either A or A. Thus, we have v2 ∈ L(A)∪L(A). This gives us v ∈ (L(A)∪L(A))∗

and therefore, w ∈ L(A)�
θ
+ .

From this construction, A′ has at most 2n states. Now, we will show this bound
is reachable. Let Ln = an−2b(an−1b)∗ and let θ be the identity antimorphism
with θ(a) = a for all a ∈ Σ. This language is recognized by the n-state NFA

shown in Figure 5. We will show that a fooling set S of size 2n exists for L
�θ+
n

with respect to θ. Let S = S1 ∪ S2 ∪ S3 where

– S1 = {(ai, an−2−ib) | 0 ≤ i ≤ n− 2},
– S2 = {(an−2bbai, an−2−i) | 0 ≤ i ≤ n− 2},
– S3 = {(an−2b, ε), (an−2bban−1, ban−2)}.

0start 1 2 · · · n− 2 n− 1
a a a a b

a

n− 1start n− 2 · · · 2 1 0
b a a a a

a

Fig. 5. The NFA recognizing Ln = an−2b(an−1b)∗ and its reverse

Let i < j and consider pairs (xi, yi) and (xj , yj) in S1. Then xjyi =

an−2−i+jb 6∈ L
�θ+
n since j − i > 0. Similarly, for pairs (xi, yi) and (xj , yj) in

S2, we have xjyi = an−2bban−2−i+j 6∈ L�
θ
+

n . Next, consider pairs (xi, yi) ∈ S1

and (xj , yj) ∈ S2. Then xiyj = ai+n−2−j 6∈ L�
θ
+

n .

Now, consider the two pairs in S3. First, it is clear that an−2bban−1 6∈ L�
θ
+

n .

Then for pairs (xi, yi) ∈ S1 and (an−2b, ε), we have xi · ε = ai 6∈ L�
θ
+

n . For pairs

(xi, yi) ∈ S1 and (an−2bban−1, ban−2), we have xi · ban−2 = aiban−2 6∈ L�
θ
+

n . Simi-

larly, taking (xi, yi) ∈ S2 and (an−2b, ε), we have an−2b·yi = an−2ban−2−i 6∈ L�
θ
+

n

and with (an−2bban−1, ban−2), we have an−2bban−1 · yi = an−2bban−1an−2−i 6∈
L
�θ+
n .

Thus, S is a fooling set of size 2n for L
�θ+
n . ut

Proposition 10. For n ≥ 3, let A be a DFA defined over an alphabet Σ with(p. 8)
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n states and let θ be an antimorphism. Then there exists a DFA that recognizes

L(A)�
θ
+ with at most 22n−1 − 2n + 1 states.

Proof (Correctness of construction). Let A = (Q,Σ, δ, s, F ). We define the DFA
A′ = (Q′, Σ, δ′, s′, F ′) with the set of states

Q′ ={〈P,R〉 | ∅ 6= P ⊆ Q− F,R ⊆ Q− {s}}
∪ {〈P ∪ {s}, R ∪ F 〉 ⊆ Q×Q | (P ∪R) ∩ (F ∪ {s}) 6= ∅},

the initial state

s′ =

{
〈{s}, ∅〉 if s 6∈ F ,
〈{s}, F 〉 if s ∈ F ,

the set of final states F ′ = {〈P,R〉 ⊆ Q×Q | (P ∪R) ∩ (F ∪ {s}) 6= ∅}, and the
transition function for a state 〈P,R〉 and symbol a ∈ Σ with P ′ = δ(P, a) and

R
′

= δ−1(R, a) is defined by

δ′(〈P,R〉, a) =

{
〈P ′ ∪ {s}, R′ ∪ F 〉 if (P ′ ∪R′) ∩ (F ∪ {s}) 6= ∅,
〈P ′, R′〉 otherwise.

Informally, DFA A′ operates by first simulating a computation of A, since by

definition, we have L(A)�
θ
+ = L(A)(L(A) ∪ θ(L(A)))∗. Once the computation

reaches a final state of A, an initial state for A and A is added to the current
state set and the computation continues. Whenever the current state of A′

contains a final state of A or A, the initial states of both machines are added.
The computation continues until the input is read and accepts if and only if a
final state of A or A is contained in the state of A′ when the input has been read.

First, we will show that L(A)�
θ
+ ⊆ L(A′). Let w ∈ L(A)�

θ
+ . We can write

w = u1u2 · · ·uk for k ≥ 1, where u1 ∈ L(A) and ui ∈ L(A) ∪ θ(L(A)) for
2 ≤ i ≤ k. We claim that there exists a computation path for w in A′,

s′
u1−→ 〈P1, R1〉

u2−→ 〈P2, R2〉
u3−→ · · · uk−→ 〈Pk, Rk〉.

Since u1 ∈ L(A), there must exist a path in A from s to a final state q ∈ F . Then
q ∈ P1 and by definition, we have s ∈ P1 and F ⊆ R1. Then we observe the same
argument holds for 2 ≤ i ≤ k: since s ∈ Pi−1 and F ⊆ Ri−1, if ui ∈ L(A), there
exists a path in A beginning at s such that F ∩ Pi 6= ∅ and if ui ∈ θ(L(A)), then
there exists a path in A starting at F such that s ∈ Ri. Then by definition s ∈ Pi
and F ⊆ Ri. Furthermore, we have (Pk ∪Rk)∩ (F ∪{s}) 6= ∅. Thus, 〈Pk, Rk〉 is a
final state of A′ and the above computation path exists and therefore, w ∈ L(A′).

Next, we will show that L(A′) ⊆ L(A)�
θ
+ . Let w be a word that reaches a state

〈P,R〉 in A′. We claim that we can factor w = uv such that u ∈ L(A)�
θ
+ ∪ {ε}

and v ∈ pref(L(A) ∪ θ(L(A))). We will consider two cases.
First, suppose that we have u = ε. We claim that in this case, v ∈ pref(L(A)).

To see this, we observe that if R 6= ∅, then there must be a state 〈P ′, R′〉
with F ⊆ R

′
reachable on some prefix of v. However, such a state is only
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reachable from s′ if it is a final state A′. In other words, we have v = v1v2 with

v1 ∈ L(A) ⊆ L(A)�
θ
+ , a contradiction. Then the only states reachable from s′

are states 〈{q}, ∅〉 with q ∈ Q and thus, v ∈ pref(L(A)) ⊆ pref(L(A) ∪ θ(L(A)))
as desired.

Now consider u 6= ε. Then there exists a computation path s′
u−→ 〈P ′, R′〉 v−→

〈P,R〉 such that 〈P ′, R′〉 is a final state of A′. To see this, we observe that if

R
′ 6= ∅, some prefix of w must have entered a final state of A′, as argued above.

Otherwise, we have the case u = ε. Therefore, w ∈ L(A)�
θ
+ and 〈P ′, R′〉 is a

final state of A′. Then by definition, we have s ∈ P ′ and F ⊆ R
′

and thus,
v ∈ pref(L(A) ∪ θ(L(A))).

Then since w ∈ L(A)�
θ
∗ · pref(L(A) ∪ θ(L(A))), if w reaches a final state of

A′, we can write w = uv such that u ∈ L(A)�
θ
+ ∪ {ε} and v ∈ L(A) ∪ θ(L(A)).

Thus, we have w ∈ L(A)�
θ
+ and we have shown L(A′) ⊆ L(A)�

θ
+ and therefore,

L(A′) = L(A)�
θ
+ . ut

Lemma 11. Let n ≥ 3. Then there exists an n-state DFA A and an antimorphism(p. 9)

θ over an alphabet of size 4 such that

sc(L(A)�
θ
+) ≥ 22n−1 − 2n + 1.

Proof. Let Σ = {a, b, c, d} and let θ : Σ → Σ be the antimorphism defined by

θ(a) = b θ(b) = a θ(c) = d θ(d) = c.

Let A = (Q,Σ, δ, s, F ), with Q = {0, 1, . . . , n − 1}, s = 0, F = {0} and the
transition function δ : Q×Σ → Q is defined by

– δ(i, a) = i+ 1 mod n for 0 ≤ i ≤ n− 1,

– δ(i, b) = i for 1 ≤ i ≤ n− 1, δ(0, b) = 1,

– δ(i, c) = i+ 1 for 0 ≤ i ≤ n− 1, δ(n− 1, c) = 1,

– δ(i, d) = i for 0 ≤ i ≤ n− 1.

Then we have the NFA A = (Q,Σ, δ−1, F , {s}) which recognizes θ(L(A)), where

the transition function δ−1 : Q×Σ → 2Q is defined by

– δ−1(i, a) = {i} for i = 2 ≤ i ≤ n− 1, δ−1(1, a) = {0, 1},
– δ−1(i, b) = {i− 1 mod n} for 0 ≤ i ≤ n− 1,

– δ−1(i, c) = {i} for 0 ≤ i ≤ n− 1,

– δ−1(i, d) = {i− 1} for i = 2 ≤ i ≤ n− 1, δ−1(1, d) = {0, n− 1}.

The DFA A and the NFA A are shown in Figure 3.

Let A′ be the DFA which recognizes L(A)�
θ
+ , which we obtain by following

the construction from Proposition 10. We will show that all states of A′ are
reachable.
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First, we will show that all states 〈P, ∅〉 with 0 6∈ P ⊆ Q are reachable by
induction on the size of P . For |P | = 1, from the initial state s′ = 〈{0}, {0}〉, we
have

s′
a−→ 〈{1}, ∅〉 ai−1

−−−→ 〈{i}, ∅〉
for 1 ≤ i ≤ n − 1 and thus every state with |P | = 1 and 0 6∈ P is reachable.
Now, let S = 〈P, ∅〉 with P = {i1, . . . , ik} where 1 ≤ i1 < · · · < ik ≤ n− 1 and
assume that all states 〈P ′, ∅〉 with |P ′| < k are reachable. We will show that P
is reachable. First, observe that for any state 〈P ′, ∅〉, if t = maxP ′, then

〈P ′, ∅〉 an−t−−−→ 〈P ′′, {0}〉

such that P ′′ ⊆ Q with 0 ∈ P ′′ and |P ′′| = |P ′|. Consider the set {0, i3 − (i2 −
i1 − 1), . . . , ik − (i2 − i1 − 1)} of size k − 1. We have

〈{0, i3 − (i2 − i1 − 2), . . . , ik − (i2 − i1 − 2)}, {0}〉
cb−→〈{1, i3 − (i2 − i1 − 1), . . . , ik − (i2 − i1 − 1)}, {n− 1}〉

ci2−1

−−−→〈{i2 − i1, i3 − i1, . . . , ik − i1}, {n− 1}〉
bn−1

−−−→〈{0, i2 − i1, . . . , ik − i1}, {0}〉
ai1−−→〈{i1, i2, . . . , ik}, ∅〉.

Thus, we have shown that P is reachable and therefore all states of the form
〈P, ∅〉 with 0 6∈ P are reachable. There are 2n−1 − 1 such states. This also shows
that all states of the form 〈P, {0}〉 with 0 ∈ P are reachable.

We will now show that all states 〈P,R〉 with P ⊆ Q and R ⊆ Q are reachable
by induction on the size of |R|. First, we will show that states 〈P,R〉 with |R| = 1
are reachable. From above, all states 〈P, {0}〉 with 0 ∈ P are reachable. Let
P = {i1, i2, . . . , ik} be a set of size k with 1 ≤ i1 < i2 < · · · < ik ≤ n− 1. Then
for 1 ≤ j ≤ n− 1,

〈{0, i2 − i1, . . . , ik − i1}, {0}〉
b−→〈{1, i2 − i1 + 1, . . . , ik − i1 + 1}, {n− 1}〉

ai1−1

−−−→〈{i1, i2, . . . , ik}, {n− 1}〉
bn−1−j

−−−−−→〈{i1, i2, . . . , ik}, {j}〉.

Thus, every state with |R| = 1 is reachable.

Now, let S = 〈P,R〉 with |R| = ` and suppose that all states 〈P,R′〉 with

|R′| < ` are reachable. Let P = {i1, . . . , ik} where 0 ≤ i1 < · · · < ik ≤ n− 1 and
R = {j1, . . . , j`} where n− 1 ≥ j1 > · · · > j` ≥ 0.

First, we consider how to reach states with 0 ∈ P and 0 ∈ R. That is, we set
i1 = 0 and j` = 0. There are two cases. First, if i2 > 1, we can reach S from a

state with |P ′| = k, |R′| = `− 1,

〈P ′, R′〉 = 〈{n− 1, i2 − 1, . . . , ik − 1}, {j1, . . . , j`−1}〉
a−→ S.
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If i2 = 1, we can reach S from a state with |P ′| = k, |R′| = `− 1 by

〈P ′, R′〉 = 〈{n− 1, i2 − 2, . . . , ik − 2}, {j1, . . . , j`−1}〉
ac−→ S.

Thus, we have shown how to reach states 〈P,R〉 with 0 ∈ P and 0 ∈ R′. There
are (2n−1)2 such states.

Now, we will show how to reach states 〈P,R〉 with 0 6∈ P and 0 6∈ R. That is,

i1 > 0 and j` < 0. We can reach a state 〈P ′, R′〉 with 0 ∈ P ′, 0 ∈ R′, |P ′| = k

and |R′| = ` as shown above. Then we can reach S by

〈P ′, R′〉 = 〈{0, i2 − i1, . . . , ik − i1}, {0, j` − j2 . . . , j` − j`−1}〉
bci1−1bn−1−j1
−−−−−−−−−→ S.

Thus, we have shown how to reach states 〈P,R〉 such that P and R do not
contain any final states. There are (2n−1 − 1)2 such states. Together, we have
shown that there are (2n−1)2 + (2n−1 − 1)2 + 2n−1 − 1 reachable states in A′.

We will now show that each of these states is pairwise distinguishable. First,
we note that any state 〈P,Q〉 is indistinguishable, since for every P ⊆ Q and
w ∈ Σ∗, we have δ′(〈P,Q〉, w) ∈ F ′. There are 2n−1 such states which can be
merged into a single state.

Now consider two states 〈P,R〉 and 〈P ′, R′〉 with R,R
′ 6= Q. If R 6= R

′
, then

there exists a state j ∈ R and j 6∈ R′. These two states can be distinguished by
the word bj .

Next, suppose P 6= P ′ and assume that R = R
′
, since otherwise, the two states

can be distinguished as above. Then there exists a state i ∈ P and i 6∈ P ′. Without
loss of generality, if 0 ∈ P and 0 6∈ P ′, then the two states are distinguishable by
the empty word ε.

Otherwise, either 0 is in both P and P ′ or it is in neither. In this case, if
1 6∈ R, then the two states can be distinguished by an−i. Otherwise, if 1 ∈ R,
then there is some state j ∈ Q−R which is not in R, since R 6= Q. We have

〈P,R〉 dj−1

−−−→ 〈P ∪ {0}, R′′〉

〈P ′, R〉 dj−1

−−−→ 〈P ′ ∪ {0}, R′′〉

such that 1 6∈ R′′. Then the two states can be distinguished by an−i as above.
Then there are (2n−1)2 + (2n−1 − 1)2 + 2n−1 − 1 reachable states, of which

2n−1 are indistinguishable. This gives a total of 22n−1 − 2n + 1 reachable and
pairwise distinguishable states as desired. ut


