In the face of accelerating climate change, the U.S. aims to reduce the net carbon emissions of its economy to zero by 2050. Achieving this goal will require an unprecedented deployment of clean energy technologies. And a significant transformation of the nation’s energy infrastructure.

It is an exceptionally complex and daunting challenge. But it is not impossible if we harness the transformative capabilities of artificial intelligence (AI) to help.

This is according to a groundbreaking new report issued by leading energy researchers and scientists from across America’s national laboratories. The report is titled AI for Energy. It provides a bold framework for how the U.S. Department of Energy (DOE) can use AI to accelerate the nation’s clean energy transformation.

“AI can manage complexity and make connections across multiple scientific and engineering disciplines, multiple model and data types, and multiple outcome priorities. This can enable AI to create solutions for the ​‘grand challenges’ of massive and rapid clean energy deployment that conventional methods cannot,” said Rick Stevens, associate laboratory director for the Computing, Environment and Life Sciences directorate at DOE’s Argonne National Laboratory.

The report identifies grand challenges across five areas of the U.S. energy infrastructure. These include nuclear power, the power grid, carbon management, energy storage and energy materials. Three common needs emerged across these challenges. The first is the need for quick and highly reliable computer-aided design and testing of materials and systems. The second is the need to improve scientists’ ability to pinpoint uncertainties in their predictions and how systems will perform. The third is the need for AI to integrate data from multiple sources and formats.

“AI’s ability to manage complexity and make connections across multiple disciplines, models and data types can help us solve the ​‘grand challenges’ of clean energy deployment in ways that conventional methods cannot.” — Rick Stevens, associate laboratory director for the Computing, Environment and Life Sciences directorate at Argonne

If the U.S. can overcome these challenges, the benefits could be significant.

“AI has the potential to reduce the cost to design, license, deploy, operate and maintain energy infrastructure by hundreds of billions of dollars,” said Kirsten Laurin-Kovitz, associate laboratory director for the Nuclear Technologies and National Security directorate at Argonne. ​“It can also accelerate design, deployment and licensing processes. These can account for up to 50% of the time it takes a new technology to get to the marketplace.”

(Image by Argonne National Laboratory.)

Capturing this potential will require scientists, industry players and policymakers to work together more closely than ever before. The AI for Energy report represents a strong first step. Approximately 100 experts from the fields of AI, machine learning and energy met at Argonne for two days in December 2023. Their goal was to map out how best to use AI to solve U.S. energy challenges. Attendees then worked together for three months to create the report.

The report was produced by Argonne and DOE’s Idaho National Laboratory, National Renewable Energy Laboratory and National Energy Technology Laboratory. Additional key contributors included DOE’s Brookhaven National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory and Sandia National Laboratories.

“Argonne is grateful for the opportunity to leverage its expertise in helping drive the AI for Energy effort,” said Claus Daniel, associate laboratory director for the Advanced Energy Technologies directorate at Argonne. ​“We are excited to help DOE drive U.S. global leadership in clean energy technology. And help DOE achieve its mission to secure U.S. energy independence and security for decades to come.”

You can read the entire AI for Energy report here.

This article was originally published by Argonne National Laboratory.

Related News

More UChicago CS stories from this research area.
UChicago CS News

UChicago Partners On New National Science Foundation Large-Scale Research Infrastructure For Education

Dec 10, 2024
UChicago CS News

Saturdays with CSIL — How Undergraduates are Transforming CS Education for Local High School Students

Dec 05, 2024
UChicago CS News

UChicago Researchers Receive Google Privacy Faculty Award for Research on AI Privacy Risks

Nov 22, 2024
UChicago CS News

The Climate App Designed to Tackle Chatham’s Flooding Crisis

Nov 21, 2024
In the News

Globus Receives Multiple Honors in 2024 HPCwire Readers’ and Editors’ Choice Awards

Nov 20, 2024
In the News

Argonne Team Breaks New Ground in AI-Driven Protein Design

Nov 15, 2024
UChicago CS News

DOE Awards Fred Chong and his National Research Team $7.5M to Develop a SMART Software Stack to Control Quantum Computer Noise

Nov 12, 2024
UChicago CS News

CS/LSSG Showcases Sustainability Research and Education

Nov 11, 2024
UChicago CS News

Ph.D. Student Jibang Wu Receives the Stigler Center Ph.D. Dissertation Award for His Work Modeling the Incentive Structures of Reward and Recommendation–Based Systems

Oct 24, 2024
UChicago CS News

Rebecca Willett Receives the SIAM Activity Group on Data Science Career Prize

Oct 23, 2024
UChicago CS News

UChicago CS Researchers Shine at UIST 2024 with Papers, Posters, Workshops and Demonstrations

Oct 10, 2024
UChicago CS News

UChicago Scientists Receive Grant to Expand Global Data Management Platform, Globus

Oct 03, 2024
arrow-down-largearrow-left-largearrow-right-large-greyarrow-right-large-yellowarrow-right-largearrow-right-smallbutton-arrowclosedocumentfacebookfacet-arrow-down-whitefacet-arrow-downPage 1CheckedCheckedicon-apple-t5backgroundLayer 1icon-google-t5icon-office365-t5icon-outlook-t5backgroundLayer 1icon-outlookcom-t5backgroundLayer 1icon-yahoo-t5backgroundLayer 1internal-yellowinternalintranetlinkedinlinkoutpauseplaypresentationsearch-bluesearchshareslider-arrow-nextslider-arrow-prevtwittervideoyoutube