Seymour Goodman Professor, Fred Chong

University of Chicago Computer Science Seymour Goodman Professor Fred Chong is part of a national team building software to manage quantum noise, an increasingly relevant problem due to the rapid development of quantum computing technologies. The team was among ten that received awards from the Department of Energy (DOE) Office of Science. The team, led by quantum information scientist Gregory Quiroz at the Johns Hopkins Applied Physics Laboratory (APL), plans to develop modular quantum software stack components to manage noise in the increasingly complex quantum computers planned for the near future.

In an earlier DOE award, Quiroz and Chong led a project called Tough Errors Are no Match (TEAM), delivering successful error management methods for quantum computers through the development of compilation tools for current-generation quantum computers consisting of tens to hundreds of qubits. This project culminated in over 50 papers and several open-source software tools.

“The TEAM project developed several key noise management tools,” said Chong. “It ranged from optimal control of the microwave signals that control quantum devices to zero noise extrapolation to improve the accuracy of quantum applications.”

For their new DOE award, the team plans on building upon the success of their first project. A primary challenge in quantum computing is noise. Quantum computer hardware is composed of basic atomic units known as qubits, which rely on engineered quantum particles like photons and electrons, or systems that mimic quantum particles, such as superconducting circuits. These quantum processors use the particles to execute complex calculations. However, random molecular movements within and around the qubits generate noise, disrupting their ability to store information and leading to errors, which makes current quantum machines unreliable and unpredictable.

Chong, Quiroz, and the rest of the team — William Zeng and Nathan Shammah, Unitary Fund; Anders Petersson, Lawrence Livermore National Laboratory; Pranav Gokhale, Infleqtion; and Gokul Subramanian Ravi, University of Michigan — plan to design modular quantum software stack components to manage noise in future quantum computers. This new project is called SMART Stack: Scalable, Modular, cross-platform Adaptable, dynamically Reconfigurable, and error-Targeted approaches to quantum stack design.

“SMART will extend and integrate the techniques developed previously in TEAM, creating a full software stack that will deliver more accurate quantum computation to users and applications,” Chong elaborates.

Current quantum software stacks have made progress in managing errors in existing hardware through various methods, but they generally lack the flexibility needed to fully leverage rapidly evolving technology. The SMART Stack team aims to develop software infrastructure to address this gap.

SMART Stack plans to build on these advancements by preparing for larger, next-generation quantum processors anticipated over the next 10 to 20 years. The engineering team’s strategy involves closely integrating the software stack of operating and control systems with hardware to strengthen error resistance and enhance algorithm performance in emerging systems, including future heterogeneous models that combine quantum computers with advanced classical computers.

This ambitious project is part of Chong’s broader quantum computing research within his EPiQC research group and the Chicago Quantum Exchange.

Related News

More UChicago CS stories from this research area.
receiving the test of time award
UChicago CS News

UChicago Alum John Paparrizos Honored with SIGMOD Test-of-Time Award for Advancing Time Series Analytics

Aug 29, 2025
headshot
UChicago CS News

University of Chicago Researchers Earn Top Honor for Adaptive Software Breakthrough

Aug 07, 2025
headshot
UChicago CS News

Alumni Spotlight: Shama Tirukkala ‘24 is a Fulbright Finalist

Aug 07, 2025
data points
UChicago CS News

Finding the “Goldilocks” Solution to a Classic Math Problem: A Breakthrough in Numerical Integration

Jul 29, 2025
UChicago CS News

Ten Years of MSCAPP: Where Public Policy Meets Coding

Jul 25, 2025
content warning label
UChicago CS News

Moderation at the Crossroads: How Generative AI Platforms Manage Creativity and Content Safety

Jul 21, 2025
UChicago CS News

Can a Doctor’s Notes Reveal When They’re Tired? New Research Illuminates the Hidden Signals of Physician Fatigue—And Raises Questions About AI in Healthcare

Jul 17, 2025
students looking at poster
UChicago CS News

2025 Midwest Machine Learning Symposium Demonstrates Regional Excellence

Jul 16, 2025
UChicago CS News

PhD Candidate Bogdan Stoica Receives Distinguished Artifact Evaluator Award for Championing Reproducibility in Computer Science

Jul 14, 2025
UChicago CS News

Report from GlobusWorld 2025: Going Beyond Data

Jul 10, 2025
headshots
UChicago CS News

University of Chicago PhD Graduates Secure Tenure-Track Faculty Positions Amid a Competitive Job Market

Jun 25, 2025
text to 3d example
UChicago CS News

Democratizing Digital Graphics: An Undergrad’s Unlikely Path To Putting Agency of 3D-Generation in Users’ Hands

Jun 17, 2025
arrow-down-largearrow-left-largearrow-right-large-greyarrow-right-large-yellowarrow-right-largearrow-right-smallbutton-arrowclosedocumentfacebookfacet-arrow-down-whitefacet-arrow-downPage 1CheckedCheckedicon-apple-t5backgroundLayer 1icon-google-t5icon-office365-t5icon-outlook-t5backgroundLayer 1icon-outlookcom-t5backgroundLayer 1icon-yahoo-t5backgroundLayer 1internal-yellowinternalintranetlinkedinlinkoutpauseplaypresentationsearch-bluesearchshareslider-arrow-nextslider-arrow-prevtwittervideoyoutube