Social MIND Project Blends Machine Learning and Social Science

Data-driven models are increasingly used to simulate and make predictions about complex systems, from online shopping preferences and the performance of the stock market to the spread of disease and political unrest. But while powerful methods in machine learning and computational social science improve at predicting the future, they often lack the ability to explain why those results occur, rendering these models less helpful for shaping interventions and policy.

Social MIND, or Social Machine Intelligence for Novel Discovery, aims to reorient these models to emphasize prediction, explanation and intervention. With a $2 million grant from the Defense Advanced Research Projects Agency (DARPA) as part of its Ground Truth program, the collaboration between researchers at the University of Chicago (including Knowledge Lab and UChicagoCS) and the Massachusetts Institute of Technology will build a “model of models” that combines computational approaches and pits them against each other to reveal the underlying factors driving social systems, as well as potential points of intervention.

“What we’re trying to do in social science is develop powerful explanations,” said James Evans, co-primary investigator of Social MIND and professor of sociology at UChicago. “Machine learning models generate predictions, most of which are not elegant or beautiful explanations. We need to tune, tame and refocus machine learning on the task of identifying the best explanations, those that allow us to understand and change the world.”

Michael Franklin, Liew Family Chair of Computer Science at UChicago, is a co-PI on the grant. For more on Social MIND, read the full article at UChicago News. The project is currently seeking postdoctoral researchers.

Related News

More UChicago CS stories from this research area.
Video

“Machine Learning Foundations Accelerate Innovation and Promote Trustworthiness” by Rebecca Willett

Jan 26, 2024
Video

Nightshade: Data Poisoning to Fight Generative AI with Ben Zhao

Jan 23, 2024
No Name

Five UChicago CS students named to Siebel Scholars Class of 2024

Oct 02, 2023
No Name

In The News: U.N. Officials Urge Regulation of Artificial Intelligence

"Security Council members said they feared that a new technology might prove a major threat to world peace."
Jul 27, 2023
No Name

UChicago Computer Scientists Bring in Generative Neural Networks to Stop Real-Time Video From Lagging

Jun 29, 2023
No Name

UChicago Team Wins The NIH Long COVID Computational Challenge

Jun 28, 2023
No Name

UChicago Assistant Professor Raul Castro Fernandez Receives 2023 ACM SIGMOD Test-of-Time Award

Jun 27, 2023
No Name

Computer Science Displays Catch Attention at MSI’s Annual Robot Block Party

Apr 07, 2023
No Name

UChicago, Stanford Researchers Explore How Robots and Computers Can Help Strangers Have Meaningful In-Person Conversations

Mar 29, 2023
No Name

Postdoc Alum John Paparrizos Named ICDE Rising Star

Mar 15, 2023
No Name

New EAGER Grant to Asst. Prof. Eric Jonas Will Explore ML for Quantum Spectrometry

Mar 03, 2023
No Name

Assistant Professor Chenhao Tan Receives Sloan Research Fellowship

Feb 15, 2023
arrow-down-largearrow-left-largearrow-right-large-greyarrow-right-large-yellowarrow-right-largearrow-right-smallbutton-arrowclosedocumentfacebookfacet-arrow-down-whitefacet-arrow-downPage 1CheckedCheckedicon-apple-t5backgroundLayer 1icon-google-t5icon-office365-t5icon-outlook-t5backgroundLayer 1icon-outlookcom-t5backgroundLayer 1icon-yahoo-t5backgroundLayer 1internal-yellowinternalintranetlinkedinlinkoutpauseplaypresentationsearch-bluesearchshareslider-arrow-nextslider-arrow-prevtwittervideoyoutube