In the face of accelerating climate change, the U.S. aims to reduce the net carbon emissions of its economy to zero by 2050. Achieving this goal will require an unprecedented deployment of clean energy technologies. And a significant transformation of the nation’s energy infrastructure.

It is an exceptionally complex and daunting challenge. But it is not impossible if we harness the transformative capabilities of artificial intelligence (AI) to help.

This is according to a groundbreaking new report issued by leading energy researchers and scientists from across America’s national laboratories. The report is titled AI for Energy. It provides a bold framework for how the U.S. Department of Energy (DOE) can use AI to accelerate the nation’s clean energy transformation.

“AI can manage complexity and make connections across multiple scientific and engineering disciplines, multiple model and data types, and multiple outcome priorities. This can enable AI to create solutions for the ​‘grand challenges’ of massive and rapid clean energy deployment that conventional methods cannot,” said Rick Stevens, associate laboratory director for the Computing, Environment and Life Sciences directorate at DOE’s Argonne National Laboratory.

The report identifies grand challenges across five areas of the U.S. energy infrastructure. These include nuclear power, the power grid, carbon management, energy storage and energy materials. Three common needs emerged across these challenges. The first is the need for quick and highly reliable computer-aided design and testing of materials and systems. The second is the need to improve scientists’ ability to pinpoint uncertainties in their predictions and how systems will perform. The third is the need for AI to integrate data from multiple sources and formats.

“AI’s ability to manage complexity and make connections across multiple disciplines, models and data types can help us solve the ​‘grand challenges’ of clean energy deployment in ways that conventional methods cannot.” — Rick Stevens, associate laboratory director for the Computing, Environment and Life Sciences directorate at Argonne

If the U.S. can overcome these challenges, the benefits could be significant.

“AI has the potential to reduce the cost to design, license, deploy, operate and maintain energy infrastructure by hundreds of billions of dollars,” said Kirsten Laurin-Kovitz, associate laboratory director for the Nuclear Technologies and National Security directorate at Argonne. ​“It can also accelerate design, deployment and licensing processes. These can account for up to 50% of the time it takes a new technology to get to the marketplace.”

(Image by Argonne National Laboratory.)

Capturing this potential will require scientists, industry players and policymakers to work together more closely than ever before. The AI for Energy report represents a strong first step. Approximately 100 experts from the fields of AI, machine learning and energy met at Argonne for two days in December 2023. Their goal was to map out how best to use AI to solve U.S. energy challenges. Attendees then worked together for three months to create the report.

The report was produced by Argonne and DOE’s Idaho National Laboratory, National Renewable Energy Laboratory and National Energy Technology Laboratory. Additional key contributors included DOE’s Brookhaven National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory and Sandia National Laboratories.

“Argonne is grateful for the opportunity to leverage its expertise in helping drive the AI for Energy effort,” said Claus Daniel, associate laboratory director for the Advanced Energy Technologies directorate at Argonne. ​“We are excited to help DOE drive U.S. global leadership in clean energy technology. And help DOE achieve its mission to secure U.S. energy independence and security for decades to come.”

You can read the entire AI for Energy report here.

This article was originally published by Argonne National Laboratory.

Related News

More UChicago CS stories from this research area.
UChicago CS News

Ben Zhao Named to TIME Magazine’s TIME100 AI List

Sep 05, 2024
UChicago CS News

Ian Foster and Rick Stevens Named to HPCwire’s 35 Legends List

Aug 28, 2024
UChicago CS News

University of Chicago to Develop Software for Effort to Create a National Quantum Virtual Laboratory

Aug 28, 2024
UChicago CS News

New Classical Algorithm Enhances Understanding of Quantum Computing’s Future

Aug 27, 2024
UChicago CS News

Decoding Content Moderation: Analyzing Policy Variations Across Top Online Platforms

Aug 26, 2024
UChicago CS News

Get to Know Our Newest Faculty Members

Aug 21, 2024
In the News

Big Brains Podcast: Fighting back against AI piracy, with Ben Zhao and Heather Zheng

Aug 15, 2024
UChicago CS News

Sarah Sebo Awarded Prestigious CAREER Grant for Research on Robot Social Skills in Collaborative Learning

Jul 29, 2024
UChicago CS News

Chameleon Testbed Secures $12 Million in Funding for Phase 4: Expanding Frontiers in Computer Science Research

Jul 29, 2024
UChicago CS News

What’s Real and What’s Not? Watermarking to Identify AI-Generated Text

Jul 18, 2024
UChicago CS News

Enhancing Multitasking Efficiency: The Role of Muscle Stimulation in Reducing Mental Workload

Jul 10, 2024
In the News

From wildfires to bird calls: Sage redefines environmental monitoring

Jun 28, 2024
arrow-down-largearrow-left-largearrow-right-large-greyarrow-right-large-yellowarrow-right-largearrow-right-smallbutton-arrowclosedocumentfacebookfacet-arrow-down-whitefacet-arrow-downPage 1CheckedCheckedicon-apple-t5backgroundLayer 1icon-google-t5icon-office365-t5icon-outlook-t5backgroundLayer 1icon-outlookcom-t5backgroundLayer 1icon-yahoo-t5backgroundLayer 1internal-yellowinternalintranetlinkedinlinkoutpauseplaypresentationsearch-bluesearchshareslider-arrow-nextslider-arrow-prevtwittervideoyoutube