Date & Time:
November 3, 2021 10:30 am – 11:30 am
Location:
TTIC, 6045 S. Kenwood Ave., Chicago, IL,
11/03/2021 10:30 AM 11/03/2021 11:30 AM America/Chicago Zhimei Ren (UChicago) – Policy Learning with Adaptively Collected Data TTIC, 6045 S. Kenwood Ave., Chicago, IL,

Policy Learning with Adaptively Collected Data

Learning optimal policies from historical data enables the gains from personalization to be realized in a wide variety of applications. The growing policy learning literature focuses on a setting where the treatment assignment policy does not adapt to the data. However, adaptive data collection is becoming more common in practice, from two primary sources: 1) data collected from adaptive experiments that are designed to improve inferential efficiency; 2) data collected from production systems that are adaptively evolving an operational policy to improve performance over time (e.g. contextual bandits). We aim to address the challenge of learning the optimal policy with adaptively collected data and provide one of the first theoretical inquiries into this problem. We propose an algorithm based on generalized augmented inverse propensity weighted estimators and establish its finite-sample regret bound. We complement this regret upper bound with a lower bound that characterizes the fundamental difficulty of policy learning with adaptive data. Finally, we demonstrate our algorithm's effectiveness using both synthetic data and public benchmark datasets.

The talk will take place at TTIC, 6045 S. Kenwood Avenue, 5th Floor, Room 530, and online via Zoom. 

For additional questions please contact Lingxiao Wang, lingxw@ttic.edu

Host: UChicago and TTIC Machine Learning Series

Zhimei Ren

Postdoctoral Researcher, University of Chicago

Zhimei Ren is currently a postdoctoral researcher in the Statistics Department at the University of Chicago, advised by Professor Rina Foygel Barber. Before joining the University of Chicago, she obtained her Ph.D. in Statistics from Stanford University.

Related News & Events

Video

“Machine Learning Foundations Accelerate Innovation and Promote Trustworthiness” by Rebecca Willett

Jan 26, 2024
Video

Nightshade: Data Poisoning to Fight Generative AI with Ben Zhao

Jan 23, 2024
No Name

Five UChicago CS students named to Siebel Scholars Class of 2024

Oct 02, 2023
No Name

In The News: U.N. Officials Urge Regulation of Artificial Intelligence

"Security Council members said they feared that a new technology might prove a major threat to world peace."
Jul 27, 2023
No Name

UChicago Computer Scientists Bring in Generative Neural Networks to Stop Real-Time Video From Lagging

Jun 29, 2023
No Name

UChicago Team Wins The NIH Long COVID Computational Challenge

Jun 28, 2023
No Name

UChicago Assistant Professor Raul Castro Fernandez Receives 2023 ACM SIGMOD Test-of-Time Award

Jun 27, 2023
No Name

Computer Science Displays Catch Attention at MSI’s Annual Robot Block Party

Apr 07, 2023
No Name

UChicago, Stanford Researchers Explore How Robots and Computers Can Help Strangers Have Meaningful In-Person Conversations

Mar 29, 2023
Students posing at competition
No Name

UChicago Undergrad Team Places Second Overall In Regionals For World’s Largest Programming Competition

Mar 17, 2023
No Name

Postdoc Alum John Paparrizos Named ICDE Rising Star

Mar 15, 2023
No Name

New EAGER Grant to Asst. Prof. Eric Jonas Will Explore ML for Quantum Spectrometry

Mar 03, 2023
arrow-down-largearrow-left-largearrow-right-large-greyarrow-right-large-yellowarrow-right-largearrow-right-smallbutton-arrowclosedocumentfacebookfacet-arrow-down-whitefacet-arrow-downPage 1CheckedCheckedicon-apple-t5backgroundLayer 1icon-google-t5icon-office365-t5icon-outlook-t5backgroundLayer 1icon-outlookcom-t5backgroundLayer 1icon-yahoo-t5backgroundLayer 1internal-yellowinternalintranetlinkedinlinkoutpauseplaypresentationsearch-bluesearchshareslider-arrow-nextslider-arrow-prevtwittervideoyoutube