PhD Student Yi Ding Receives CRA Computing Innovation Fellowship

When times are tough for graduating computer science PhD students, the Computing Research Association and the Computing Community Consortium activate a special program: the Computing Innovation Fellowship, or CIFellows. With the COVID-19 pandemic disrupting the economy and job market, the program was revived this year for the first time since the economic crisis of 2008-09. And among the recipients of the program’s two-year postdoctoral funding was Yi Ding, 5th-year PhD student in Associate Professor Hank Hoffmann’s research group.

At UChicago CS, Ding studies the intersection of statistics and machine learning, working with Hoffmann and Associate Professor Risi Kondor in computer science and Assistant Professor Panos Toulis at the Booth School of Business. Her work focuses on applications of machine learning and causal inference in computer systems optimization and experimental design, and using statistical methods to develop more interpretable forms of machine learning.

“The difference between machine learning and causal inference is that, when doing machine learning, people mostly focus on prediction,” Ding said. “But now people want to ask new questions about why or what causes this outcome, how to distinguish causation from correlation, and what would be the outcome if something did not happen. So this is how causal inference comes into the field. Causal inference is about understanding the underlying structure of the problem, more than just prediction.”

With Hoffmann, the method is specifically applied to trade-offs between performance and energy efficiency in computer architecture. Hoffmann’s group develops approaches such as CALOREE and “Divide and Conquer” that combine machine learning and concepts from engineering and theoretical computer science to create self-aware and adaptive systems that balance compute speed and energy consumption.

In a paper for the 2019 International Symposium on Computer Architecture (ISCA), Ding, Hoffmann, and Nikita Mishra showed that improving machine learning model accuracy alone in a computer system did not improve system performance and efficiency, suggesting that examining the structure of the problem could lead to more meaningful improvements. New work under submission aims the combination of machine learning and causal inference at parallel computing to more precisely predict “straggler” tasks that can slow down overall performance.

In collaborations with Toulis, Ding has published research on using causal inference for analyzing policy outcomes and developed new randomized study design methods for temporal experiments, such as online advertising and clinical trials.

Ding plans to graduate by the end of the year and start her postdoctoral position in 2021 under the mentorship of Michael Carbin at MIT EECS. There, she will bring her expertise in machine learning and causal inference to the domain of programming languages, working with Carbin on developing new compilers and approximate computing methods.

Since joining the department in 2015, Ding has also been very active in UChicago CS student organizations, serving as co-chair of the department’s Graduate Women in Computer Science (GWICS) chapter and “Prime Minister” of the graduate student ministry. As she has watched the department grow in both number of faculty and students, she credits the culture of UChicago CS with supporting and improving her work.

“We can only do good research when we are happy and enjoy life,” Ding said. “So I think all of these things are connected.”

Related News

More UChicago CS stories from this research area.
UChicago CS News

Five UChicago CS Students Named to Siebel Scholars 2023 Class

Sep 22, 2022
UChicago CS News

UChicago CS Students Emily Wenger and Xu Zhang Receive Harper Fellowships

Sep 14, 2022
In the News

Internet Disconnect

Sep 13, 2022
UChicago CS News

UChicago/Argonne Computer Scientist Ian Foster Receives ACM/IEEE Ken Kennedy Award

Sep 07, 2022
UChicago CS News

First In-Person Robotics Class Lets Students See Code Come To (Artificial) Life

Sep 06, 2022
UChicago CS News

UChicago/Argonne Researchers Will Cultivate AI Model “Gardens” With $3.5M NSF Grant

Aug 30, 2022
UChicago CS News

UChicago Hosts NSF Workshop on Frontiers of Quantum Advantage

Aug 15, 2022
UChicago CS News

New 2022-23 Faculty Add Expertise in Linguistics, Visualization, Economics, and Data Science Education

Aug 11, 2022
In the News

UChicago Co-Leads $10 Million NSF Institute on Foundations of Data Science

Aug 09, 2022
UChicago CS News

UChicago CS Faculty Receive Industry Grants From J.P. Morgan, Google

Jul 19, 2022
UChicago CS News

UChicago London Colloquium Features Data Science, Quantum Research

Jul 01, 2022
Video

Is it Ethical to Use Facial Imaging in Decision-Making?

Jun 28, 2022
arrow-down-largearrow-left-largearrow-right-large-greyarrow-right-large-yellowarrow-right-largearrow-right-smallbutton-arrowclosedocumentfacebookfacet-arrow-down-whitefacet-arrow-downPage 1CheckedCheckedicon-apple-t5backgroundLayer 1icon-google-t5icon-office365-t5icon-outlook-t5backgroundLayer 1icon-outlookcom-t5backgroundLayer 1icon-yahoo-t5backgroundLayer 1internal-yellowinternalintranetlinkedinlinkoutpauseplaypresentationsearch-bluesearchshareslider-arrow-nextslider-arrow-prevtwittervideoyoutube