Date & Time:
November 22, 2019 10:30 am – 11:30 am
Location:
TTIC 526, 6045 S. Kenwood Ave., Chicago, IL,
11/22/2019 10:30 AM 11/22/2019 11:30 AM America/Chicago Ramya Vinayak (Washington) – Learning From Sparse Data TTIC 526, 6045 S. Kenwood Ave., Chicago, IL,

Learning From Sparse Data

In many scientific domains, the number of individuals in the population under study is often very large, however the number of observations available per individual is often very limited (sparse). Limited observations prohibit accurate estimation of parameters of interest for any given individual. In this sparse data regime, the key question is, how accurately can we estimate the distribution of parameters over the population?  This problem arises in various domains such as epidemiology, psychology, health care, biology, and social sciences. As an example, suppose for a large random sample of the population we have observations of whether a person caught the flu for each year over the past 5 years. We cannot accurately estimate the probability of any given person catching the flu with only 5 observations; however, our goal is to estimate the distribution of these probabilities over the whole population. Such an estimated distribution can be used in downstream tasks, like testing and estimating properties of the distribution.

In this talk, I will present our recent results where we show that the maximum likelihood estimator (MLE) is minimax optimal in the sparse observation regime. While the MLE for this problem was proposed as early as the late 1960’s, how accurately the MLE recovers the true distribution was not known. Our work closes this gap. In the course of our analysis, we provide novel bounds on the coefficients of Bernstein polynomials approximating Lipschitz-1 functions. Furthermore, the MLE is also efficiently computable in this setting and we evaluate the performance of MLE on both synthetic and real datasets.

Joint work with Weihao Kong, Gregory Valiant, and Sham Kakade

Host: Rebecca Willett

Ramya Vinayak

Postdoctoral Researcher, University of Washington

Ramya Korlakai Vinayak is a postdoctoral researcher at the Paul G. Allen School of Computer Science and Engineering at the University of Washington, working with Sham Kakade. Her research interests broadly span the areas of machine learning, statistical inference, and crowdsourcing. She received a Ph.D. from Caltech where she was advised by Babak Hassibi. She is a recipient of the Schlumberger Foundation Faculty of the Future fellowship from 2013- 15. She obtained her Masters from Caltech and Bachelors from IIT Madras

Related News & Events

UChicago CS News

UChicago CS Researchers Shine at UIST 2024 with Papers, Posters, Workshops and Demonstrations

Oct 10, 2024
UChicago CS News

UChicago Scientists Receive Grant to Expand Global Data Management Platform, Globus

Oct 03, 2024
UChicago CS News

UChicago Researchers Demonstrate the Quantifiable Uniqueness of Former President Donald Trump’s Language Use

Sep 30, 2024
UChicago CS News

Five UChicago CS students named to Siebel Scholars class of 2025

Sep 20, 2024
UChicago CS News

NSF and Simons Foundation launch $20 million National AI Research Institute in Astronomy

Sep 18, 2024
In the News

Data Ecology: A Socio-Technical Approach to Controlling Dataflows

Sep 18, 2024
UChicago CS News

Ph.D. Student Shawn Shan Named MIT Technology Review’s 35 Innovators Under 35 and Innovator of the Year

Sep 16, 2024
UChicago CS News

Ben Zhao Named to TIME Magazine’s TIME100 AI List

Sep 05, 2024
UChicago CS News

Ian Foster and Rick Stevens Named to HPCwire’s 35 Legends List

Aug 28, 2024
UChicago CS News

University of Chicago to Develop Software for Effort to Create a National Quantum Virtual Laboratory

Aug 28, 2024
UChicago CS News

New Classical Algorithm Enhances Understanding of Quantum Computing’s Future

Aug 27, 2024
UChicago CS News

Decoding Content Moderation: Analyzing Policy Variations Across Top Online Platforms

Aug 26, 2024
arrow-down-largearrow-left-largearrow-right-large-greyarrow-right-large-yellowarrow-right-largearrow-right-smallbutton-arrowclosedocumentfacebookfacet-arrow-down-whitefacet-arrow-downPage 1CheckedCheckedicon-apple-t5backgroundLayer 1icon-google-t5icon-office365-t5icon-outlook-t5backgroundLayer 1icon-outlookcom-t5backgroundLayer 1icon-yahoo-t5backgroundLayer 1internal-yellowinternalintranetlinkedinlinkoutpauseplaypresentationsearch-bluesearchshareslider-arrow-nextslider-arrow-prevtwittervideoyoutube