Fred Chong is the Seymour Goodman Professor in the Department of Computer Science at the University of Chicago and the Chief Scientist for Quantum Software at ColdQuanta. He is also Lead Principal Investigator for the EPiQC Project (Enabling Practical-scale Quantum Computing), an NSF Expedition in Computing. Chong is a member of the National Quantum Advisory Committee (NQIAC) which provides advice to the President and Secretary of Energy on the National Quantum Initiative Program. In 2020, he co-founded Super.tech, a quantum software company, which was acquired by ColdQuanta in 2022. Chong received his Ph.D. from MIT in 1996 and was a faculty member and Chancellor’s fellow at UC Davis from 1997-2005. He was also a Professor of Computer Science, Director of Computer Engineering, and Director of the Greenscale Center for Energy-Efficient Computing at UCSB from 2005-2015. He is a recipient of the NSF CAREER award, the Intel Outstanding Researcher Award, and 13 best paper awards. His research interests include emerging technologies for computing, quantum computing, multicore and embedded architectures, computer security, and sustainable computing. Prof. Chong has been funded by NSF, DOE, Intel, Google, AFOSR, IARPA, DARPA, Mitsubishi, Altera and Xilinx. He has led or co-led over $40M in awarded research, and been co-PI on an additional $41M.
Research
Focus Areas: Computer Architecture, Computer Security, Emerging Technologies for Computing, Multicore and Embedded Architectures, Sustainable Computing, Systems
Quantum computing sits poised at the verge of a revolution. Quantum machines may soon be capable of performing calculations in chemistry, physics, and other fields that are extremely difficult or even impossible for today’s computers. The multi-institutional Enabling Practical-scale Quantum Computing (EPiQC) Expedition will help bring the great potential of this new paradigm into reality by reducing the current gap between existing theoretical algorithms and practical quantum computing architectures. Over five years, the EPiQC Expedition will collectively develop new algorithms, software, and machine designs tailored to key properties of quantum device technologies with 100 to 1000 quantum bits. This work will facilitate profound new scientific discoveries and also broadly impact the state of high-performance computing.