Date & Time:
March 15, 2021 3:00 pm – 4:00 pm
Location:
Live Stream
03/15/2021 03:00 PM 03/15/2021 04:00 PM America/Chicago David Lindell (Stanford) – Physics-Based Visual Computing for Efficient 3D Vision and Sensing Live Stream

Physics-Based Visual Computing for Efficient 3D Vision and Sensing

Watch via live stream

In applications from robotics and computer vision to autonomous driving and remote sensing, there is an increasing need for optical sensors and visual computing algorithms that efficiently sense and understand the surrounding environment. Yet, conventional imaging systems fail to exploit or, worse, discard captured physical properties of light that are rich with information. For example, time of flight, polarization, wavelength, coherence, angular information, and other physical properties are encoded in photons as they interact with an environment. By understanding and carefully modeling the physics of light transport, we can reveal scene information that would otherwise remain invisible, enabling powerful and efficient methods for vision and sensing.

In this talk, I describe physics-based techniques for applications in 3D imaging and computer vision. Surprisingly, I find that new, efficient methods for imaging around corners and through scattering media are connected to efficient methods for neural rendering and novel view synthesis through different approximations of the radiative transfer equation.

Host: Pedro Lopes

David Lindell

Postdoctoral Scholar, Stanford University

David Lindell is a postdoctoral scholar at Stanford University in the Computational Imaging Lab. His research combines novel optical designs, emerging sensors, and physics-based algorithms to enable new capabilities in visual computing. He received his Ph.D. in Electrical Engineering from Stanford University, where he was a Stanford Graduate Fellow. He co-organized the workshop on Computational Cameras and Displays at CVPR 2020 and a course on Computational Time-Resolved Imaging at SIGGRAPH 2020.

Related News & Events

FabRobotics: The Fusion of 3D Printing and Mobile Robots

Feb 27, 2024

High School Students In The Collegiate Scholars Program Get To Know Robots

Nov 14, 2023

Five UChicago CS students named to Siebel Scholars Class of 2024

Oct 02, 2023

UChicago Computer Scientists Design Small Backpack That Mimics Big Sensations

Sep 11, 2023

UChicago Computer Scientists Bring in Generative Neural Networks to Stop Real-Time Video From Lagging

Jun 29, 2023

UChicago Team Wins The NIH Long COVID Computational Challenge

Jun 28, 2023

UChicago Assistant Professor Raul Castro Fernandez Receives 2023 ACM SIGMOD Test-of-Time Award

Jun 27, 2023

Computer Science Class Shows Students How To Successfully Create Circuit Boards Without Engineering Experience

May 17, 2023

UChicago CS Researchers Shine at CHI 2023 with 12 Papers and Multiple Awards

Apr 19, 2023

New Prototypes AeroRigUI and ThrowIO Take Spatial Interaction to New Heights – Literally

Apr 18, 2023

Computer Science Displays Catch Attention at MSI’s Annual Robot Block Party

Apr 07, 2023

UChicago, Stanford Researchers Explore How Robots and Computers Can Help Strangers Have Meaningful In-Person Conversations

Mar 29, 2023
arrow-down-largearrow-left-largearrow-right-large-greyarrow-right-large-yellowarrow-right-largearrow-right-smallbutton-arrowclosedocumentfacebookfacet-arrow-down-whitefacet-arrow-downPage 1CheckedCheckedicon-apple-t5backgroundLayer 1icon-google-t5icon-office365-t5icon-outlook-t5backgroundLayer 1icon-outlookcom-t5backgroundLayer 1icon-yahoo-t5backgroundLayer 1internal-yellowinternalintranetlinkedinlinkoutpauseplaypresentationsearch-bluesearchshareslider-arrow-nextslider-arrow-prevtwittervideoyoutube