Date & Time:
March 7, 2022 4:30 pm – 5:30 pm
Location:
Crerar 390, 5730 S. Ellis Ave., Chicago, IL,
03/07/2022 04:30 PM 03/07/2022 05:30 PM America/Chicago Yu-Xiang Wang (UCSB) – Three Challenges in Responsible ML and How to Overcome Them, Provably Crerar 390, 5730 S. Ellis Ave., Chicago, IL,

Watch Via Live Stream

The rise of machine learning (ML) and deep learning has revolutionized almost every aspect of our daily life. Learning-based methods are now widely used in financial, medical, and legal applications for tasks involving not only predictions, but also decision making, often in adversarial, non-stationary, and strategic environments, and sometimes relying on sensitive data. Classical statistical learning theory does not cover these new settings, which motivates us to develop new theories and algorithms for applying ML responsibly in these emerging applications.

In this talk, I will cover recent advances from that address these challenges with strong theoretical guarantees. Topics include new technical results in offline reinforcement learning, adaptive online learning and differential privacy as well as their promise in real-life applications.

Speakers

Yu-Xiang Wang

Eugene Aas Assistant Professor of Computer Science, UC Santa Barbara

Yu-Xiang Wang is the Eugene Aas Assistant Professor of Computer Science at UCSB. He runs the Statistical Machine Learning lab and co-founded the UCSB Center for Responsible Machine Learning. Prior to joining UCSB, he was a scientist with Amazon Web Services’s AI research lab in Palo Alto, CA. Yu-Xiang received his PhD in Statistics and Machine Learning in 2017 from Carnegie Mellon University (CMU). Yu-Xiang’s research interests include statistical theory and methodology, differential privacy, reinforcement learning, online learning and deep learning. His work had been supported by an NSF CAREER Award, Amazon ML Research Award, Google Research Scholar Award, Adobe Data Science Research Award and had received paper awards from KDD’15, WSDM’16, AISTATS’19 and COLT’21.

Related News & Events

No Name

NeurIPS 2023 Award-winning paper by DSI Faculty Bo Li, DecodingTrust, provides a comprehensive framework for assessing trustworthiness of GPT models

Feb 01, 2024
Video

“Machine Learning Foundations Accelerate Innovation and Promote Trustworthiness” by Rebecca Willett

Jan 26, 2024
Video

Nightshade: Data Poisoning to Fight Generative AI with Ben Zhao

Jan 23, 2024
No Name

UChicago Undergrad Analyzes Machine Learning Models Used By CPD, Uncovers Lack of Transparency About Data Usage

Oct 31, 2023
No Name

In The News: U.N. Officials Urge Regulation of Artificial Intelligence

"Security Council members said they feared that a new technology might prove a major threat to world peace."
Jul 27, 2023
No Name

UChicago Computer Scientists Bring in Generative Neural Networks to Stop Real-Time Video From Lagging

Jun 29, 2023
No Name

UChicago Assistant Professor Raul Castro Fernandez Receives 2023 ACM SIGMOD Test-of-Time Award

Jun 27, 2023
Michael Franklin
No Name

Mike Franklin, Dan Nicolae Receive 2023 Arthur L. Kelly Faculty Prize

Jun 02, 2023
No Name

PhD Student Kevin Bryson Receives NSF Graduate Research Fellowship to Create Equitable Algorithmic Data Tools

Apr 14, 2023
No Name

Computer Science Displays Catch Attention at MSI’s Annual Robot Block Party

Apr 07, 2023
No Name

UChicago, Stanford Researchers Explore How Robots and Computers Can Help Strangers Have Meaningful In-Person Conversations

Mar 29, 2023
No Name

Postdoc Alum John Paparrizos Named ICDE Rising Star

Mar 15, 2023
arrow-down-largearrow-left-largearrow-right-large-greyarrow-right-large-yellowarrow-right-largearrow-right-smallbutton-arrowclosedocumentfacebookfacet-arrow-down-whitefacet-arrow-downPage 1CheckedCheckedicon-apple-t5backgroundLayer 1icon-google-t5icon-office365-t5icon-outlook-t5backgroundLayer 1icon-outlookcom-t5backgroundLayer 1icon-yahoo-t5backgroundLayer 1internal-yellowinternalintranetlinkedinlinkoutpauseplaypresentationsearch-bluesearchshareslider-arrow-nextslider-arrow-prevtwittervideoyoutube