Date & Time:
November 22, 2019 10:30 am – 11:30 am
Location:
TTIC 526, 6045 S. Kenwood Ave., Chicago, IL,
11/22/2019 10:30 AM 11/22/2019 11:30 AM America/Chicago Ramya Vinayak (Washington) – Learning From Sparse Data TTIC 526, 6045 S. Kenwood Ave., Chicago, IL,

Learning From Sparse Data

In many scientific domains, the number of individuals in the population under study is often very large, however the number of observations available per individual is often very limited (sparse). Limited observations prohibit accurate estimation of parameters of interest for any given individual. In this sparse data regime, the key question is, how accurately can we estimate the distribution of parameters over the population?  This problem arises in various domains such as epidemiology, psychology, health care, biology, and social sciences. As an example, suppose for a large random sample of the population we have observations of whether a person caught the flu for each year over the past 5 years. We cannot accurately estimate the probability of any given person catching the flu with only 5 observations; however, our goal is to estimate the distribution of these probabilities over the whole population. Such an estimated distribution can be used in downstream tasks, like testing and estimating properties of the distribution.

In this talk, I will present our recent results where we show that the maximum likelihood estimator (MLE) is minimax optimal in the sparse observation regime. While the MLE for this problem was proposed as early as the late 1960’s, how accurately the MLE recovers the true distribution was not known. Our work closes this gap. In the course of our analysis, we provide novel bounds on the coefficients of Bernstein polynomials approximating Lipschitz-1 functions. Furthermore, the MLE is also efficiently computable in this setting and we evaluate the performance of MLE on both synthetic and real datasets.

Joint work with Weihao Kong, Gregory Valiant, and Sham Kakade

Host: Rebecca Willett

Ramya Vinayak

Postdoctoral Researcher, University of Washington

Ramya Korlakai Vinayak is a postdoctoral researcher at the Paul G. Allen School of Computer Science and Engineering at the University of Washington, working with Sham Kakade. Her research interests broadly span the areas of machine learning, statistical inference, and crowdsourcing. She received a Ph.D. from Caltech where she was advised by Babak Hassibi. She is a recipient of the Schlumberger Foundation Faculty of the Future fellowship from 2013- 15. She obtained her Masters from Caltech and Bachelors from IIT Madras

Related News & Events

text to 3d example
UChicago CS News

Democratizing Digital Graphics: An Undergrad’s Unlikely Path To Putting Agency of 3D-Generation in Users’ Hands

Jun 17, 2025
headshot
UChicago CS News

Faculty Spotlight: Get to Know Kexin Pei

Jun 03, 2025
David Cash
UChicago CS News

David Cash Receives 2025 Quantrell Award for Undergraduate Teaching

Jun 02, 2025
future of AI panelists
Video

The Future of AI Panel: Alumni Weekend

May 30, 2025
Steven Song and Spencer Ellis
UChicago CS News

Bridging Medicine and Machine Learning: Predicting Skin Cancer in Resource-Limited Settings

May 28, 2025
UChicago CS News

Hands-On Vision: How a Wrist Camera Can Expand the World for All Users

May 23, 2025
students accepting best paper award
UChicago CS News

UChicago Students Received ACM EuroSys Best Paper for CacheBlend, a Game-Changer in AI Speed and Precision

May 22, 2025
Video

Can we authenticate human creativity?

May 19, 2025
robot interaction
In the News

More Control, Less Connection: How User Control Affects Robot Social Agency

May 16, 2025
headshot
Video

AI and the Future of Work Panel: Featuring Nick Feamster

May 06, 2025
collage of photos from conference
UChicago CS News

Innovation at the Forefront: UChicago CS Researchers Make Significant Contributions to CHI 2025

Apr 23, 2025
sign
UChicago CS News

The University of Chicago Hosts the First Great Lakes Graphics Workshop

Apr 23, 2025
arrow-down-largearrow-left-largearrow-right-large-greyarrow-right-large-yellowarrow-right-largearrow-right-smallbutton-arrowclosedocumentfacebookfacet-arrow-down-whitefacet-arrow-downPage 1CheckedCheckedicon-apple-t5backgroundLayer 1icon-google-t5icon-office365-t5icon-outlook-t5backgroundLayer 1icon-outlookcom-t5backgroundLayer 1icon-yahoo-t5backgroundLayer 1internal-yellowinternalintranetlinkedinlinkoutpauseplaypresentationsearch-bluesearchshareslider-arrow-nextslider-arrow-prevtwittervideoyoutube