Date & Time:
February 14, 2020 10:30 am – 11:30 am
Location:
Crerar 390, 5730 S. Ellis Ave., Chicago, IL,
02/14/2020 10:30 AM 02/14/2020 11:30 AM America/Chicago Bryon Aragam (UChicago Booth) – A General Framework for Learning DAGs with NO TEARS UChicago CS/TTIC Machine Learning Seminar Series Crerar 390, 5730 S. Ellis Ave., Chicago, IL,

A General Framework for Learning DAGs with NO TEARS

Interpretability and causality have been acknowledged as key ingredients to the success and evolution of modern machine learning systems. Graphical models, and more specifically directed acyclic graphs (DAGs, also known as Bayesian networks), are an established tool for learning and representing interpretable causal models. Unfortunately, estimating the structure of DAGs from data is a notoriously difficult problem, and as a result existing approaches rely on various local heuristics for enforcing the acyclicity constraint. In this talk, we introduce a fundamentally different strategy: We formulate the structure learning problem as a purely continuous optimization problem that avoids this combinatorial constraint entirely. This optimization problem can be efficiently solved by standard numerical algorithms, avoiding handcrafted algorithms which also makes implementation particularly easy. As a result, we obtain a general framework for learning parametric, nonparametric, and dynamic DAG models that includes GLMs, additive noise models, and index models as special cases. 

Joint work with Xun Zheng, Chen Dan, Pradeep Ravikumar, and Eric P. Xing.

Host: Eric Jonas

Bryon Aragam

Assistant Professor, University of Chicago Booth School of Business

Bryon Aragam is an Assistant Professor and Topel Faculty Scholar in the Booth School of Business at the University of Chicago. His research interests include statistical machine learning, nonparametric statistics, and optimization. He is also involved with developing open-source software and solving problems in interpretability, ethics, and fairness in artificial intelligence.

Prior to joining the University of Chicago, Bryon was a project scientist and postdoctoral researcher in the Machine Learning Department at Carnegie Mellon University. He completed his PhD in Statistics and a Masters in Applied Mathematics at UCLA. He has also served as a data science consultant for technology and marketing firms, where he has worked on problems in survey design and methodology, ranking, customer retention, and logistics

Related News & Events

Video

“Machine Learning Foundations Accelerate Innovation and Promote Trustworthiness” by Rebecca Willett

Jan 26, 2024
Video

Nightshade: Data Poisoning to Fight Generative AI with Ben Zhao

Jan 23, 2024
No Name

Five UChicago CS students named to Siebel Scholars Class of 2024

Oct 02, 2023
No Name

In The News: U.N. Officials Urge Regulation of Artificial Intelligence

"Security Council members said they feared that a new technology might prove a major threat to world peace."
Jul 27, 2023
No Name

UChicago Computer Scientists Bring in Generative Neural Networks to Stop Real-Time Video From Lagging

Jun 29, 2023
No Name

UChicago Team Wins The NIH Long COVID Computational Challenge

Jun 28, 2023
No Name

UChicago Assistant Professor Raul Castro Fernandez Receives 2023 ACM SIGMOD Test-of-Time Award

Jun 27, 2023
No Name

Computer Science Displays Catch Attention at MSI’s Annual Robot Block Party

Apr 07, 2023
No Name

UChicago, Stanford Researchers Explore How Robots and Computers Can Help Strangers Have Meaningful In-Person Conversations

Mar 29, 2023
Students posing at competition
No Name

UChicago Undergrad Team Places Second Overall In Regionals For World’s Largest Programming Competition

Mar 17, 2023
No Name

Postdoc Alum John Paparrizos Named ICDE Rising Star

Mar 15, 2023
No Name

New EAGER Grant to Asst. Prof. Eric Jonas Will Explore ML for Quantum Spectrometry

Mar 03, 2023
arrow-down-largearrow-left-largearrow-right-large-greyarrow-right-large-yellowarrow-right-largearrow-right-smallbutton-arrowclosedocumentfacebookfacet-arrow-down-whitefacet-arrow-downPage 1CheckedCheckedicon-apple-t5backgroundLayer 1icon-google-t5icon-office365-t5icon-outlook-t5backgroundLayer 1icon-outlookcom-t5backgroundLayer 1icon-yahoo-t5backgroundLayer 1internal-yellowinternalintranetlinkedinlinkoutpauseplaypresentationsearch-bluesearchshareslider-arrow-nextslider-arrow-prevtwittervideoyoutube